Obinutuzumab, a potent anti-B-cell agent, for rituximab-unresponsive IgM anti-MAG neuropathy.

Goran Rakocevic
Thomas Jefferson University, Goran.Rakocevic@jefferson.edu

Ubaldo E. Martinez-Outshoorn
Thomas Jefferson University, Ubaldo.Martinez-Outschoorn@jefferson.edu

Marinos C. Dalakas
Thomas Jefferson University; University of Athens Medical School, Marinos.Dalakas@jefferson.edu

Let us know how access to this document benefits you
Follow this and additional works at: https://jdc.jefferson.edu/medoncfp

Part of the [Neurology Commons](https://jdc.jefferson.edu/medoncfp)

Recommended Citation
Rakocevic, Goran; Martinez-Outshoorn, Ubaldo E.; and Dalakas, Marinos C., "Obinutuzumab, a potent anti-B-cell agent, for rituximab-unresponsive IgM anti-MAG neuropathy." (2018). *Department of Medical Oncology Faculty Papers*. Paper 89.
https://jdc.jefferson.edu/medoncfp/89
Obinutuzumab, a potent anti–B-cell agent, for rituximab-unresponsive IgM anti-MAG neuropathy

Goran Rakocevic, MD, FAAN, Ubaldo Martinez-Outschoorn, MD, and Marinos C. Dalakas, MD, FAAN

Neurology Neuroimmunol Neuroinflammm 2018;5:e460. doi:10.1212/NXI.0000000000000460

Anti-MAG demyelinating neuropathy is difficult to treat. All immunotherapies have failed except for rituximab, a chimeric B-cell–depleting monoclonal antibody against CD20, that helps up to 40% of patients based on 2 controlled and several uncontrolled series.1-3 Because the majority of these patients are left disabled, stronger anti–B-cell agents might be promising.

We describe clinical response and autoantibody changes after treatment with obinutuzumab (Gazyva), a new generation of humanized anti-CD20 monoclonal antibodies, in 2 patients with anti-MAG neuropathy who continued to worsen despite multiple courses of rituximab. Obinutuzumab, approved for chronic lymphocytic leukemia (CLL), exerts greater peripheral and lymphoid B-cell depletion4 and might be more effective in rituximab-refractory patients.

Classification of evidence

This is a single observational study without controls and provides Class IV evidence that obinutuzumab is safe to use in patients with IgM anti-MAG demyelinating neuropathy.

Patients and treatments

Patient 1

A 71-year-old man developed feet paresthesias that progressed in 4 years to bilateral foot drop. Workup revealed distal demyelinating neuropathy, a benign IgMκ monoclonal gammopathy, elevated IgM levels, and high-titer anti-MAG antibodies (table). The gammopathy was benign including normal bone marrow biopsy. He received 3 monthly courses of IVIG without benefits. Rituximab, 2 g, was ineffective without affecting the IgM level or anti-MAG titers while his weakness continued to worsen. Obinutuzumab was then administered in 6 cycles over 6 months, as per the CLL protocol, as follows: day 1: 100 mg; day 2: 900 mg; days 8 and 18: 1,000 mg each; and 1,000 mg thereafter monthly for 5 months.

Patient 2

A 65-year-old man, developed distal leg numbness and paresthesias 13 years ago following successful therapy for colorectal cancer. The neuropathic symptoms gradually worsened with sensory ataxia and muscle weakness. Workup revealed a demyelinating neuropathy, an IgMκ gammopathy, normal bone marrow biopsy, and high-titer anti-MAG antibodies (table). His symptoms transiently improved with oral corticosteroids and IVIG. Over the following 7 years, he received 5 courses of rituximab, 2 g every year. His gait and stamina improved after the first 2 treatments, but there was no further benefit. He gradually progressed with more weakness, requiring MAFOs and canes for ambulation, and prominent hand tremors. The IgMκ spike and...
high anti-MAG antibody titers persisted. Because of severe
disease worsening and continuing disability not responding
anymore to rituximab, he was treated with obinutuzumab,
administered for 6 months as described above.

Results

There was no clinical improvement or worsening in the
patients’ neuropathic symptoms 6 and 12 months after
treatment with obinutuzumab. In patient 1, the neurologic
deficits remained unchanged several months after therapy.
Patient 2, 1 year after therapy, showed signs of progression
in pace consistent with his pretreatment course; no accel-
erated worsening related to obinutuzumab was observed.
Both patients tolerated the treatment well. Except for
transient mild thrombocytopenia, there were no compli-
cations during the administration or the follow-up period.

Despite no clinical benefits, however, the IgM levels normal-
ized and remained normal up to a year after obinutuzumab in
both patients (table). Of interest, the anti-MAG antibody titers,
6 months after treatments, were also normalized and remained
low up to 12 months; the IgMk spike, however, remained
unchanged without discernible differences in the light chain
(table). In patient 2, 1 year after obinutuzumab, the anti-MAG
titers started to rise, reaching now >70,000 units.

Discussion

The clinical success of first-generation glycoengineered type-I,
anti–CD20-mediated, B-cell–depleting, monoclonal antibodies
in autoimmune neurologic and rheumatological disorders has
provided the rationale for using more potent next-generation
anti-CD20 agents. For example, ocrelizumab and ofatumumab
seem more effective than rituximab in progressive and relapsing
MS.5,6 Obinutuzumab, a third-generation, glycoengineered
type-II, humanized anti-CD20 monoclonal antibody approved
for CLL, has increased binding affinity to the Fc receptor on
B cells and enhanced complement and antibody-dependent
cytotoxicity resulting in extensive B-cell lysis of peripheral
B cells, including some within the lymphoid tissues; because it
also affects IL-6 production, it is expected to cause more sus-
tained depletion of memory B cells and affect antibody pro-
duction. These effects prompted us to evaluate its efficacy in
patients with rituximab-refractory anti-MAG–mediated neu-
ropyathy.3 Obinutuzumab, administered for 6 months, was safe
but did not improve the patients’ symptomatology even up to
a year of follow-up. In contrast to rituximab, however, it nor-
malized the IgM level and anti-MAG antibody titers (table).
This observation suggests an effect beyond B-cell depletion;
B cells play a key role in antigen presentation, complement
activation, and cytokine production, such as IL-1, IL-6, and IL-
10, that affect immunoregulatory B and T cells and antibody
production by plasma cells.7 These preliminary results, even in
a limited number of 2 patients, suggest that the IgM anti-MAG
antibodies, despite being pathogenic,8 do not seem to correlate
with clinical response. Whether this is related to our patients’
advanced disease and severe axonal degeneration or to in-
effectiveness of obinutuzumab is unclear. The good tolerance
of the drug, however, the more profound induction of B-cell
depletion, and effect on antibodies, as demonstrated with
normalization of IgM and anti-MAG titers, suggest that obi-
nutuzumab might still be considered as an early treatment of
this difficult-to-treat neuropathy.

Author contributions

Dr. Rakovevic and Dr. Martinez: study concept and design,
acquisition of data, analysis and interpretation, and critical
revision of the manuscript for important intellectual content.
Dr. Dalakas: study concept and design, analysis and in-
terpretation, critical revision of the manuscript for important
intellectual content, and study supervision.

Study funding

No targeted funding reported.

Disclosure

M. Dalakas served on the scientific advisory board of Novartis,
Baxalta, and Octapharma; received travel funding and/or
speaker honoraria from Merck/Serono, Octapharma, and
Pfizer AG; served on the editorial board of/as an editor of

Table IgM levels and anti-MAG antibody titers before and after treatment with obinutuzumab in 2 patients with anti-MAG neuropathy

<table>
<thead>
<tr>
<th>Patients</th>
<th>IgM levels (normal 40-230 mg/dL)</th>
<th>IgM monoclonal spike</th>
<th>Anti-MAG titers by EIA (normal ≤ 1:1600 units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>Before obinutuzumab 524 mg/dL</td>
<td>Present</td>
<td>>1:102,400</td>
</tr>
<tr>
<td></td>
<td>After obinutuzumab 229 mg/dL</td>
<td>Present</td>
<td><1:1,600 (normalized)</td>
</tr>
<tr>
<td>Patient 2</td>
<td>Before obinutuzumab 420 mg/dL</td>
<td>Present</td>
<td>>1:102,400</td>
</tr>
<tr>
<td></td>
<td>After obinutuzumab 173 mg/dL</td>
<td>Present</td>
<td><1:1,600 (normalized)</td>
</tr>
</tbody>
</table>
References
Obinutuzumab, a potent anti-B-cell agent, for rituximab-unresponsive IgM anti-MAG neuropathy

Goran Rakocevic, Ubaldo Martinez-Outschoorn and Marinos C. Dalakas

Neurol Neuroimmunol Neuroinflamm 2018;5;
DOI 10.1212/NXI.0000000000000460

This information is current as of April 5, 2018

Updated Information & Services

including high resolution figures, can be found at:
http://nn.neurology.org/content/5/4/e460.full.html

References

This article cites 8 articles, 0 of which you can access for free at:
http://nn.neurology.org/content/5/4/e460.full.html##ref-list-1

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):
All Immunology
http://nn.neurology.org/cgi/collection/all_immunology
Autoimmune diseases
http://nn.neurology.org/cgi/collection/autoimmune_diseases
Class IV
http://nn.neurology.org/cgi/collection/class_iv
Peripheral neuropathy
http://nn.neurology.org/cgi/collection/peripheral_neuropathy

Permissions & Licensing

Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://nn.neurology.org/misc/about.xhtml#permissions

Reprints

Information about ordering reprints can be found online:
http://nn.neurology.org/misc/addir.xhtml#reprintsus