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ABSTRACT 
 
RATIONALE:  Gastroesophageal reflux disease (GERD) is commonly associated with atopic 
disorders, but cause-effect relationships remain unclear. 
 
OBJECTIVES:  We applied Mendelian randomization (MR) analysis to explore whether GERD is 
causally related to atopic disorders of the lung (asthma) and/or skin (atopic dermatitis). 
 
METHODS:  We conducted two-sample bidirectional MR to infer the magnitude and direction of 
causality between asthma and GERD, using summary statistics from the largest genome-wide 
association studies (GWAS) conducted on asthma (Ncases=56,167) and GERD (Ncases=71,522).  
Additionally, we generated instrumental variables (IVs) for atopic dermatitis (AD) from the latest 
population-level GWAS meta-analysis (Ncases=22,474) and assessed their fidelity and confidence 
of predicting the likely causal pathway(s) leading to asthma and/or GERD.   
 
MEASUREMENTS AND MAIN RESULTS:  Applying three different methods, each method found 
similar magnitude of causal estimates that were directionally consistent across the sensitivity 
analyses.  Using an inverse-variance weighted method, the largest effect size was detected for 
asthma predisposition to AD (odds ratio [OR], 1.46; 95% confidence interval [CI], 1.34-1.59), 
followed by AD to asthma (OR, 1.34; CI, 1.24-1.45).  A significant association was detected for 
genetically determined asthma on risk of GERD (OR, 1.06; CI, 1.03-1.09), but not genetically 
determined AD on GERD.  In contrast, GERD equally increased risks of asthma (OR, 1.21; CI, 
1.09-1.35) and AD (OR, 1.21; CI, 1.07-1.37).   
 
CONCLUSIONS:  This study uncovers previously unrecognized causal pathways that have 
clinical implications in European-ancestry populations: 1) asthma is a causal risk for AD; and 2) 
the predisposition to AD, including asthma, can arise from specific pathogenic mechanisms 
manifested by GERD.   
 
 
 
 
 
Word count: 250 
 
 
Key words: Human genetics, epidemiological approach, causal pathways, risk factors  
  



 
 
 
 
At a Glance Commentary 
 
Scientific Knowledge on the Subject 
Numerous clinical and epidemiological studies have reported association between 
gastroesophageal reflux disease (GERD) and asthma.  However, as these observational studies 
are often limited to cross-sectional design, and susceptible to confounding and reverse causation, 
whether the presence of GERD causally increase the risk for asthma remains unclear. 
 
 
What This Study Adds to the Field 
A two-sample bidirectional Mendelian randomization (MR) analysis establishes a causal effect of 
GERD on asthma and identifies a complex genetic interplay between atopic disorders of the skin 
and lung with GERD in European-ancestry populations.  Specifically, our findings uncover 
previously unrecognized causal pathways that have clinical implications: 1) asthma is a causal 
risk for atopic dermatitis; and 2) the predisposition to atopic dermatitis, including increased risk of 
asthma, can arise from specific pathogenic mechanisms manifested by GERD, a disease of the 
gastrointestinal (GI) tract.  Further, our results show that the effect of asthma on GERD is nominal 
and, hence, provide a basis for reexamining current therapeutic approaches to the management 
of asthma patients with GERD.  
 
  



INTRODUCTION 

 Gastroesophageal reflux disease (GERD), a condition caused by persistent regurgitation 

of gastric contents leading to the sequelae of esophageal and/or extra-esophageal complications 

(1), is highly heritable and occurs in ~75% of patients with asthma (2, 3).  The frequent 

coexistence of traits, or GERD comorbidity in patients with asthma (3, 5, 6), may underlie common 

genetic etiology and/or pathogenic mechanisms shared between the two diseases.  Of note, 

micro-aspiration of endogenous acids can reduce the pH of the airways, and via either reflex 

mechanisms (7, 8) or direct effects on the airways (8), has been proposed to contribute to the 

pathophysiology of obstructive lung diseases (9-16).   

Subsequently, it was determined that GERD can trigger asthma exacerbation (17).  In 

addition, numerous clinical and epidemiological studies have reported association between 

asthma and GERD; and, a large body of evidence suggests GERD increases the risk of asthma 

(18-20).  However, as these observational studies are often limited to cross-sectional design, and 

susceptible to confounding and reverse causation, whether the presence of GERD causally 

increases the risk for asthma remains unclear. 

Based on Mendel’s laws of inheritance [random segregation and independent assortment 

of genes], Mendelian randomization (MR) collects genetic variants (i.e., single nucleotide 

polymorphisms (SNPs) which are invariant to measured and unmeasured confounding factors or 

reverse causation) for use in an instrumental variable (IV) analysis to estimate a potential causal 

effect of a modifiable exposure on a risk outcome (21).  Recently, MR methods have been used 

to clarify our understanding of multiple risk factors (biomarkers) that may simply be correlated 

from those that are causally related to various health outcomes (22-27).  For instance, with respect 

to asthma, studies have established a positive causal effect of obesity and related traits on 

disease susceptibility (28-31).  Conversely, Freuer and colleagues (32) reported, using one-

sample MR within one study cohort, that genetically determined childhood-onset asthma, and not 

adult-onset asthma, is on the causal pathway leading to a number of gastrointestinal (GI) 



disorders, including GERD.  The latter study, however, is prone to sample overlap (33) which may 

limit power and induce some biases, thus motivating additional work to quantify the causal 

relationship between GERD and asthma.   

Here, we used summary-level datasets of the two largest genome-wide association 

studies (GWAS) conducted on asthma (34) and GERD (35) in European ancestry, and performed 

two-sample bidirectional MR analysis to infer the magnitude and direction of causality between 

the two diseases.  Additionally, we generated independent genetic IVs for atopic dermatitis (AD) 

from the latest population-level GWAS meta-analysis (36), and assessed their exposure 

commonality with genetically determined asthma on the predisposition to GERD.  We conducted 

these studies because AD, an inflammatory disease of the skin, is frequently present in patients 

with asthma (37), shares a strong genetic etiology with asthma (38), and is believed to be an 

important early causal factor in the ultimate development of atopic asthma (“atopic march”) and 

asthma severity (39, 40).  

 

 

MATERIALS AND METHODS 

Data Sources:  The genetic variants were, all or partially, identified from the UK Biobank.  Genetic 

IVs for asthma was obtained from GWAS in the UK Biobank on a broad asthma definition (56,167 

cases and 352,255 controls) (34).  The GWAS summary data included results from association 

test of 35,270,583 SNPs with asthma in a cohort of White British ancestry.  Genetic IVs for GERD 

and atopic dermatitis were obtained from two of the latest and largest population-level GWAS 

meta-analysis on GERD (71,522 cases and 261,079 controls) (35) and AD (22,474 cases and 

774,187 controls) (36), respectively.  The participants were primarily of White European ancestry 

from the UK and Australia for GERD; and from the UK, Finland, and Republic of Estonia for atopic 

dermatitis.  Detailed information on data sources is shown in Supplementary Table 1.   

 



Genetic Correlations:  The shared genetic architectures of the study traits (asthma, GERD, and 

AD) were calculated in a pairwise comparison using a linkage disequilibrium score regression 

(LDSC) method on HapMap3 SNPs (41).  Computed genetic correlations were corrected for 

multiple testing based on the total number of correlations by applying a Bonferroni-corrected 

threshold of P=0.017 (0.05/3 traits). 

 

Genetic Instrumental Variable (IV) Selection:  First, we extracted SNPs associated with each 

trait at a genome-wide level of significance (P<5 x 10-8) in the respective studies (34-36).  To 

ensure that SNPs were independent, IVs were clumped using a stringent linkage disequilibrium 

(LD) threshold of r2=0.001 within a genetic window of 10 Mb based on the 1000 Genomes 

European reference panel.  The effect estimates of both exposure and outcome variants were 

harmonized, expressed per effect allele increase, and possible palindromic SNPs were excluded.  

F-statistics were performed to assess the strength of genetically determined IVs (F > 10 is 

sufficient for the first MR assumption and does not suffer from weak instrument bias) (21, 42).  

Supplementary Table 2 summarizes F-statistics of final instruments. 

 

Mendelian Randomization (MR) Analyses:  Figure 1 depicts the workflow of our instrumental 

variable analyses.  As the primary analysis, we used a random-effect inverse-variance weighted 

(IVW) method, which allows for heterogeneity for the SNPs used in the instruments (43).  Before 

running the IVW method, we first conducted sensitivity analyses to assess the directional 

pleiotropy (horizontal pleiotropy) using MR-Egger regression (44).  Further, we applied MR-

PRESSO (pleiotropy residual sum and outlier) to detect any horizontal pleiotropic outlier (45).  

Supplementary Table 3 shows the final number of IVs used in the IVW method.  To ascertain 

the robustness of the primary analysis, we also conduced IV analyses using the MR-Egger 



method and the weighted median regression method (Figure 1).  Finally, we performed leave-

one-out analysis to test if the effect estimates were influenced by any one variant.   

 

Statistical Analysis:  All statistical analyses were performed using the TwoSampleMR (47) and 

MR-PRESSO (45) packages in R Software 4.1.0.  To correct for multiple testing, we applied 

Bonferroni-correction imposing a significance threshold of 0.017 (i.e. 0.05/3 tests).  

 

 

RESULTS 

Genetic Correlations:  Prior to performing MR analysis, we first evaluated the genetic correlation 

between the study traits in the GWAS summary statistics (34-36).  Using LDSC (41), we detected 

the highest genetic correlation between atopic dermatitis and asthma (rg=0.710, SE=0.165, 

P=1.72 x 10-5), followed by the correlation between asthma and GERD 

(rg=0.362, SE=0.051, P=2.04 x 10–12), and then between GERD and atopic dermatitis (rg=0.2, 

SE=0.049, P=3.90 x 10–5).  

 

Asthma and Atopic Dermatitis:  Based on the ranked order in genetic correlations, and the well-

recognized link between atopic disorders and asthma (37, 38), we first conducted MR analysis of 

atopic dermatitis (AD) and asthma.  We conducted these studies because AD is believed to be 

on the causal pathway along the progression of asthma (“atopic march”) (39, 40). 

Using the GWAS summary statistics conducted on asthma (Ncases=56,167) (34) and atopic 

dermatitis (Ncases=22,474) (36), we derived 48 genetic variants for asthma and 11 genetic variants 

for AD.  Of note, 11 AD-associated SNPs (F-statistics of SNPs range from 32 to 62) were equally 

strong instruments as that of 48 asthma-associated SNPs (F-statistics of SNPs range from 30 to 

247) (Supplementary Table 2). 



As expected, genetically determined AD was associated with increased risk of asthma 

(Figure 2), increasing the risk by 34% using the IVW method (OR, 1.34; 95% CI, 1.24-1.45; 

PIVW=1.32 x 10-14).  Similar effect estimates of AD on risk of asthma were detected using the 

weighted median regression method (OR, 1.32; 95% CI, 1.21-1.44; P=5.77 x 10-10) as well as the 

MR-Egger method (OR, 1.54; 95% CI, 1.08-2.20; P=4.14 x 10-2) (Supplementary Table 4).  

Leave-one-out analysis showed that the effect estimates were not influenced by any one variant 

(Supplementary Figure 1).  In addition, the MR-Egger regression intercept did not significantly 

deviate from zero (Supplementary Table 5), suggesting no evidence of ‘horizontal pleiotropy’ or 

violation of the second MR assumption (45).  These results collectively established that atopic 

dermatitis is a causal risk factor for development of asthma.   

Surprisingly, when exposure and outcome were reversed, 48 genetic variants for asthma 

were also causally associated with increased risk of atopic dermatitis, increasing the risk by 46% 

(OR, 1.46; 95% CI, 1.34-1.59; PIVW=1.67 x 10-18) (Figure 2).  The effect estimates were 

directionally consistent across the sensitivity analyses (Supplementary Table 4) with no 

evidence of horizontal pleiotropy (Supplementary Table 5); and, this causal direction was not 

driven by a single outlying variant (Supplementary Figure 2).  As our study entailed partially 

overlapping sets of participants that can affect the causal estimates, we calculated the magnitude 

of potential bias, including Type 1 error rate inflation due to sample overlap, using an online tool 

described in Burgess and colleagues (46).  Across the entire range of possible sample overlap 

(Supplementary Table 6), we did not detect evidence for sample overlap in GWAS summary 

statistics (34-36).  Hence, two-sample bidirectional MR analyses not only confirmed a well-

recognized causal pathway in the progression of asthma, but also identified a previously 

unrecognized association that is suggestive of asthma as a plausible risk factor for developing 

atopic dermatitis.   

 



Asthma and GERD:  For MR analysis of asthma and GERD, we identified 62 asthma-associated 

SNPs and 21 GERD-associated SNPs in the GWAS summary statistics (34, 35) that were 

sufficiently strong independent genetic instrumental variables (Supplementary Table 2-3).  On 

the one hand, we detected small, but significant effect estimate of genetically determined asthma 

on increased risk of GERD (OR, 1.06; 95% CI, 1.03-1.09; PIVW=4.94 x 10-4) (Figure 3 and 

Supplementary Table 4 and Supplementary Figure 3).  On the other hand, we found strong 

and large causal effect estimate of genetically determined GERD on increased risk of asthma 

(Figure 3 and Supplementary Table 4 and Supplementary Figure 4), increasing the risk by 

21% (OR, 1.21; 95% CI, 1.09-1.35; PIVW=5.63 x 10-4).   

Interestingly, 21 genetic variants associated with GERD also increased risk of atopic 

dermatitis (OR, 1.21; 95% CI, 1.07-1.37; PIVW=3.32 x 10-3); the effect size of GERD on atopic 

dermatitis was similar to that of GERD on asthma (Figure 3 and Supplementary Table 4 and 

Supplementary Figure 5).  There was no evidence of a causal relationship in the opposite 

direction (i.e., AD on risk of GERD) (Supplementary Table 4 and Supplementary Figure 6).  

These results, taken together, established a complex genetic interplay between the inflammatory 

diseases of the lung and skin with GERD in European-ancestry population and suggested that 

the predisposition to asthma, including atopic dermatitis, can arise from specific pathogenic 

mechanisms manifested by GERD. 

 

 

DISCUSSION 

In this study, we set out to test whether asthma, an inflammatory disorder of the airways, 

is causally related to GERD, a condition that is perpetuated by chronic regurgitation of gastric 

contents.  Applying three different MR methods, we found similar magnitude of causal estimates 

with an appreciably larger effect size for genetically determined GERD predisposing to asthma 

(increasing asthma risk by 21%) than genetically determined asthma on risk of GERD (6% 



increase) in European-ancestry populations.  The effect size was directionally consistent across 

the sensitivity analyses with no evidence of weak instrument bias or possible sample overlap in 

GWAS summary statistics.  Further, consistent with computed genetic correlations, and a widely 

held notion that atopic dermatitis, an inflammatory disease of the skin, is an important early risk 

for the subsequent development and progression to asthma, genetically determined AD increased 

risk of asthma by 34%.  Of note, the largest effect size was detected for asthma predisposition to 

AD (increase AD risk by 46%).  Interestingly, while AD did not increase GERD, GERD increased 

risk of AD (21% increase) as it did for asthma.  Thus, our studies reveal a complex genetic 

interplay between inflammatory diseases of the lung and skin with GERD and, moreover, suggest 

that the predisposition to asthma, including atopic dermatitis, can arise from specific pathogenic 

mechanisms manifested by GERD. 

The frequent coexistence of traits, or GERD comorbidity in patients with asthma, may 

underlie common genetic etiology and/or pathogenic mechanisms shared between the two 

diseases.  Of note, the lung and gut arise from the foregut which, in time and space, undergoes 

a divergent developmental program that is requisite to each organogenesis and permissive for 

distinct physiological functions (41, 42).  Anatomically, the upper respiratory and GI tracts are in 

close proximity, separated by a short-lived tracheoesophageal septum, and the stimulatory and 

inhibitory reflex mechanisms of the upper GI tracts (i.e. esophagus) are designed to ensure 

protection against aspiration of ingested and gastric contents (reflux) into the airways (50, 51).  

Micro-aspiration of endogenous acids, due to altered reflex and/or reflux mechanisms (7, 8), can 

reduce the pH of the airways and has been proposed to contribute to the pathophysiology of 

obstructive lung diseases (13-16).  Although numerous studies have suggested that GERD 

increases the risk of asthma (18, 19), most, if not all, are limited to retrospective clinical and 

epidemiological observations.  Hence, whether the presence of GERD causally increases the risk 

for asthma and/or whether patients with asthma are genetically susceptible to develop GERD 

remain unclear.  Of note, randomized controlled trials of acid-suppressive therapies in asthma 



patients with GERD (adults and children) have shown limited therapeutic improvements on 

asthma symptoms and/or pulmonary function (2, 52-54).  These issues have led us to explore 

whether there exists a true cause-effect relationship between these two highly heritable diseases.   

Similar to randomized controlled trials, Mendelian randomization applies a universal 

concept in human genetics [random segregation and independent assortment of genes] as 

proxies to infer whether a modifiable risk factor is causally linked to a health outcome (21).  

Recently, with an increasing availability of large GWAS summary statistics, MR methods have 

been used broadly to establish causal relationships between commonly associated 

traits/diseases and, in so doing, opened new avenues for cost-effective, well-rationalized study 

designs for clinical trials, including the basis for further hypothesis-driven mechanistic studies.  

For instance, with respect to asthma, studies have recently established a positive, unidirectional 

causal effect of obesity and related adiposity traits (i.e., the weighted allele score for body mass 

index [BMI]) on risk of asthma (28-31).  A higher BMI was also identified as a causal risk for atopic 

dermatitis (55).  Of note, Green and colleagues (56) found that central fat distribution (i.e., a higher 

waist-hip ratio), and not BMI, is causally associated with GERD.  Because obesity is a potential 

risk for multiple chronic disorders (24), and there is already emergence of new MR approaches 

to this space (29, 57-59), we did not perform MR analysis of obesity and/or obesity-related traits 

with our study traits (asthma, AD, and GERD) or additional multivariable MR, including genetic 

associations with potential confounders (i.e., BMI, sex, smoking status) within the respective 

patients cohorts of the non-disclosive summary-level GWAS (34-36).   

Recently, Freuer and colleagues (32) reported that the presence of asthma onset in 

childhood, but not in adulthood, is positively associated with GERD later in life.  For this study, 

they collected genetic IVs for childhood-onset and adult-onset asthma, as well as genetic IVs for 

GERD within one study cohort in UK Biobank (33); and ran one-sample MR in one causal 

pathway, which may suffer weak instrument bias and some predicted power.  On the one hand, 

a longitudinal study in UK general population reported that patients with asthma are at increased 



risk of developing GERD and not vice versa (20).  On the other hand, two longitudinal follow-up 

studies in Korean children (60) and adults (61) detected a reciprocal causality between GERD 

and asthma.  Based on these observational studies, here we performed two-sample bidirectional 

MR analysis to infer the magnitude and direction of causality between asthma and GERD.  

Interestingly, Zhu and colleagues found that shared genetic loci between asthma and allergic 

diseases (hay fever/allergic rhinitis or atopic dermatitis) were enriched in immune/inflammatory 

systems and localized to several epithelial tissues, including the skin, lung, and esophageal 

tissues (38).  Accordingly, we also generated genetic IVs for atopic dermatitis, and assessed their 

exposure commonality with genetically determined asthma on the predisposition to GERD. 

In this study, we detected a small, but significant effect size for genetically determined 

asthma on risk of GERD (OR, 1.06; 95% CI, 1.03-1.09; P=4.94 x 10-4) in European ancestry 

population.  For our analysis, asthma SNPs were identified from GWAS in the UK Biobank on a 

broad asthma definition (34) and may have inflated the nominal causal effect due to an 

unaccounted natural history (time and course) of patient-reported asthma symptoms.  In addition, 

the genetic variants (asthma, GERD, and AD) were, all or partially, identified from participants in 

the UK Biobank (34-36) and, as such, may suffer from sample overlap–one of the limitations of 

MR studies using publicly available GWAS summary statistics.  To this end, we simulated IV bias 

across the entire range of possible sample overlap (Supplementary Table 6) and performed F-

statistics of final instruments (Supplementary Table 2), but found no evidence of sample overlap 

in the GWAS summary statistics or weak instrument bias.  Further replication studies are needed 

in non-European populations for the generalizability of our findings, however. 

Most strikingly, as opposed to the findings of Freuer et al. (32), we detected the presence 

of a reciprocal causal effect of GERD on asthma (genetically determined GERD increased the 

risk for asthma by 21%).  Although MR analysis does not provide or suggest the underlying 

biology, here we speculated different mechanisms, including those involving acid reflux effects on 

the lung.  Barbas et al. (62) showed that chronic aspiration of gastric fluid evokes a shift of immune 



responses (from T helper 1 (Th1) to Th2) in a mouse model of asthma.  Using isolated human 

airway smooth muscle (ASM) cells in culture as a physiological model, we have reported that 

small reductions in extracellular pH evoke contraction via an ovarian cancer G protein-coupled 

receptor 1 (OGR1 or GPR68) expressed on ASM (13), suggesting that alterations in extracellular 

pH (i.e., airway acidification caused by exogenous and/or endogenous acids, or as a 

consequence of airway inflammation) has direct effects on the contractility of an end-effector cell 

of acute airway narrowing in asthma (63).  In addition, reflex-mediated increases in ASM 

contraction and airway resistance (64), mediated by autonomic nerves innervating the airways 

(65), or by mechanical perturbation to the mucosa of the upper airways and esophagus (7, 66), 

can contribute to asthma pathogenesis.  Together these studies highlight an importance of 

characterizing reflex and/or reflux mechanisms regulating ASM tone and contractility in asthma 

patients with GERD (65).  Our results also warrant further investigation into the diagnosis and 

treatment of GERD comorbidity in patients with asthma.   

Among the three traits studied, we detected the largest effect size for asthma 

predisposition to atopic dermatitis (increase AD risk by 46%).  This is a marked contrast to the 

widely-held notion that atopic dermatitis is an early causal factor in the ultimate development of 

atopic asthma (39, 40).  While the causal mechanisms for this atopic march remain subject to 

debate (40), one plausible mechanism is the loss-of-function mutations in the filaggrin gene (FLG) 

in patients with atopic dermatitis that lead to dysregulation of epidermal skin barrier function and 

consequent induction of allergic sensitization and airway hyperresponsiveness through an 

antigen-specific Th2 responses (67).  In addition to variants in FLG that define the shared genetic 

pathways in atopic dermatitis and asthma (67-69), Sliz and colleauges (36) have also identified 

other novel missense variants, including DSC1 (desmocollin 1) and SERPINB7 (serpin family B 

member 7), that may contribute to altered mechanical stability and epidermal barrier properties in 

European ancestry.  Accordingly, our results not only confirmed a plausible causal effect of atopic 



dermatitis on asthma, but also identified a previously unrecognized association that is suggestive 

of asthma may be a causal risk factor for atopic dermatitis.   

Interestingly, GERD equally increased the risks for asthma (OR, 1.21; 95% CI, 1.09-1.35; 

P=5.63 x 10-4) and AD (OR, 1.21; 95% CI, 1.07-1.37; P=3.32 x 10-3): AD did not increase risk of 

GERD.  These results suggested that the predisposition to atopic dermatitis, including increased 

risk of asthma, can arise from specific pathogenic mechanisms manifested by GERD, a disease 

of the GI tract.  To the best of our knowledge, a causal effect of GERD on atopic dermatitis has 

not been established.  While further studies are warranted to establish the specific mechanisms, 

we speculate the intestinal neuro-immune axis (70), including inter-kingdom microbial crosstalks 

(71), constitute possible homeostatic mechanisms regulating inflammatory responses in the lung 

and skin, and shaping the ultimate development of atopic disorders–asthma and atopic dermatitis.  

We believe further insights into the causal pathway to these complex traits may come from 

advances in MR that incorporate tissue-specific microbiome, metabolome, transcriptome, and 

phenome-wide analyses (25, 72-75).  Such findings would not only provide a greater granularity 

to disease etiology, but also discover new biomarker(s) and development of new targeted 

intervention strategies.   

Taken together, this study established a complex genetic interplay among asthma, atopic 

dermatitis, and GERD in European-ancestry populations.  Importantly, our findings not only 

substantiated the association between asthma and GERD, but also uncovered previously 

unrecognized associations that have clinical implications: 1) asthma is a causal risk factor for 

atopic dermatitis; and 2) the predisposition to atopic dermatitis, including increased risk of asthma, 

can arise from specific pathogenic mechanisms manifested by GERD.  Further studies are 

needed for the identification and characterization of the gut-lung-skin axis.   

  



FIGURE LEGENDS 

Fig. 1.  The workflow of instrumental variable analysis to estimate a potential causal effect 

of a modifiable exposure on a risk outcome.   

 

Fig. 2.  Causal relationships between asthma and atopic dermatitis.  IVW method was used 

to estimate the magnitude and direction of effect sizes and presented as odds ratios (ORs) and 

95% confidence intervals. 

 

Fig. 3.  Causal relationships between GERD and atopic disorders (asthma or eczema).  IVW 

method was used to estimate the magnitude and direction of effect sizes and presented as odds 

ratios (ORs) and 95% confidence intervals. 
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