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Abstract 

The urinary bladder is a fluid filled organ. This makes, on the one hand, the internal surface of the bladder wall 

relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other 

hand, the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry 

methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. 

We give an overview of the currently used and investigated thermometry methods for hyperthermia treatments 

of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease 

(muscle invasive or non-muscle invasive bladder cancer) and the heating technique used. The role of treatment 

simulation to determine the delivered thermal dose is also discussed. Generally speaking, invasive measurement 

methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a 

combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical 

centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and 

control software.  

Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, 

more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the 

various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered 

thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give 



better controlled thus even more reliable and effective thermal treatments. 
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1. Introduction 

Bladder cancer is the fourth most common malignancy among Western men. [1] About 75 % of patients 

present with non-muscle invasive bladder cancer (NMIBC); NMIBC is confined to the mucosa and lamina 

propria (stages Ta, T1) and includes carcinoma in situ (CIS). [2] The other 25 % present with cancer 

invading the bladder musculature up to the perivesicular fatty tissue (muscle-invasive bladder cancer, 

MIBC). As detailed in section 2, these are distinct diseases with very different outlook, treatment 

modalities, and hyperthermia requirements. Hyperthermia (HT) has been investigated for decades as a 

method to improve the results of bladder cancer treatments. Most trials have focussed on the treatment 

of NMIBC. In order to reduce recurrences, HT is used to enhance the efficacy of chemotherapeutic 

instillations. For about two decades, HT in NMIBC was performed mostly with the Synergo-system, an 

intracavitary radio-frequency (RF) device. The last few years, other heating approaches, introduced briefly 

in section 3, have been increasingly used to deliver a controlled thermal dose to the target bladder region. 

There have been far less trials using HT for MIBC treatment. In this case, the heat has to penetrate the 

entire bladder wall and part of the surrounding tissue, reducing the number of suitable HT devices, and 

increasing the complexity of both the treatment and the determination of the delivered thermal dose. 

Since bladder and tissue properties are patient-dependent, heterogeneous and time-varying, some form 

of thermometry during treatment is mandatory. As outlined in section 4, which thermometry technique 

is most suitable depends on both the tumour type and the heating device. The current standard is to use 

minimally invasive, local thermometry, but non-invasive regional thermometry methods are receiving 

increasing attention. Whereas hyperthermia treatment planning (HTP) and treatment simulation are not 

usually performed in intracavitary heating methods with shallow heat penetration —which may limit our 

options to optimize these treatments—, multi-physics simulations are paramount to apply reliably deep 

HT treatments. An introduction to the available HTP systems is given in section 5, with special attention 

to the particular anatomical and physiological properties of the bladder. 

The pros and cons of several options to heat the tumour, measure the temperature, and simulate the 

treatment are discussed in more general terms in section 6. We then summarize the unique properties of 

the bladder, in particular its accessibility, and its similarity, in physical terms, to a fluid-filled bag with 

internal convective flow and no significant heat loss due to blood perfusion. Finally, we present 

recommendations for implementing good thermal dosimetry practices and interesting future research 
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topics. 

2. Bladder Cancer 

NMIBC and MIBC are clearly different tumour identities from both clinical, therapeutic, and thermal 

points of view. Whereas superficial tumours have an infiltration depth of less than about 20 cell layers 

(approximately 0.2 mm) and a very small risk of regional or distant disease, muscle invasive tumours can 

infiltrate up to 2 cm from the bladder lumen, and have a high risk of metastasising. Therefore, MIBC 

generally needs a much more aggressive treatment, and a much greater penetration depth of the HT 

treatment than NMIBC. 

2.1 Non-muscle Invasive Bladder Cancer 

Standard treatment for NMIBC is transurethral resection (TUR) of all visible lesions. Progression into a 

muscle-invasive cancer (section 2.2) is seen in 20–30 %, and recurrence even in 50–75 % depending on the 

risk group of the tumour [3].  

To prevent tumour recurrence following TUR, immunotherapy or intravesical chemotherapy (CH) is 

given. In many cases, standard of care is immunotherapy with bacillus Calmette-Guérin (BCG), which can 

also influence the progression rate when given as maintenance therapy. [4,5] Unfortunately BCG is not 

without severe side effects, both local and systemic, which can even be life threatening. [6] The most 

commonly used CH agent is mitomycin C (MMC), followed by epirubicin and doxorubicin, which are 

instilled into the bladder in single, multiple weekly and/or maintenance dose regimens.   

To improve this, combination therapies with local HT have been introduced. A synergistic effect is 

seen in vitro when combining HT and MMC in different bladder cell lines. [7] Phase I and II trials have 

been conducted with intracavitary RF hyperthermia (section 3.2b). Toxicity seems to be acceptable 

although a thermal reaction of the mucosa frequently occurs. [8] Only one randomised trial in 

intermediate/high risk patients has been conducted. After a follow up of 10 years the disease free survival 

was 53 % vs 15 % in favour of the combined arm with HT. [9] Other local heating techniques have since 

been explored, such as intravesical conductive heating (section 3.2a) [10] and loco-regional phased array 

HT systems (section 3.2d); so far only case reports and pilot studies have been published, but all showed 

promising results with acceptable toxicity. [11,12] 
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2.2 Muscle Invasive Bladder Cancer 

Standard therapy for MIBC is a radical cystectomy. [13–15] Survival and loco-regional recurrence rates are 

however strongly dependent on tumour stage and general patient condition. [16] 

 At present, the most common bladder-preserving treatment for MIBC is combined radiotherapy (RT) 

and CH, which is generally only applied for unresectable tumours or patients medically unfit for 

cystectomy. However, long-term data show that overall survival is comparable when modern radiation 

techniques are used. [17–19] The addition of sensitizing CH (cisplatin, MMC and/or 5-FU) to RT in MIBC 

treatment has improved 5-year survival (from 35 % to 48 %) and reduced 2-year loco-regional recurrence 

rates (from 32 % to 18 %). [20] However, considering the toxicity of CH for this generally older patient 

group, HT is an attractive alternative as RT sensitizing agent for patients not eligible for CH. Only one 

randomized trial evaluated the additive effect of HT to RT in MIBC. Although the addition of deep 

regional HT increased the complete response rate with no increase of late toxicity, it did not significantly 

prolong the duration of local control and survival. [21] Achieved intracavitary temperatures, which are not 

representative of temperatures in the deep infiltrating parts of MIBC, were recorded but not reported.  

 Furthermore, considering synergistic effects of HT with both ionizing radiation and CH agents, a tri-

modality treatment could further increase the local response rate of chemoradiation in MIBC. First results 

of a phase I–II study combining radiochemotherapy with deep regional HT in T1 and T2 bladder 

carcinoma showed encouraging results with a 3-year local recurrence free survival of 85 %. [22,23] This 

group uses non-invasive magnetic resonance imaging (MRI) based temperature measurements (cf. 

section 4.2.d), but results of the temperature data have not been published. 

3. Hyperthermia 

Hyperthermia works in myriad ways, which depend on temperature and treatment duration (thermal 

dose), combination of treatment modalities, and tumour site. Mechanisms of HT include increased blood 

perfusion, [24–26] altered cell metabolism, activated apoptotic pathways, [27] increased drug uptake, 

inhibited DNA damage repair, [28–30] and activation of the immune system. [31,32] Each mechanism has 

a different thermal dose-effect relation, making thermal dosimetry a complicated parameter. 

In some cases, concomitant HT may actually lower drug efficacy, as heating may degrade the drug. 

Fortunately, this appears not to be the case for MMC [33]. 
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3.1 Thermal Dose 

Thermal dose is a measure of the cumulative exposure of tissue to a specific time and temperature 

combination. The commonly used measure for thermal dose is Cumulative Equivalent Minutes at 43 °C, or 

CEM43, [34,35] which is based on an Arrhenius relationship: 

𝐶𝐸𝑀43 = ∫𝑅43−𝑇 𝑑𝑡 [min] (1) 

with dt [min] the time spent at temperature T [°C], and the breakpoint R a constant usually taken to be ¼ 

for T < 43 °C and ½ for T > 43 °C. There are also indications that the actual values for R may be closer to ⅛ 

and ¾, respectively, and that the breakpoint may be 47 °C rather than 43 °C. [36] Also, it is uncertain over 

which temperature range this relation holds. Hyperthermia treatment temperatures are typically in the 

range 39–45 °C, as temperatures lower than 39 °C are mostly ineffective and temperatures higher than 

45 °C may cause unwanted toxicities including immediately evident patient pain. [37,38] Note that dose 

effect relationships differ for different tissue types: 10 CEM43 for the skin has a very different effect than 10 

CEM43 for muscle. [39] Lastly, and most importantly, the dose definition in equation (1) is based on direct 

cell kill, which is generally not the main therapeutic action of HT. For example, blood perfusion appears 

to initially increase with temperature up till about 43.5 °C, above which perfusion will decrease because of 

vascular collapse [24,40,41]; this affects reoxygenation and drug delivery, complicating the empirical 

formulation of a thermal dose. Nevertheless, there is a fair body of evidence that CEM43 works reasonably 

well as a measure for thermal dose, [35] there is substantial clinical experience with CEM43 and no better 

substitute is available. [42]. 

Another point to note is that temperature is a local quantity, i.e., a value at a single point, while 

physiological effects are associated with a regional volumetric scale. To describe temperature throughout 

a treatment volume, temperatures are typically given as T90, T50, T10, or a combination thereof, which are 

the temperatures reached in at least 90 %, 50 %, and 10 % of the target volume during treatment, 

respectively. This implies that tumour temperatures should be known with reasonable accuracy and 

sampling density throughout the targeted volume; this is currently challenging for both invasive and non-

invasive thermometry techniques and consequently T50 can generally be established with more certainty 

than T90. These measures can be combined with CEM43 to give corresponding thermal dose measures 

within the tumour volume. The minimal or average T90  or T50 over the treatment or even all treatment 

sessions may also be given. Other measures for thermal dose have been suggested but such alternatives 
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have not been widely adopted. For instance, [43] used Trise, defined as the realised T50 over both tumour 

and surrounding healthy tissues, time averaged over the intended treatment duration. For cervical cancer 

Trise, performed comparably to CEM43 T90 in predicting disease specific survival. 

On a final note, also the timing of the HT treatment —before, after or concomitant with the primary 

treatment modality— and the time interval between HT treatments, have noticeable impact on treatment 

effectiveness and safety. As there is no widely accepted way to include HT timing in the thermal dose 

definition due to the complex synergy with the primary modalities; it will not be discussed in this paper. 

[44,45] 

3.1.a Quality Control 

Since even a mild temperature change has significant effect on physiology, temperature control during 

HT treatments is paramount to assure therapeutic quality, independent of target region. [38,46,47] This is 

especially true for bladder treatments, where the device used and the tumour type above all determine 

thermal distributions. On the one hand the bladder fluid can be heated relatively easily (using a variety of 

techniques described in section 3.2) and its temperature will be relatively uniform due to convective 

mixing. This generally causes the bladder wall to be heated also fairly homogeneously, due to conduction 

(unless the heating pattern is highly heterogeneous, cf. section 3.2.b). On the other hand the ion 

concentration inside the urine can vary greatly between patients, or even treatments, leading to a high 

uncertainty in dielectric properties —for RF heating highly relevant—, and hence to large inter-treatment 

and inter-patient variability. Moreover, the flow inlet and outlet of the bladder, and in some cases of the 

chemotherapeutic solution, can cause local temperature changes. 

Hyperthermia treatments usually last for 45–90 min (with invasive treatments typically lasting shorter 

than non-invasive ones), and during this time the volume of the bladder increases linearly [48] or varies 

due to the constant drain through a urinary catheter. This is in particular an important point for 

simulations of bladder HT treatments and, consequently, for heating methods that require treatment 

planning. When bladder volume is not controlled through a urinary catheter, treatment parameters as 

power, phase and amplitude have to be adjusted during treatment to ensure a homogeneous temperature 

rise in the bladder. Since a change in bladder filling may also cause significant changes to the neighbour-

ing anatomy, [49,50] this is also relevant for adjacent hyperthermia treatment sites, such as the cervix. 

[21,43] 

The bladder has the advantage that intracavitary temperature measurements are feasible. However, it 
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is quite difficult to position temperature probes in the bladder precisely and stationary. In contrast to 

other treatment sites, during bladder treatments temperature mapping by moving probes through 

catheters is usually not performed due to the need to clamp the urinary catheter. [51] The temperature 

probe measures either the temperature of the bladder fluid or of the bladder wall. Therefore temperature 

measurement methods, which measure both bladder wall and bladder fluid, are recommended. [52,53] 

Phantom measurements showed that the temperature of the bladder filling and the bladder wall may 

differ more than 1 °C, this has yet to be verified in vivo. 

The available procedures to adjust treatment settings to correct for too low or too high temperatures 

and ensure a high quality treatment, differ drastically between the heating devices. 

3.2 Delivering Thermal Dose to the Bladder  

There are various technologies to deliver HT to the bladder. They differ in the way they heat the bladder 

wall, and consequently they have different heating patterns and different requirements regarding thermal 

modelling, thermal dosimetry, and treatment control. We briefly introduce the most widely used 

methods as well as methods currently under investigation. A comprehensive review of heating technology 

is given elsewhere in this Special Issue. [54] 

Heating methods can be divided between invasive (section 3.2a,b) and non-invasive (section 3.2c,d,e) 

methods. Invasive systems heat only a shallow depth into the bladder wall, limiting their use to non-

muscle invasive disease. Non-invasive RF heating systems extend heating deeper into the bladder wall 

and surrounding tissues, potentially enabling MIBC treatment, and providing an additional challenge for 

adequate thermometry, but also offering more options for intracavitary thermometry. A combination of 

two systems, e.g. external phased array RF heating with recirculating warm fluid, may combine some ad-

vantages of both systems. 

3.2.a Recirculating Heated Fluids 

The simplest method to deliver heat to the bladder is based on closed circuit recirculation of an externally 

heated chemotherapeutic solution. The high flow rates (200–300 ml/min) of these systems ensure good 

mixing of the bladder contents resulting in a very homogeneous temperature in the lumen and at the 

bladder wall surface.  [55] Since the temperature of the fluid and the bladder inner surface is well-known, 

there is no real need for treatment planning. However, with this thermal conduction heating approach, 

there is no direct measurement of the bladder wall temperature, and the estimated penetration depth 

across the wall is less than 4 mm, limiting its use to NMIBC. A recent porcine trial using the COMBAT 
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system measured the temperature on both the internal and external surfaces of the bladder wall, em-

ploying thermistors (section 4.2b). The results demonstrate that spatial distribution of the temperature 

on the bladder surface is relatively uniform (<0.4 °C), but the thermal gradient across the wall can reach 

2–3 °C.  

 

3.2.b Intravesical Microwave Antenna 

The Synergo system (Medical Enterprises BV, Amsterdam, the Netherlands), in use since 1991, [57] has the 

longest track record with respect to HT enhanced MMC treatments for NMIBC. The system heats the 

bladder wall via 915 MHz microwave radiation from an intracavitary antenna with recirculating cooled 

chemotherapeutic solution, cooling the urethra around the hot microwave antenna feedline to prevent 

thermal toxicities.  

Positive results have been shown in both ablative and prophylactic treatments for intermediate and 

high-risk NMIBC patients. [9] Non-thermal side effects have been reported to be similar to standard 

MMC. [8] Continuous operator control is required to keep the temperature at the desired level of 42±2 °C. 

[58] Since the radiation pattern produced by the antenna is non-uniform, [57,59] the system may cause 

“hot spots” and superficial burns in about 40 % of cases, [8] or potentially ineffective “cold spots”. These 

may not be detected by the limited integrated thermometry which consists of 3-5 thermocouple sensors 

(0.2 °C accuracy), pressed against the bladder wall. The reported temperature is usually the average of the 

three sensors, and variations per sensor during treatment are typically not more than 1.0–1.5 °C. Patient 

specific HTP would be extremely challenging and is not applied. Heat penetration into the bladder wall is 

expected to be deeper than that of recirculation systems, but insufficient for MIBC; a study that 

investigated the temperature gradient over the bladder wall in a sheep model revealed that the difference 

between inside and outside temperature was 3.3–5.3 °C. [60] 

For a more extensive introduction and an overview of all recent trials with this system, the reader is 

referred to Van Valenberg et al., elsewhere in this Special Issue. [58] 

3.2.c Capacitive Deep Hyperthermia 

Capacitive heating works at relatively low RF frequencies of 5–30 MHz; all reported studies in treating 

bladder cancer used 8 MHz. Capacitive systems consist of two electrodes, placed on the anterior and 

posterior side of the patient. Heating occurs primarily because of dielectric loss. Due to its high 

resistivity, a subcutaneous fat layer of more than about 2 cm is a contra-indication for treatment. [61]  



–8– 

Using electrodes of different size localizes heating near the smaller electrode, but this form of power 

steering is very limited. Treatment simulation is still advisable because of the large influence of patient 

anatomy and bladder filling, and to evaluate possible temperature distributions. Although it is in general 

not possible to preferentially heat a deep tumour using a capacitive system, preferential heating of the 

bladder will occur naturally and can be further enhanced by increasing the salinity of the bladder 

contents to steer electric current through the lossy urine. Published studies show good obtained 

temperatures and good clinical results; an overview is given elsewhere in this Special Issue. [62] 

3.2.d Phased Array Deep Hyperthermia 

There are two commercially available phased array RF hyperthermia systems, operating at 70–120 MHz. 

These systems use either one or three rings of antennae around the patient. Phased-array systems 

generate a steerable heat focus, which can be shifted towards the target volume by adjusting power and 

phase of the signals. Patient specific HTP is an important tool for steering of phased array systems, 

particularly for the more complex multi-ring heating systems. [38,63,64]  

In treatment planning, the power and phase of each channel are optimized to maximize the heat 

delivery to the target and minimize hotspots above 45 °C in healthy tissue, [63,65,66] requiring not only 

accurate simulations and a treatment planning quality assurance, but also rigorous system characteriza-

tion. [63] Power control during HT treatment with these systems is generally based on intraluminal 

temperature measurements. [67] The BSD2000/3D/MR system uses 3D non-invasive MR-based 

temperature measurements during therapy. [68,69] 

Phased array deep HT devices have been used clinically for various treatment sites in the pelvic and 

abdominal area; recently, the feasibility of using these systems for NMIBC bladder HT has been proven. 

[11,12] This method has the potential to realize a more homogeneous thermal dose distribution than the 

intracavitary RF system, which should result in lower heat-related toxicity. Additionally, phased array 

systems have a much greater penetration depth, depositing energy in the entire bladder wall and the 

surrounding pelvic tissues, making it possible to induce better quality HT particularly in MIBC cases. An 

overview of clinical results is given elsewhere in this Special Issue. [62] 

3.2.e Magnetic Nanoparticle Fluids 

Investigation has begun on the use of ferromagnetic nanoparticle (MNP) solutions that, mixed with CH, 

can be instilled in the bladder. The MNPs are heated via magnetic induction coupling to an externally 

applied alternating magnetic field, usually at a frequency between 50–100 kHz to minimize direct heating 
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of the pelvis. Pre-clinical studies have demonstrated that MNPs can produce sufficient heating inside the 

bladder. [70] However, investigations continue to optimize nanoparticle and surfactant formulations to 

minimize toxicity of MNP solutions. [71]  

Heat generation is distributed throughout the fluid, which combined with convective mixing helps to 

homogenize the internal bladder temperature. For magnetic coupled MNP solutions, temperature must 

be monitored with an intracavitary non-metallic or EM interference (EMI) shielded probe. Unlike the 

circulating externally heated fluid approach, the maximum bladder temperature is not precisely known as 

the intracavitary probe may underestimate a localized peak temperature in the unstirred magnetic fluid.  

MNP will distribute well within the bladder producing relatively homogeneous temperatures 

throughout the bladder interior, though temperatures are not as uniform as for circulated fluid systems. 

Introduction of this technology into clinical practice awaits demonstration of lack of toxicity of the 

magnetic fluid when delivered into the bladder at a clinically effective concentration. 

4. Temperature Measurement 

4.1 Precision and Accuracy 

Treatment outcome correlates to thermal dose in the target area for a variety of tumour types. [43,72–84] 

However, when temperatures exceed 44 °C, heat related toxicity can occur. [37] Thus, it is important to 

measure temperature accurately, reliably and in real-time throughout and around the target area, i.e. the 

bladder wall and lumen. An accuracy of 0.2 °C and precision of 0.1 °C is preferable. Temperature should 

be recorded in real-time to be able to adjust the power settings and optimize the temperature 

distribution during treatment. 

It is important to have (invasive) temperature measurements not only in the bladder, but also in 

neighbouring tissues that receive heat, such as the urethra, and, for capacitive and phased array deep HT, 

the cervix and rectum. These measurements give more information about the temperature distribution in 

the pelvic area and provide feedback for steering the power focus into the bladder to maximize target 

dose and avoid excessive heating of normal tissues. [51] It is  important to provide feedback identifying 

the exact position of the heat focus within the patient [51]; therefore, it is preferable to use either probes 

with multiple measurement points, multiple single point probes in the target area, to perform thermal 

mapping along the invasive catheter, or to use high resolution 3D thermal imaging. [38,69,85,86]  

If microwave or RF heating devices are used, temperature probes that do not interfere with EM fields 
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are preferred (fibre-optic or high resistance lead thermistor probes). For sensors interfering with EM 

fields (i.e. thermistors and thermocouple probes), the power should be turned off during the temperature 

measurement. [47] Accurate invasive probes are still required along with MR thermometry in hybrid MR-

HT systems (cf. section 4.2.d). 

4.2 Thermometry Methods 

Numerous methods are available to measure temperatures. Recently, a review was published for 

thermometry during thermal ablation [87]; here, we focus on mild HT with special attention to the 

bladder. Generally, temperature is recorded most accurately with invasive probes such as thermistors, 

thermocouples, or fibre-optic sensors inserted into the bladder. For circulating heated fluids, the 

temperature in the bladder is mostly homogeneous and readily determined by any internal probe. The 

rapid falloff of temperature within the bladder wall needs to be predicted by treatment planning or deter-

mined experimentally. For heating with an intravesical microwave antenna, the temperature distribution 

is more complex; thus, three thermocouple sensors are placed at the bladder wall at points of expected 

high and low field strength, providing a better definition of the heating pattern. [88–91] Since the 

microwave antenna will deposit power non-uniformly directly in bladder wall tissue as well as the 

internal fluid, improved dosimetry would include volumetric thermometry techniques to characterize the 

3D temperature distribution in a wider volume around the bladder. For heating with external RF systems, 

significant heating occurs regionally within the pelvis. Such treatments may be monitored with minimally 

invasive (intracavitary or intraluminal) probes in bladder, vagina and rectum, [12,51] but non-invasive 

thermometry supplemented by patient specific simulations would provide more complete feedback on 

heating in and around the bladder and facilitate better treatment control. 

To provide reliable feedback, invasive temperature probes (section 4.2a,b,c) must be placed securely at 

the point of interest, which may be challenging. The bladder is easily accessible via the urethra, however, 

the exact location of the probe remains difficult to determine. Spatial resolution of either technology may 

be better than 1 mm in the radial direction in the presence of steep gradients stretching up to about 5 mm 

in relatively homogeneous configurations, thus providing a point measurement that does not reflect the 

volumetric temperature pattern. If intravesical heating methods are used, the sensor needs to be 

incorporated into the (disposable) treatment set, as is the case with the Synergo system and the 

recirculating fluid external heat exchanger systems. The temperature of fluid inside the bladder is not 
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necessarily the same as that of the bladder wall, and new approaches have been reported to characterize 

these temperatures. Using an “umbrella probe” that presses sensors against the bladder wall, somewhat 

similar to the Synergo thermometry system, it has been shown in phantom studies that these indeed 

measured the bladder wall temperature, which was lower than the temperature of fluid filling the bladder 

lumen. [52] Although it would be ideal from a dosimetric point of view, especially when treating MIBC, it 

is impossible to have temperature probes on each side of the bladder wall to ensure accurate 

characterization of the thermal distribution, except in animal studies. 

Table 1 summarises the most important properties of each thermometry technique; below, they are 

discussed in more detail. 

4.2.a Thermocouples 

Thermocouples are based on the Seebeck effect. A temperature gradient over a conductor results in a 

material specific electric potential. Joining two different conductors results in a measurable voltage or 

current from which a temperature difference between both ends of the measurement wire can be 

deduced. The sensitivity and accuracy depend mostly on the materials used. For HT applications, type T 

(copper-constantan) thermocouples are widely used, as they have good precision in the HT temperature 

range. They generally are rugged, reliable, fast, and long term stable, with a precision of 0.01–0.1 °C and, 

assuming proper calibration, an accuracy of better than 0.1 °C. [60,92,93] Thermocouples have a fast re-

sponse time and are generally thinner and less fragile than fibre-optic probes (section 4.2.c), important in 

a clinical environment. Spatial resolution along the wire can be a problem, [94] especially when several 

thermocouples are combined in one probe; e.g. multi-sensor thermocouples with up to 14 sensors, spaced 

0.5–1 cm apart. [12,52,93] This can be improved by using manganin-constantan probes, as they exhibit the 

same thermal sensitivity, but less thermal smearing than copper-constantan probes [94]; however, they 

are less readily available. 

When used in RF systems, thermocouples will interact with the EM field. [93] Significant self-heating 

may occur; therefore, the power needs to be switched off for 5 s so that self-heating artefacts can dissipate 

before each temperature measurement. 

4.2.b Thermistors 

Thermistors are resistors whose resistance changes with temperature. The thermistor’s two terminations 

can be connected in several ways to readout circuitry: the most accurate has 4-wire configuration, two for 
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driving the current and two for measuring the voltage thus compensating for non-negligible wire 

resistance. Negative temperature coefficient (NTC) thermistors are widely used in medical applications 

since they are inexpensive, accurate and robust. Thermistors are generally made of a ceramic or polymer 

compound, which exhibit a resistance with non-linear temperature dependence. The Steinhart–Hart 

equation is a widely used third-order approximation [95] valid over a very large range of temperatures 

(hundreds of °C) and for traditional ceramic sensors. When operated over a small temperature range (i.e. 

hyperthermia, 34–44 °C), thermistors offer a linear temperature behaviour. 

Recent NTC thermistors are silicon (Si) or germanium (Ge) based and have significantly improved 

performance versus conventional ceramic NTC thermistors. Although Si/Ge thermistors have a 

logarithmic temperature-resistance curve, they have higher thermo-sensitivity and do not need individual 

calibration in the working temperature range (0.2 % interchangeability). Additionally, smaller form factor 

Si thermistors can have resistance at room temperature of few MΏ, so self-heating is negligible and the 

sensor is resilient to negative environmental conditions. A very high resistance wire (e.g. Kanthal 35 

AWG, ~1 Ώ/cm) could be added to reduce interference from long wires without shielding or affecting 

performance. Conventional ceramic/polymer thermistors which suffer from poor interchangeability, and 

self-heating.  

4.2.c Fibre-optic Probes 

Fibre-optic temperature sensors are based mainly on one of two technologies: fluoroptic and 

semiconductor band gap (SCBG) technologies. Fluoroptic technology takes advantage of optical 

properties inherent in phosphorescent materials. The instrument determines the temperature of the 

sensor by measuring the decay time of its emitted light. This decay time is a persistent sensor property 

and it varies precisely with temperature. Although fibres are typically reinforced with coating and can 

bend without affecting measurements significantly, the fluorescence material is often damaged with 

usage and time, limiting the life of the sensor. Alternatively, SCBG technology provides accurate 

measurements using the temperature-dependent bandgap shift of a Gallium Arsenide (GaAs) crystal. 

Although fibre-optic sensors are expensive and fragile, they have a fast response and are immune to 

interference from RF and microwave sources. They are also electrically safe and resistant to chemicals and 

corrosion. Because of their ease of use (single point calibration) and good accuracy (0.2 °C), they are used 

for a variety of thermal medicine applications. In bladder cancer therapy, fixed or moving fibre sensors 
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are utilized for intracavitary monitoring of temperature (rectum, urethra/vagina) mostly in animal 

studies [96] and as references for MR guided treatments. [97] 

4.2.d Magnetic Resonance Imaging 

Several non-invasive thermometry techniques for HT applications are under investigation, but the only 

method in clinical use is MR thermometry. [86,98] There are a number of temperature-sensitive MR 

parameters, [99] but MR thermometry in clinical HT is based on the proton resonance frequency shift 

(PRFS) method because of its wide temperature range, high linearity, good sensitivity and spatio-

temporal resolution. [100] The PRFS technique is based on comparing phase maps made during treatment 

with a baseline made before treatment. [101] PRFS can be used in tissues with high water content (e.g. 

muscle), not in low water content tissues (e.g. fat and bone). [102] PRFS measurements have been shown 

to be an excellent tool to guide HT treatments in the pelvic region [68] and extremities. [85] 

MR thermometry requires the non-trivial design and installation of RF heating devices in an MR 

scanner. The first commercial solution, developed at Charité University Medical Center, showed the 

feasibility to integrate BSD Medical’s Sigma-Eye applicator into a 1.5 T MR scanner (Symphony; Siemens 

Healthcare GmbH, Erlangen, Germany) for treatments of tumours in the pelvis. They showed that 

quantitative MR measurements during heating are feasible for the pelvic region but also that 

susceptibility artefacts and the distortions by the applicator must be carefully taken into account for 

accurate MR measurements. [86,103]  

Although a very attractive option for dosimetry in the clinic, especially for MIBC, there are no reports 

concerning MR thermometry monitoring of bladder cancer treatments. There are a number of motion 

related challenges to overcome, caused by e.g. filling of the bladder and bowel movements. First, 

misalignment of mid-treatment from initial baseline images causes artefacts in the thermometry maps, 

which is not easily corrected in post-processing. Second, movement of tissue interfaces lead to changes in 

the main magnetic (B0) field of the scanner, invalidating some underlying assumptions of the 

reconstruction algorithm. For slow changes in the B0 field, techniques are under development to filter 

artefacts [104,105] or use a silicon [106] or fat [107] reference, but fast changes require dedicated motion 

robust approaches. Finally, there are motion artefacts from convective currents or externally recirculated 

fluids inside the bladder that induce image distortion and temperature rise calculation errors. These 

distortions and errors may be overcome by masking signals from these locations, provided that the 

(moving) bladder volume is accurately located at all times. For MIBC treatment with RF devices, practical 
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solutions may include catheter based emptying of the bladder and means that restrict convection in the 

bladder.  

To date, MR thermometry is the only technique that provides clinically proven 3D non-invasive 

temperature monitoring, but obtaining an accuracy of 0.1 °C requires additional technologies. Still, MR 

guidance has the added benefit of monitoring not only temperature, but also the tumour. 

4.2.e Microwave Radiometry 

Every object radiates energy proportional to its absolute temperature with frequency distributed across 

the EM spectrum. [108] Thermal radiation emitted at 0.5–5 GHz microwave frequencies can travel several 

cm through biological tissue. [109] A microwave radiometer collects safely, painlessly and passively, 

through an antenna, a number of these photons proportional to the tissue composition and absolute 

temperature. By collecting photons at different frequencies, it is thus possible to reconstruct the thermal 

profile across several cm of tissue below a sensing antenna placed on the skin. [110] This skin contact 

requirement is a major drawback when the technique is to be combined with deep hyperthermia methods 

that require a water bolus between antenna and patient (cf, section 3.2c,d). 

In general terms, a microwave radiometer consists of three basic modules: 1) a skin contacting sensor 

composed of a calibration switch system and a first stage amplifier, 2) a processing unit with high gain 

amplification, signal filtering, and conversion to a digital signal, and 3) calibration, control and tem-

perature reconstruction software. [111,112] The software provides signal processing with temporal 

averaging, drift compensation, and a signal-to-temperature conversion. Technological advances have 

resulted in radiometers able to track temperature 5 cm deep in the brain with a sensitivity of 0.4 °C. The 

same technology was used to demonstrate feasibility of simultaneous warming and temperature 

monitoring of porcine bladder. [113,114] 

For a single band radiometer, there is just one signal and the specific tissue volume being sensed 

depends on the radiation pattern of the receive antenna and the selected frequency band, allowing to 

accurately estimate temperature of a tissue volume at depth [110,115–117]. A temperature depth profile can 

be reconstructed if radiometer signals are collected over multiple carefully chosen frequency bands 

[118,119]. An array of radiometric sensors could then provide lateral information and, combined with 

depth profiles, produce 3D thermal mapping. 

However, several challenges are limiting the use of this technology to lab research and preclinical 

models. Accuracy of the radiometric readings is highly dependent on antenna calibration, tissue 
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properties, and patient anatomy. The calibrations generally involve a combination of both theoretical 

modelling and experimental confirmation in known heterogeneous tissue models. [110,114,120,121] Other 

critical factors for accurate radiometry are the contact reliability between sensor and tissue, motion 

artefacts, and EMI shielding. When combined with EM heating, accurate readings require turning off the 

power sources during the measurement period (e.g. 2–5 s power off intervals) potentially introducing a 

‘cooling’ error. Figure 1 compares microwave and fibre-optic temperature measurements, showing a large 

delay for the radiometer. 

Although it ultimately could be a cost effective technology, the thermal profile reconstruction is quite 

complex. Despite the challenges, radiometry has made significant advances in recent years. It may 

therefore soon play a role by complimenting invasive measurements for thermal dosimetry during 

bladder HT, especially in those clinics where MR or ultrasound systems are not readily available. 

4.2.f Ultrasound 

Ultrasound (US) imaging is capable of tissue thermometry using a variety of methods, covered 

comprehensively in a recent review article by Lewis et al. [122] US is real-time and offers a spatial 

resolution of 1–2 mm. Challenges with US thermometry include the non-linear response to temperature 

changes, and a limited range of measurement from body temperature to less than 50°C. Furthermore, 

compatibility of US devices with specific HT systems must be considered, both in terms of RF and 

acoustic interference, and the potential of US probes to disrupt energy transmission into the body. 

Patient movements and the fluid convection may also contribute to artefacts in the temperature 

measurements. To date, there are no reports in the literature of using US thermometry to monitor 

bladder heating, and the few reports of using the method in vivo have been limited to preclinical rodent 

studies. [123–125] 

There are two US thermometry techniques with potential suitability for monitoring bladder 

treatments. The first is the use of speckle tracking or thermal strain imaging to detect speed of sound 

changes during heating. [126,127] This technique offers a temperature resolution of approximately 1 °C 

and is amenable to 2D B-scan imaging. Unaddressed issues include the robustness of the temperature 

calculations on a layered structure such as the bladder. Further, thermal strain methods are sensitive to 

bulk motion, requiring motion compensation or efforts to keep the bladder volume constant. The other 

promising approach is shear wave thermometry, [128] which measures the speed of propagation of a shear 

wave generated in the target tissue. Shear stiffness changes could be used to identify thermal dose levels 
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as estimation of tissue damage. [129] Moreover, this technique does not have the motion sensitivity of 

thermal strain imaging, making it more practical for bladder treatments.  

Reliable clinical US systems are available in most of the urology clinics that perform cancer 

treatments. Advantages of US thermometry are portability, accessibility of the bladder to US, and ability 

to image the bladder wall clearly from outside the body or from transurethral systems. The fluid in the 

bladder is not likely to cause major artefacts, however, temperature measurements within the fluid are 

not feasible with US. Moreover, the motion of the bladder as it fills needs to be taken into account. 

Finally, depending on the heating method, the placement of the probe may be problematic. US 

thermometry is not yet standard on clinical systems, therefore applications in the near future are limited 

to research studies with prototype devices. 

5. Temperature Simulation 

No HT treatment planning system currently in use accurately models the urinary bladder including 

convective flow, although some steps have been made to correct for this. [48] Instead, the entire bladder, 

including contents, is typically modelled as a solid muscle. Thus two errors are introduced regarding the 

bladder content, since it is neither a solid, nor does it have muscle-like tissue properties. The resulting 

errors do not only affect the bladder itself, but may also have an impact on surrounding tissues. The 

presence of an air bubble within the bladder also appears to affect bladder wall temperature 

homogeneity. [130] 

5.1 Clinical Simulation Methods 

Hyperthermia treatment planning (HTP) for bladder treatments is used clinically almost exclusively for 

phased array systems (section 3.2d). For many years, HTP has been used mainly retrospectively, [131–133] 

but nowadays HTP is used more often before and during clinical HT to improve treatment quality. 

[51,64,134,135] The clinical relevance of HTP is emphasized in the recent Quality Assurance Guidelines for 

clinical application of loco-regional HT, specifying the requirements for HTP. [47] The need for adequate 

treatment planning has led to a number of dedicated treatment planning software packages that can be 

used for clinical applications. [63,66,135]  

All systems follow the same basic principle. Based on a segmented patient model, they first compute 

the EM field, based on a catalogue of dielectric and thermal tissue properties, and calculate the resulting 

energy absorption, or SAR (Specific Absorption Rate). Using this SAR distribution, they may compute a 

temperature distribution based on Pennes’ bio-heat equation, [136] which relates temperature change to 
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energy uptake, thermal diffusion, and heat loss due to blood perfusion. The chosen modelled perfusion 

rate usually reflects the increased level expected at elevated temperatures. Many systems support 

temperature dependent perfusion rates to reflect increases in perfusion during treatments, but these are 

not commonly used as they do not substantially improve the steady state solution and negatively impact 

calculation times. Phase/amplitude optimization can be done based on SAR or temperature objectives.  

When loco-regional heating is performed using one of the BSD Sigma systems, [137] the commercially 

available HTP system Sigma-HyperPlan (Dr Sennewald Medizintechnik GmbH, Munich, Germany) can 

be used. Besides the standard segmentation method various other methods are available to generate a 

patient model based on a CT scan. [138] E-field and temperature calculations can be performed using 

either the finite element method with tetrahedral grids or the Finite Difference Time Domain (FDTD) 

method. [139] The FDTD method can be applied on a tetrahedral grid generated using segmented regions 

as well as on a voxel grid generated using the CT Hounsfield Units. [131]  

SEMCAD X and Sim4life (SPEAG, Zurich, Switzerland) are commercially available multi-physics 

simulation platforms that are more flexible and allow modelling of various applicator configurations as 

well as MRI guidance and interactions. Add-on segmentation tool iSEG, which contains several fully 

automatic and interactive segmentation techniques, can be used to create patient models. Specific work-

flows are available for standardized HTP. Calculations are based on finite difference and finite element 

methods. Some extensions to the Pennes model are available, including user-defined anisotropic thermal 

conductivity, temperature dependent parameters and pseudo-1D boundary conditions to model the im-

pact of vasculature and blood flow.  

The AMC hyperthermia treatment planning system (Academisch Medisch Centrum, Amsterdam, the 

Netherlands) is a flexible in-house developed FDTD based HTP system that allows for various applicator 

systems. [140–142] Tissue segmentation is based on Hounsfield Units, which can be combined with 

manual delineations and corrections. A unique feature of this planning system is the DIscrete 

VAsculature (DIVA) thermal model, which allows realistic modelling of blood flow. [143,144] The DIVA 

model subdivides the model geometry into a voxelized tissue space and a grid-independent vessel space 

describing vasculature by 3D curves compatible with CT/MRI angiography software. 

In addition to these dedicated planning software platforms, COMSOL, Ansys High Frequency 

Structural Simulator (HFSS) or CST STUDIO SUITE also allow for E-field calculations and basic thermal 
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simulations for HTP. These packages provide flexibility in applicator modelling, but require linking to 

other software for tissue segmentation, advanced thermal modelling and optimization of SAR or 

temperature distributions. 

The software packages used to perform clinical HTP for bladder treatments differ between institutions 

and the choice may depend on individual preferences. Nevertheless, additional software tools will be 

required for specific or relatively new applications, such as adaptive treatment optimization. 

5.2 Dielectric Tissue Properties 

The accuracy of SAR and subsequent thermal modelling is dependent on the accuracy of the dielectric 

and thermal patient model, and thus on the quality of the tissue segmentation. In current HTP systems, 

the liquid contents of the bladder are assigned the same electrical and thermal properties as the bladder 

wall. The investigation of human autopsy samples of Gabriel et al. [145,146] resulted in a low permittivity 

of bladder wall tissue (εr,wall = 20) as well as a very low conductivity (σwall = 0.27 S/m) at 37 °C. This is 

much lower than the values typically used for muscle, to which the bladder wall is generally assumed to 

be similar. For instance, the database of Sigma HyperPlan lists a permittivity of εr,filled = 78 for bladder and 

a conductivity of σfilled = 0.6 S/m (both wall and contents) at a frequency of 90 MHz. 

However, the dielectric properties of the fluids inside the bladder differ strongly from those of the 

bladder wall. Yuan et al. [48] measured the dielectric properties of the treated bladder fluid (urine and 

MMC) at a frequency of 90 MHz and reported a permittivity equal to HyperPlan (εr,fluid = 78) but a much 

higher conductivity (σfluid = 1.81 S/m), similar to results in a porcine study. [147] Given the ease of 

procedure, this type of measurement should be done more often to obtain a clearer insight in 

conductivity and permittivity value and variation. For tissues, however, human in vivo electric property 

measurements are scarce, due to practical and ethical reasons, and therefore MR based methods such as 

Electric Properties Tomography (EPT) for non-invasive measurement have received increased attention. 

[148–152] The resolution of such methods is currently inadequate to distinguish the bladder wall, but the 

bladder contents can be measured. A recent study using EPT in cervical cancer patients found a large 

interpatient variation:  σfluid = 1.80 ± 0.54 S/m, [152] which had a major impact on HTP. [153] The impact 

on the bladder is shown in Figure 2b,d. 

 Moreover, electrical conductivity is temperature dependent; in a study with various freshly harvested 

tissues, the conductivity of bladder wall increased from 0.95 to 1.01 S/m and that of muscle from 1.03 to 

1.13 S/m when the temperature was increased from 37 to 45 °C. [154] Additionally, it has been shown that 
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the electrical impedance increase of bladder wall tissue is affected by the presence of tumour tissue, an 

effect that does not occur in certain other tissues such as cervical tissue. [155]  

There have been very few studies concerning the impact of using different dielectric values for bladder 

HTP. One group studied the combined effect on HTP accuracy of updated values of both dielectric and 

thermal parameters. [48] A treatment planning study on cervical cancer patients found a large impact on 

HTP outcome using in vivo dielectric properties and bladder volume. [153] In one patient model with a 

full bladder, the difference between optimization with literature values and EPT values for the T90 was 

1.37 °C; for patient models with practically empty bladder the temperature decrease was less than 0.57 °C. 

[153] Although results for the cervix cannot be directly translated to the bladder, it suggests treatment 

with a full bladder may be beneficial. 

5.3 Thermophysical Bladder Properties 

Apart from the dielectric properties mentioned in the previous section, there are two principal differences 

between a bladder properly modelled as a fluid filled organ, and a bladder modelled as a solid muscle: the 

absence of perfusion, and the presence of convection. In local or loco-regional HT, blood perfusion of 

tissues is a very important factor for temperature simulations, [156] and it is typically modelled as a heat 

sink. In the bladder interior, there is no perfusion, and therefore, no heat sink; instead, the only heat 

removal is through conduction to the (perfused) bladder wall.  

Secondly, in an unevenly heated fluid, convection will occur under the influence of gravity. This is a 

much more effective heat transport mechanism than thermal conduction, and consequently, it tends to 

homogenize temperature throughout the fluid. Additionally, there will be a nett heat transport against 

the gravitational pull.  

A first step to mimic the effects of convection is a model with highly increased effective heat transfer. 

[48] This large effective heat transfer property should preferably be anisotropic, but not all HTP systems 

allow for that. A drawback of this approach is that the effective value for heat transfer depends on many 

factors and is not easily derived. Thus it is necessary to fit the effective conductivity to measured 

temperatures, making the method empirical and available only from the second treatment session 

onwards. 

More recently, a physically more sophisticated and computationally more intensive approach was 

reported in a study investigating the effects on the temperatures of convection in the bladder, using a 

thermophysical fluid model extension to the AMC HTP system, the results of which are shown in Figure 
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2c,d. [130] However, for good precision such a model requires the measurement of physical properties 

that are not routinely determined at this time, such as the viscosity of urine. [157] While modelling 

convection is particularly important for HT treatments of the bladder (both for MIBC and NMIBC), it is 

also relevant for treatments of nearby organs such as the cervix, rectum and prostate, as significant 

temperature differences may occur in tissues up to 1.5 cm distance from the bladder. [48,130] 

6. Discussion 

An increasing number of clinical studies using HT in the treatment of bladder cancer are being performed 

and results demonstrate very promising improvement in clinical outcomes. Thermal dosimetry is 

important to safeguard these treatments and to determine dose-effect relations. In this paper, we describe 

the methods that are currently employed or that are being studied to determine thermal dose. 

The urinary bladder is unique in the human body in that natural convection can occur in a large 

volume that affects temperature distribution in the surrounding pelvic region. In the context of HT 

treatment for bladder cancer, this has a number of advantages and disadvantages. Convection enhances 

homogenization of temperature in the bladder contents and results in a similarly homogeneous thermal 

dose to the inner bladder wall. Treatment simulations, [130] phantom measurements, [52] and clinical 

experience [158] all demonstrate a temperature variation of less than 0.5 °C along the bladder wall. This 

supports the concept that measuring a limited number of points inside the bladder is sufficient to obtain 

a good impression of temperature of the entire bladder wall surface. An exception occurs when air is 

present in the bladder, shielding part of the bladder wall from contact with the bladder fluid, altering the 

local EM field, and potentially affecting the accuracy of non-invasive thermometry. 

Another exception occurs during treatments with an intravesical antenna, in which the heterogeneous 

power deposition produces definite hot and cold spots within the bladder with temperature differences of 

several °C. [60,91,159,160] In the case of thermal conduction based intravesical heating methods (e.g. 

recirculating heated fluids or MNPs), a steep temperature gradient occurs across the bladder wall. 

External heating methods have the potential to produce the most homogeneous temperature distribution 

and deepest heat penetration of the bladder wall, but may not produce equally high temperatures, [11,12] 

especially when the patient anatomy is unfavourable. [51] An interesting option is to combine an internal 

and external heating method, e.g. combining phased array RF heating with closed circuit recirculation, 

especially in the context of MIBC where effective heat penetration and high thermal dose are essential. 
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However, convection currents or forced circulation of the bladder fluids have some important 

drawbacks for certain thermometry techniques, especially since the most promising non-invasive 

volumetric thermometry method, MRI, is very sensitive to motion. While restricting convection or 

emptying the bladder is, of course, impossible for NMIBC treatments with chemotherapeutic solutions, it 

could be an option for MIBC treatments that are combined with RT alone. However, in that case, one 

would also lose the preferential heating of the bladder and its homogenizing effect on temperatures in 

the region. 

Generally speaking, invasive thermometry technologies are more accurate and further developed than 

non-invasive methods. The accuracy and stability of thermocouple, thermistor, and fibre-optic based 

probes is well-established and the techniques are fully tested in a wide range of clinical applications. 

There are reports of promising clinical applications for emerging microwave radiometry, [110,118,120,161] 

but most of the literature to date involves system development and feasibility testing. MR thermometry is 

more mature and is in clinical use, but accuracy is still insufficient for use as a stand-alone technique. For 

characterization of bladder temperature during clinical HT, it is currently more logical to combine 

invasive sensors inside the bladder with external volumetric monitoring to improve knowledge of the 

temperature distribution extending through the bladder wall and potentially invading surrounding pelvic 

tissue. Given the current lack of knowledge of the temperature outside the bladder lumen, such 

combinations of accurate invasive methods, and more spatially informative non-invasive methods are 

essential.  

Given recent progress in thermal modelling, [48] one can imagine further improved characterization 

of pelvic temperature distribution using a combination of local thermometry, volumetric thermometry 

and patient specific simulations, as demonstrated for e.g. head and neck cancer [162] where 

measurements and simulations are combined into estimated temperature maps. [163] One example of a 

hybrid simulation/optical probe approach recently demonstrated accurate assessment of the T50, based 

on sparse invasive probe measurements, [164] but the fusion of MRI and invasive measurements in the 

same coordinate space is still challenging. [165] For bladder cancer, this technique might provide a good 

option to reconstruct the temperature within the bladder wall. Moreover, MR could potentially be used to 

map changes in tissue perfusion and dielectric properties, to be used as input for real-time treatment 

simulation, but this cannot currently be combined with MR thermometry. 
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Naturally, thermometry options are often limited by the specific heating technique used. In the case of 

recirculated fluids or intravesical microwave heating, the invasive thermometry options are determined 

by the manufacturer. In these cases, ultrasound or radiometric thermometry may provide additional 

information on the temperature distribution throughout the bladder wall. In the case of external heating 

methods, outside access to the patient may be limited by the presence of the HT device; but there is 

unrestricted access to the bladder through the urethra. In many cases, interference between the HT 

device and thermometry system may be an issue, but for most thermometry techniques this can be 

relatively easily solved by proper shielding or by temporarily turning the power deposition off during 

measurements. The exception is MRI thermometry, which typically requires a redesign of the devices 

with which it is combined. 

Notwithstanding the technological challenges, accurate thermal dosimetry is highly relevant, both 

scientifically to gain insight into the heating properties of various HT devices and to study thermal dose-

effect relations, and clinically to ensure good treatment quality. 

7. Conclusion 

For NMIBC treatment using thermal conduction HT devices, simple measurement of the fluid 

temperature is likely to be sufficient to control the delivered thermal dose, provided the penetration 

depth is well-known and clinical efficacy has been proven in randomised controlled trials. For more 

complex treatment techniques, and for MIBC treatment, more elaborate methods are required to 

determine and control the thermal dose. Currently, none of the thermometry methods can by itself offer 

the required accuracy and spatial information. Although invasive probes are reliable and accurate, they 

deliver very limited spatial information; on the other hand non-invasive regional measurements provide 

volumetric thermal distribution data but suffer from various artefacts while failing to obtain the required 

accuracy. Finally, while multi-physics simulations provide important insight into possible temperature 

distributions from the various heating approaches, they need more accurate input in order to deal with 

inter-patient and inter-treatment variability. Therefore, combinations of at least two, but preferably all 

three dosimetry approaches are essential. 

The fact that the urinary bladder is a fluid filled organ, is both a boon and a bane. On the one hand, it 

makes the inside bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous 

internal wall temperature distribution; on the other hand, the variable volume, organ motion, and 
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moving fluid cause artefacts for most non-invasive thermometry methods, and necessitates additional 

physics considerations  for accurate treatment planning. 
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