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RESEARCH ARTICLE

Global mapping of transcription factor motifs

in human aging
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Pennsylvania, United States of America, 2 Department of Dermatology and Cutaneous Biology, Thomas

Jefferson University, Philadelphia, Pennsylvania, United States of America

* andres.kriete@drexel.edu

Abstract

Biological aging is a complex process dependent on the interplay of cell autonomous and tis-

sue contextual changes which occur in response to cumulative molecular stress and mani-

fest through adaptive transcriptional reprogramming. Here we describe a transcription factor

(TF) meta-analysis of gene expression datasets accrued from 18 tissue sites collected at

different biological ages and from 7 different in-vitro aging models. In-vitro aging platforms

included replicative senescence and an energy restriction model in quiescence (ERiQ), in

which ATP was transiently reduced. TF motifs in promoter regions of trimmed sets of target

genes were scanned using JASPAR and TRANSFAC. TF signatures established a global

mapping of agglomerating motifs with distinct clusters when ranked hierarchically. Remark-

ably, the ERiQ profile was shared with the majority of in-vivo aged tissues. Fitting motifs in a

minimalistic protein-protein network allowed to probe for connectivity to distinct stress sen-

sors. The DNA damage sensors ATM and ATR linked to the subnetwork associated with

senescence. By contrast, the energy sensors PTEN and AMPK connected to the nodes in

the ERiQ subnetwork. These data suggest that metabolic dysfunction may be linked to tran-

scriptional patterns characteristic of many aged tissues and distinct from cumulative DNA

damage associated with senescence.

Introduction

The analysis of transcriptomes has become an important tool to study aging-associated pro-

cesses, but has yet to deliver consistent datasets across tissues and experimental platforms.

Gene expression studies comparing tissues from flies, worms, mice and humans have revealed

tissue- and organism-specific aging profiles [1], with commonalities in gene ontology classifi-

cations centered around metabolism, specifically mitochondrial function [2, 3]. A recent com-

prehensive assessment of gene expression profiles in tissues has confirmed the diversity of

gene expression profiles in human aging [4]. To what extent cellular heterogeneity, epigenetics

or stochastic processes play a role in this diversity is unknown [5–7]. Another unresolved issue

is the relevance of replicative in-vitro senescence to biologically aged tissues [8–10]. Specifi-

cally, in-vitro replicative senescence represents a permanent post-mitotic state with a specific
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gene expression pattern whereas fibroblasts isolated from very old donors (>90 years) retain

mitotic potential [11, 12]. In one study, no senescence-associated transcripts were found in

human tissues [13]. Furthermore, it is unclear to which extent other experimental platforms

reveal molecular alterations relevant to biologically aged tissues, for example cells from

patients suffering from Progeria syndromes, rare genetic disorders characterized by symptoms

of premature aging [14, 15].

To gain a better understanding of changes in the transcriptome associated with aging in

these different settings, we performed a transcription factor (TF) meta-analysis across multiple

tissue datasets derived from tissues aged in-vivo as compared to experimental in-vitro aging

models. Prior TF analyses of the aging process have been limited to specific TFs including

Forkhead box TFs (FOXOs), signal transducer and activators of transcription (STATs),

E2 family TFs (E2F) or nuclear factor kappa-b (NF-κB) [16–20]. These TFs participate in a

wide range of cellular functions, yet present only a small fraction of all potentially relevant TF

proteins.

Alternatively, TF activities can be estimated from gene expression data [21–23]. To interro-

gate age-associated changes in TF activities across experimental platforms we scanned pro-

moter regions of differentially expressed target genes using TF position weight matrices

(PWM) or motifs, provided by JASPAR and TRANSAC [24, 25]. The task required compara-

tive analysis of gene expression datasets from diverse tissues and experimental studies, both

in reference to study design and platforms. A number of techniques have been developed to

harmonize otherwise incompatible gene expression data, such as re-annotations, re-scaling,

median rank scoring and supervised classifications across datasets [26, 27]. However, limited

overlap of transcripts between cells, tissues or studies in aging restricts transcript harmoniza-

tion [2, 5]. Secondly, inclusion of smaller experimental studies with less statistical rigor hinder

application of a uniform significance thresholds required by meta-analyses [3, 28]. Methods of

abstracting from specific transcripts and expression values include (i) gene set enrichment, (ii)

gene ontologies and (iii) transcription factor analyses, exploring shared commonalities in gene

function, ontology or regulation, respectively. Thus, transcription factor analyses provide a

method to decipher commonalities in transcriptional regulation based on prioritized target

genes independent of specific platforms. Shorter lists may reduce potential false positives, spe-

cifically in experimental studies [29, 30], but enrichment scores will be more significant if

more transcripts are taken into account. Here, a minimum number of transcripts was esti-

mated with respect to the strength of rank correlation analyses, which are an essential method

deployed in this study to determine similarities between samples.

Since transcription factors can both activate and repress genes based on cell type, cellular

context and a complex dynamic of TF interactions [31], we performed a sign-less approach

targeting both, the most up- and down-regulated target genes. Finally, to distinguish aging

phenotypes, we restricted our subsequent comparative analyses of TF signatures on ranks to

further diminish variances with respect to experimental design differences. This analysis was

carried out using consistently trimmed gene expression data from 18 datasets portraying bio-

logical aging in different human tissues and 7 experimental cell aging studies and. Our analysis

revealed three distinct tissue groups, which can be aligned with TF signatures of specific exper-

imental models: classical replicative senescence in proliferative cells, senescence compared to

quiescence excluding the influence of cell cycle, and an energy restriction model in quiescence

(ERiQ), i.e. forced restriction of ATP supply. Furthermore, we identified subsets of unique

motifs distinct for senescence and energy restriction. These anti-correlating motifs appeared

to be enriched in one phenotype and avoided in the other. Our results suggest the existence of

distinct gene regulatory phenotypes contributing to the aging process in response to DNA

damage or metabolic stress in-vivo and in-vitro.

Transcription factor motifs in aging
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Results

Agglomerative hierarchical clustering

We generated transcription factor signatures representing 18 tissues collected at different bio-

logical ages and 7 experimental aging models. Datasets comparing young and aged human

tissues included adipose, artery, heart, lung, muscle, nerve, skin, thyroid and blood [4], brain

[32], kidney [33] and liver [34]. Additional tissue samples were from a second set of male and

female skin samples [35], age-matched ischemic heart samples as positive control for senes-

cence [36] and age-matched male and female Parkinson’s brain tissues as positive controls for

an energy restricted phenotype [37]. Cell lines and experimental models included senescence

in comparison to proliferating and quiescent fibroblasts [38], Progeria cells [15], an experi-

mental Progeria model [39], a panel of fibroblast cell lines from donors of different age [40]

and an energy restriction model in quiescence (ERiQ) [41, 42]. Depending on the study design

(comparing two conditions or cross-sectional), differentially expressed genes had been ranked

by regression analysis or fold-change, and these lists were trimmed to the top 75 up- and 75

downregulated transcripts. Details about the data location, age-ranges, statistical methods, and

p-values obtained after further trimming published lists, are provided in S1 File. The resulting

150 genes were then analyzed for transcription factor enrichment, using JASPAR and TRANS-

FAC catalogues. The resulting global maps consisted of 125 TRANSFAC and 376 JASPAR

enriched motifs and provided an overview of transcriptional regulation in our samples (Fig 1,

S1 Fig). Maps were organized as dendrograms to reveal differences in subsets of transcriptional

motifs across samples. Complete linkage clustering emphasizes dissimilar members and there

was a considerable anti-correlation of both motifs and samples independent of the catalog

used. Samples agglomerated either with the experimental energy restriction model (ERiQ) or

with in-vitro senescence, but showed gradual differences in the senescence group.

Classification of gene regulatory signatures

A set of classification methods was carried out to group samples according to ranked motifs.

Self-organizing maps (SOM) and K-means Nearest Neighbor clustering (KMC) revealed three

Fig 1. Global mapping of transcriptional regulation in human aging. Enrichment scores of prioritized transcription factor motifs, using TRANSFAC database, are

visualized as a dendrogram. The heat map represents unique gene regulatory signatures of 18 human tissues and 7 cell aging experiments. Motifs enriched in aging

(p<0.05) are indicated in red, and avoided motifs in green. Motifs are ranked and sorted by hierarchical clustering using Spearman rank correlation, complete linkage.

Tissue samples agglomerate with either an experimental energy restriction cell model in quiescence (ERiQ, sample #4), or anti-correlate as a group of nine senescence

related samples. The corresponding analysis using JASPAR motifs is provided in S1 Fig.

https://doi.org/10.1371/journal.pone.0190457.g001
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distinct phenotypical groups, shown here in combination with a sample distance matrix (Fig

2). A Principal Component Analysis (PCA) of ranked motifs confirmed these three distinct

groups of signatures (Fig 3). The first group included most aged tissues including adipose tis-

sue, artery, brain (frontal cortex and hippocampus), heart, lung, muscle, skin and brain tissues

from Parkinson’s patients. The experimental ERiQ model is closely aligned with this group,

whereas the fibroblast panel of cells from donors of different ages extends outwards to senes-

cence. All other samples clustered with senescent in-vitro cell models as common denomina-

tors. The first of these (Figs 2 and 3) clustered the in-vitro replicative senescence model

together with liver, ischemic heart tissue and the Progeria cell model. A second senescence

cluster contained two datasets comparing in-vitro senescence to quiescent cells, the Progeria

cell panel, kidney and female skin tissue.

Anti-correlating transcription factors

We noticed specific motifs contributing to an anti-correlating pattern in the complete-linkage

dendrograms (Fig 1), emphasizing differences between senescence and energy restriction

Fig 2. Sample distance map and classification. The distance map indicates similarities of samples based on ranked

transcription factor enrichment scores, using 125 TRANSFAC motifs. Dissimilarity increases from yellow to blue. The

distance map is overlaid by a result from K-Means Classification (KMC), discriminating three distinct groups marked

by white lines. Most samples included in this study aggregate with an experimental energy restriction model and also

include brain samples from Parkinson’s patients. In contrast, tissues including kidney, liver, female skin and ischemic

heart aggregate with experimental models of senescence.

https://doi.org/10.1371/journal.pone.0190457.g002

Transcription factor motifs in aging

PLOS ONE | https://doi.org/10.1371/journal.pone.0190457 January 2, 2018 4 / 16

https://doi.org/10.1371/journal.pone.0190457.g002
https://doi.org/10.1371/journal.pone.0190457


phenotypes. We selected a senescence data set comparing senescence with quiescence (#2),

to exclude the influence of cell cycle and to provide a focus on DNA damage, and compared

this set with the ERiQ data (#4). Short lists of motifs were derived after ranking enrichment

scores, and the combined list of 48 TRANSFAC and 133 JASPAR motifs was further filtered

for switching behavior. Motifs showing enrichment (p< 0.05) in both conditions were

removed. Of the remaining 14 motifs, 8 TFs were enriched in ERiQ, but avoided in senescence,

and 6 TFs were enriched in senescence (Table 1), but avoided in ERiQ. The contribution of

these motifs to our sample classifications was indicated by a non-parametric significance test

of microarrays (SAM), using three sample groups as shown in Fig 3, and/or high loads in the

PCA, with an absolute load value >0.05 in at least one of the first two principle components.

Protein-protein interactions

The analysis of anti-correlated transcription factors seeded a minimalistic protein-protein

interaction (PPI) network (Fig 4), with a total of 58 nodes and 150 edges. We tested the

hypothesis that node-switching is caused by cellular responses to specific intracellular

Fig 3. Principal component analysis of aging samples using transcription factor signatures. The first two components of the

principle component analysis (PCA) using enrichment scores of transcription factor motifs are shown. The first two components

account for the largest variance of 25.4% and 11.7% across sample signatures. Three distinct groupings are depicted, consistent with the

classification shown in Fig 2. Group boundaries represent 80% likelihood for samples to be found in each specific group.

https://doi.org/10.1371/journal.pone.0190457.g003
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stressors. For the senescence dataset, we included ataxia-telangiectasia mutated (ATM) and

Rad3-Related (ATR) protein hubs as proximal sensors for DNA damage response (DDR) [43].

For energy stress we had chosen phosphatase and tensin homolog (PTEN) and AMP-activated

kinase (AMPK) as established proximal sensors [44, 45].

We observed an association of the ATM and ATR hubs with the senescence group of

nodes. In contrast, PTEN and AMPK hubs connected to nodes associated with the energy

restriction subnetwork, suggesting the existence of two specific subnetworks. The DDR pattern

is connected to p53 and retinoblastoma protein (p53-Rb) pathway activation in senescence

[46, 47]. Specifically, p53 is an enriched hub in the senescence subnetwork and RB1 is a

predicted participating protein. Deacetylating Forkhead box (FOXO) transcription factors

modulate transcripts involved in response to DNA damage [48] and FOXH1 was enriched

in senescence. Phosphorylation of cAMP responsive element binding protein 1 (CREB1) by

ATM correlates with a decrease in CREB transactivation potential and reduced interaction

between CREB and its transcriptional coactivator, CREB-binding protein (CBP) [49]. Con-

versely, CREB1 is induced by mitochondrial dysfunction [50] and improves mitochondrial

biogenesis along with nuclear respiratory factor 1 (NRF1) [51], and both of these transcrip-

tional regulators were enriched in ERiQ.

The PPI network predicts a role of histone deacetylases (HDAC1, HDAC3, SIRT1) and

histone acetyltransferase p300 (EP300 HAT) as additional modulators of transcriptional

Table 1. Switching transcription factor motifs.

Motifs ERiQ / Quiescence Senescence / Quiescence Fold SAM(�)/ PCA(+)

SWITCHING
M00516 (V$E2F_03)

• MA0469.1 (E2F3)

0.0002 (11) 0.5325 (86) 2.20E+3 �/+

MA0506.1 (NRF1) 0.0003 (30) 0.6401 (198) 2.07E+3 �

MA0006.1 (Ahr::Arnt)

• M00237 (V$AHRARNT_02)

0.0002 (23) 0.3247 (125) 2.02E+3 �/+

M00245 (V$EGR3_01)

• MA0732.1 (EGR3)

0.0002 (10) 0.2649 (49) 1.46E+3 �/+

M00185 (V$NFY_Q6)

• M00287 (V$NFY_01)

• M00288 (F$HAP234_01)

0.0011 (20) 0.9841 (93) 9.23E+2 �/+

M00246 (V$EGR2_01) 0.0005 (17) 0.2694 (50) 5.54E+2 �/+

M00005 (V$AP4_01) 0.0204 (34) 0.8207 (115) 4.02E+1 +

MA0018.1 (CREB1)

• M00114 (V$TAXCREB_01)

0.0498 (85) 0.8563 (258) 1.71E+1 �/+

SWITCHING OPPOSITE
MA0106.2 (TP53) 0.9909 (279) 0.0002 (1) 4.26E+3 �

MA0914.1 (ISL2) 0.9058 (225) 0.0117 (7) 7.76E+1 +

MA0474.1 (Erg) 0.9082 (229) 0.0192 (15) 4.73E+1 �

M00280 (V$RFX1_01) 0.6231 (90) 0.0189 (4) 3.29E+1 +

MA0479.1 (FOXH1) 0.9602 (252) 0.0321 (23) 2.99E+1 �/+

MA0861.1 (TP73) 0.8834 (216) 0.0479 (30) 1.84E+1 +

Scores of enriched transcription factor motifs and their ranks (in parentheses) are provided which switch between energy starvation and senescence (compared to

quiescent cells). The upper section of rows lists those TFs enriched in ERiQ (p<0.05) but avoided in senescence (p>0.25). The lower section represents the opposite.

Variant TF motifs exhibiting similar trends in scores are listed. Ratios of differences in enrichment scores and indicators of additional significance in SAM and/or PCA

loads are included.

https://doi.org/10.1371/journal.pone.0190457.t001
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regulation in ERiQ. ATM can activate HDAC1, which suppresses E2F transcriptional activa-

tion, which are avoided motifs in senescence. HDACs are also recognized as important media-

tors of autophagy, requiring ubiquitination [52]. Activation of the ubiquitin-proteasomal

system has been linked to DNA damage responses [53], and the PPI model provides a direct

link of both ATR and ATM, as well as AMPK and PTEN to the polyubiquitin-C precursor

UBC, suggesting the involvement of ubiquitination in both. NF-κB TF motifs such as M00054

(V$NFKAPPAB_01) from TRANSFAC, and MA0105.1 (NFKB1) and MA0778.1 (NFKB2)

from JASPAR, were enriched in both senescence models and in ERiQ.

Discussion

Aging may be viewed as a process requiring continuous adaptive responses to chronic cellular

stress caused by cumulative molecular damage and energetic challenges. It is poorly under-

stood how this process is reflected at the transcriptional level. The meta-analysis presented

here provides pivotal insights into gene regulatory signatures in biologically aged tissues in

comparison to experimental cell models of aging. To enable cross-comparison of heteroge-

neous datasets, we restricted our exploratory examination to trimmed sets of differentially

expressed target genes derived from gene expression studies providing whole genome

Fig 4. Regulatory protein-protein-interaction (PPI) network. The PPI network was seeded by 14 enriched

transcription factor proteins (see Table 1), which switch between enrichment in senescence (light yellow nodes and

edges) and enrichment in energy restriction (red nodes and edges). Connectivity was predicted by STRING, and

visualized with NetworkAnalyst. All nodes were probed for their connectivity to DNA stress sensors ATM (ataxia-

telangiectasia mutated) and ATR (ATM- and Rad3-Related) in yellow, and multiple connections were found to the

subnetwork associated with senescence, but not to the energy restriction nodes. In contrast, nodes enriched in energy

restriction revealed strong connectivity to the energy sensors PRKAB1 (AMPK) and phosphatase and tensin homolog

(PTEN) in orange, while these proteins did not connect to the senescence nodes. The combined network shown here

suggests involvement of intermediate proteins (gray nodes), some of which may also change activity as indicated by

different colored network edges converging onto these nodes such as histone deacetylases HDAC1, HDAC3, SIRT1

and EP300 and polyubiquitin-C precursor (UBC). The network provides a flexible functionality allowing cells to adapt

to different stressors.

https://doi.org/10.1371/journal.pone.0190457.g004
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coverage. Inclusion of both up- and downregulated transcripts in combination with subse-

quent analyses of ranked motifs allowed inclusion of smaller experimental studies. Motif

enrichments provide initial global maps of transcriptional regulation in human aging that are

suitable to generate new hypotheses (Fig 1, S1 Fig). Despite a limited overlap of single genes

between tissues, the most salient finding of this study is the prediction of three distinct cellular

aging phenotypes, associated with either DNA damage-induced senescence or energy depriva-

tion, whereby the former can be distinguished further by the influence of cell cycle motifs. For

the promotor regions considered here, each of the tissue signatures can be associated with a

specific experimental model (Table 2).

Senescence presents as a multi-stage, diversifying process rather than a static endpoint [54].

This diversity was evident in our classifications and allowed aggregation of senescent samples

in two main groups. Comparing TF motifs in replicative senescence with proliferating cells

showed enriched TF motifs not only involved in DNA damage, but also cell cycle regulation

and cell fate, such as nuclear factor Y (NFY), paired-box (PAX), and activating transcription

factor (ATF) [55–57]. The Progeria sample in this group was obtained from an experimental

model comparing immortalized skin fibroblasts with cells carrying Progerin, a truncated ver-

sion of Lamin A protein. Liver was one tissue related to this group (Figs 2 and 3). Telomere

shortening, senescence and chronic inflammation are known hallmarks of liver aging [58, 59].

Furthermore, studies in mice have indicated increase of γ-H2AX foci in liver, a proxy marker

of DNA damage, but not in post-mitotic heart and muscle [8]. This senescence cluster also

included the ischemic heart, consistent with the accumulation of senescent fibroblasts after

myocardial infarction [60].

The second senescence cluster aggregated samples lacking enrichment of cell cycle related

motifs. Two experimental samples compared senescence with quiescent, growth factor-starved

fibroblasts. Although both datasets were obtained with different platforms and analyses, they

correlated closely in signatures and classifications (Figs 1, 2 and 3). The Progeria sample asso-

ciated with this group compared proliferating control fibroblasts with proliferating HGPS

fibroblasts, precluding analysis of the effect of quiescence on gene expression patterns. Tissues

Table 2. Gene regulatory phenotypes.

Phenotype Energy Restriction Senescence

Experimental Cell Models • Energy Restriction in Quiescence (ERiQ) (4)
• Fibroblast Cell Panel in Quiescence (5)

• Senescence w/o cell cycle (2, 3)
• Progeria Cell Panel (6)

• Replicative Senescence (1)
• Progeria Exp. Model (7)

Tissues • Adipose (8)

• Artery (9)

• Brain (15, 19)

• Blood (19)

• Heart (10)

• Lung (11)

• Muscle (12)

• Nerve (13)

• Skin (14, 15)

• Thyroid (17)

• Parkinson (24, 25)

• Kidney (21)

• Skin–Female (16)

• Liver (22)

• Ischemic Heart (23)

The table summarizes three prevailing regulatory signatures identified in this study. Each tissue group is best represented by a specific experimental fibroblast model—

energy restriction in quiescence, senescence compared to quiescence excluding the effects of cell cycle, and classical replicative senescence as it occurs in proliferating

cell cultures. Numbers in parentheses provide sample IDs.

https://doi.org/10.1371/journal.pone.0190457.t002
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included in this senescent cluster were female skin and kidney, which have been associated

with inflammation, senescence and differences in gender [18, 61, 62]. An experimental study

on kidney aging had identified NF-κB and STAT TFs as transcriptional regulators [18], which

were enriched in our JASPAR and TRANSFAC signatures.

There is an apparent lack of suitable experimental models for aging in post-mitotic tissues.

Here we show that a major cluster of samples was associated with the energy-restricted (ERiQ)

model described by us earlier [41, 42], which combined inhibition of glucose uptake with

mitochondrial dysfunction in quiescent cells. ERiQ grouped together with adipose, artery,

brain, blood, heart, lung, muscle, skin and Parkinson’s brain samples. The fibroblast panel

included in this group, representing differences between quiescent cells from young and old

male donors, clustered borderline. It has been suggested that this particular experimental plat-

form may portray the in-vivo situation more closely, but comparable studies of fibroblasts

aged in-situ had also found early markers of senescence [63, 64]. Within the energetically com-

promised cluster, there was a noticeable difference in signatures between the frontal cortex

and hippocampal brain areas, as there was also a noticeable gender difference amongst this

group. Similarly, female skin samples originating from a smaller study that compared young

and old donors [35], were different to skin samples from males, which were in close proximity

to the signature from a more comprehensive set of both male and female skin samples [4].

Both differences in hormone status and immune cell composition have been suggested to con-

tribute to disparities in skin and brain aging [65, 66]. Gender differences were similarly appar-

ent between samples from Parkinson’s brain, compared to age-matched controls. The etiology

of Parkinson’s disease attributes this to mitochondrial dysfunction, bioenergetics failure and

gender dimorphisms [67–69].

A sign-less transcription factor analysis as conducted here limits inferences to function.

Sign-sensitive approaches, until now, can utilize only very small TF catalogs [21]. However,

some conclusions on the inner functioning of the protein-protein network constructed by

switching motifs using current experimental knowledge can be drawn (Fig 4). Switching

motifs were either enriched in senescence, and avoided in energy starvation, or vice versa. One

group of senescence-associated proteins, indicated by switching motifs, connected to ATM

and ATR as proximal sensors for DNA damage response [43, 70], which network under DNA

damage stress with the p53 pathway [71]. In contrast, a different subset of proteins was con-

nected to energy stress sensors AMPK [44, 45] and PTEN [72, 73]. Suppressed PTEN stimu-

lates the Akt pathway, consistent with experimental findings of increased Akt signaling in

ERiQ [41]. Increased Akt protein activity, but reduced p53 expression, are specific hallmarks

of the ERiQ phenotype. Furthermore, interaction of Akt with CREB and FOXO transcription

factors support a pro-survival cell state under energy stress [74, 75]. The exact function of

HDACs and HATs in senescence [76, 77] or in response to low ATP [78, 79], as predicted by

the PPI, still needs to be determined. In summary, senescence and energy restriction motifs

relate to specific chronic stress sensors in distinct regulatory networks, causing anti-correlating

clusters when ranked.

The mechanisms of transcription are complex and fine-tuned by cell specific transcriptional

networks, epigenetics, methylation and ubiquitination [80–82], cell turnover rates [83] and

heterogeneities in the functional elements of transcription [84]. Moreover, mitochondrial dys-

function and retrograde response mechanisms have been identified as factors influential for

changes in gene expression [85–87]. Therefore, it is reasonable to assume that aging interferes

with the transcriptional machinery in multiple ways, increasing diversity and heterogeneities.

This may contribute to a mosaic of cellular phenotypes in some tissues. For instance, energy

stress may play a primary role in tissues maintaining proliferative capacity, such as skin, but

mitochondrial dysfunction has also been considered as an entry point into replicative
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senescence [88, 89]. Nevertheless, we were able to identify distinct gene regulatory signatures

that share prevailing gene regulatory patterns during aging and demonstrate the validity of dif-

ferent experimental fibroblast models addressing these phenotypes. Specifically, our findings

emphasize the role of mitochondrial dysfunction and energetic stress in post-mitotic tissues

[90–93], involving AMPK and PTEN previously associated with longevity [94, 95]. Our results

support the utility of transcription factor analyses in aging and application to tissues, experi-

mental models and cell types. The transcription factors and related proteins identified here

provide additional experimental targets for future in-depth analyses of transcriptional regula-

tion in aging.

Material and methods

Gene selection and TF analysis

To include experimental studies in our analysis, we consistently trimmed published lists from

all 25 samples of our panel to the 150 most significant differentially expressed genes per sample

(75 up- and 75 down-regulated), improving statistical significance, as provided in S2 File.

Trimming lists generally reduces enrichment scores in transcription factor analyses, but ranks

of motifs are less affected. Specifically rank correlations, used here as a preferred clustering

method to group samples, remain highly correlated (r > 0.93) when the number of transcripts

is trimmed down from 250 to 150, but correlations drop below 0.9 when less than 100 tran-

scripts are included (S2 Fig). We used PSCAN, 2016 build, to scan promoter regions between

-450 bp upstream to 50 bp downstream of the transcription start site in the direction of tran-

scription [96]. The motivating choice of this search range is the presence of highly expressed

transcript clusters as revealed by aggregation plots [84]. PSCAN considers the highest enrich-

ment score matching a transcription factor motif in each gene of a set. The degree of over- or

underrepresentation of motifs is assessed by a z-test, associating each motif with a probability

p of obtaining the same score in a random set of transcripts taken from the entire genome

[96]. Included were 282 TRANSFAC [25] and 636 JASPAR motifs [24] derived from SELEX,

SELEX-HT and ChIP-Seq data [97], and no additional annotated target sites were included.

TF motif scores with significant p-values (FDR < 0.05) were considered enriched, and motifs

with large p-values avoided. Motifs that did not reach significance in any sample (approxi-

mately 30%) were removed. The remaining set was further trimmed by a variance filter

(Var>0.08) to accentuate motifs of dissimilar enrichment profile across samples.

Clustering and switching motifs

To further reduce potential influences of experimental designs, TF scores within each profile

were ranked. The resulting signatures of motifs were clustered hierarchically using Spearman

Rank Correlation with complete linkage aggregation, emphasizing dissimilarities. The result-

ing dendrograms provided a global map of transcription factor regulation in human aging. In

addition, ranked motif signatures were classified by non-parametric K-means nearest neigh-

bor clustering (KMC), self-organizing maps (SOM), sample-distance maps and principal com-

ponent analysis (PCA) to identify motif loads and detect dominant phenotypical patterns of

regulation between samples. Tools to execute these analyses were provided in TM4/MeV [98]

and ClustVis [99].

Significant motifs characterizing groups, along with PCA loads, were further filtered to

identify a subset of switching TFs between replicative senescence compared to quiescence and

the energy restriction (ERiQ) data set. We required an opposing, greater than 15-fold change

in scores between senescence and ERiQ, with a score of at least p< 0.05 in one, and a change

in rank. Predictions for transcription factor protein-protein-interactions were performed with
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NetworkAnalyst [100], referencing STRING [101], and connections required a confidence

score of 500 and experimental evidence. A minimalistic PPI network was constructed within

NetworkAnalyst, seeded by 14 switching TF nodes, and the resulting network was probed sub-

sequently for connectivity with sensors for DNA damage, Ataxia-Telangiectasia Mutated

(ATM) and ATM- and Rad3-Related (ATR), and for energy stress, phosphatase and tensin

homolog (PTEN) and AMP-activated kinase (AMPK/PRKAB1).
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