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Abstract: Viral-associated respiratory infectious diseases are one of the most prominent subsets of
respiratory failures, known as viral respiratory infections (VRI). VRIs are proceeded by an infection
caused by viruses infecting the respiratory system. For the past 100 years, viral associated respiratory
epidemics have been the most common cause of infectious disease worldwide. Due to several drawbacks
of the current anti-viral treatments, such as drug resistance generation and non-targeting of viral proteins,
the development of novel nanotherapeutic or nano-vaccine strategies can be considered essential. Due
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to their specific physical and biological properties, nanoparticles hold promising opportunities for both
anti-viral treatments and vaccines against viral infections. Besides the specific physiological properties
of the respiratory system, there is a significant demand for utilizing nano-designs in the production of
vaccines or antiviral agents for airway-localized administration. SARS-CoV-2, as an immediate example
of respiratory viruses, is an enveloped, positive-sense, single-stranded RNA virus belonging to the
coronaviridae family. COVID-19 can lead to acute respiratory distress syndrome, similarly to other
members of the coronaviridae. Hence, reviewing the current and past emerging nanotechnology-based
medications on similar respiratory viral diseases can identify pathways towards generating novel
SARS-CoV-2 nanotherapeutics and/or nano-vaccines.

Keywords: viral infection; SARS-CoV-2; nanomedicine; respiratory disease; nano-vaccine; COVID-19

1. Introduction

Viral infectious diseases and respiratory viral infections are among the most severe
global health threats. According to the World Health Organization (WHO), millions of
people are globally affected by viral diseases annually [1]. VRIs caused by different viral
sources can infect the human upper and lower respiratory tracts, making the respiratory
mucosa the primary gate of entry. Many viruses that could potentially lead to VARID
have been reported in the current literature. Table 1 summarizes these viruses and their
associated respiratory infectious disease. In this regard, SARS-CoV-2 and the influenza
virus H1N1 are among the most recent to have caused global pandemics.

Although pathogens of viruses in the respiratory system are different, the most com-
mon associated and fatal viral infections have specific tropism to the lower respiratory
tract, causing severe pneumonia and acute respiratory distress syndrome (ARDS) [2]. The
susceptible epithelial cells express the specific surface proteins by which they bind the
viruses. The expression pattern and distribution of these receptors in the epithelial layer
of the respiratory system can be used to determine the virus localization [3]. As a current
example, SARS-CoV-2 binds to angiotensin-converting enzyme type 2 (ACE-2), which
is overexpressed in intermediated and lower regions of the respiratory tract [4]. The in-
fection lesions of SARS-CoV-2 are not common in the mouth and sinuses [5]. Normally,
the immune system can trap the viral particles in the mouth, nose, and upper respiratory
tract at the onset of the virus entry, inhibiting penetration into the lower parts of the lungs.
However, the most important concerns about SARS-CoV-2 as a viral respiratory infection
are pulmonary insufficiency, as categorized in viral associated respiratory infection diseases
(VARID) [6]. While the infection susceptibility and disease progression are directly related
to the ability of the immune system to combat the viruses, the dysregulation of immune
system responses also has an impact on increased inflammation, destruction of alveoli, and
obstruction of the airways (immunopathogenesis). Immunopathogenesis can justify the oc-
currence of viral infection lesions due to over-activation of the immune system [7]. Current
anti-viral pharmaceutics suffer from several shortcomings, including the development of
drug resistance, non-targeting of the particular virus inside the host cell without causing
adverse cellular effects, and the lack of a generic anti-viral drug suitable for a wide range
of viruses [8–10]. Respiratory anti-viral treatment using nanocarriers can be conducted
through either systemic interventions [11], or localized methods [12]. The deep penetration,
targeted delivery, and higher stability are the most prominent features of efficient treat-
ments in SARS-CoV-2 (as an incurable VARID); nanotechnology-based interventions may
provide these features. Hereby, the importance and necessity of using nano-pharmaceutical
therapies and nano-vaccines against severe respiratory infections are caused by a range of
viruses become evident. Besides the impact of nano-carriers on anti-viral therapeutics, they
also play an essential role in the development of new generations of the nano-vaccines [13].
Nano-vaccines may facilitate a more effective vaccination process through enhanced sta-
bility, protection from premature degradation, and by assisting adjuvant and/or targeted
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delivery agent of an immunogen to the particular antigen-presenting cells (APCs). The
benefits of nanoparticle administration in the lower respiratory tract include the following:
Uniform drug distribution and enhanced drug solubility; sustained release of anti-viral
drugs or immunoactive API into targeted mucosal system cells, and; host cell or immune
cell uptake through phagocytosis. These features have made nanocarriers into specific
nanotherapeutic candidates in respiratory diseases and, in particular, VARID [14].

Table 1. Common viral respiratory infections and the associated respiratory infection disease.

Virus VARID Ref

Adenoviruses Common Cold, Pneumonia [15]

Coronaviruses Common Cold, SARS, MERS, COVID-19 [6]

Enteroviruses Common Cold [16]

Influenza Virus (Types A and B) Influenza, Pneumonia [17]

Metapneumovirus Common Cold, Pneumonia, Bronchiolitis [18]

Parainfluenza Virus (Type 3) Common Cold, Croup, Pneumonia, Bronchiolitis [19]

Parainfluenza Viruses (Types 1, 2) Croup [19]

Respiratory Syncytial viruses Pneumonia, Bronchiolitis [20]

Rhinoviruses Common Cold [21]

In this review, the innate immune system responses to different VRIs and nanotechno-
logical approaches to combating the coronavirus family are discussed. We, then, conduct
a holistic review of the past evolutions and current opportunities of nanotechnology in
respiratory viral disease treatments and active immunizations.

2. Anti-Viral Responses of the Immune System in VARID and Evidence of Nanomedicine

In this section, the immune system framework is considered in the case of interven-
tional nano-medical tools. According to the latest findings in nanomedicine, the treatment
strategies would be focused on synergizing anti-viral targeted therapy or enhancing the
immunomodulation responses against exaggerated anti-viral responses that lead to vi-
ral infection associated immunopathogenesis. There are three general immunological
approaches in viral respiratory infections, including physical-mucosal barrier (innate im-
munity), natural, and secondary IgA and cell mediated immunity (adoptive immunity).
The barriers from the perspective of the nanomedicine interventions are discussed.

2.1. Physical-Mucosal Barriers from Saliva to Bronchus-Associated Lymphoid Tissue

The physical-mucosal barriers from the oral and nasal cavities to the deepest regions
of the lungs are considered the first line of defense in the innate immune system [22].
Alongside these physicochemical barriers, scattered lymphatic regions in the basal side of
the respiratory tract (e.g., Nasal Associated Lymphoid Tissue (NALT) in the nasal cavities
and mucosal associated lymphoid tissue in the mucosal layer of the respiratory tract) have
a critical role in tropic anti-viral immunity responses [23]. Stimulation or suppression
of local immune responses in the respiratory tract are the basis of many vaccines or
immunomodulatory drugs. For example, intranasal vaccines can boost IgA production
and block the virus entry. Nanoparticles in such drugs and/or vaccines play the role of
scaffold, retainer, emulsifier, stabilizer, targeted, and scheduled drug release carrier [24]. In
this regard, nano-formulated combinations, such as Flu Avert® and FluMist® are designed
as effective intranasal influenzas vaccines [25]. Moreover, intranasal interventions are also
used for local drug delivery, particularly in drug delivery to the lungs, administered using
intranasal droplets or sprays.
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The oral cavity is another physical barrier with enzyme-containing saliva and other
NALT layers [26]. The contents of the saliva and nose mucosa in the respiratory tract
determine the type of immune response. Given that the mouth and nose are the primary
gateway for virus entry into the pulmonary tract, passing the virus through the saliva
barrier, nasal mucosa, and ciliated layers of the upper respiratory tract can lead to acute viral
infection in the lungs [27]. Some periodontal therapies using silver and gold nanoparticles
can improve the immunity of the oral cavity and prevent the penetration of pathogens into
the epithelium [28].

Saliva content, as an element of oral immunity, includes peptides, enzymes, and
immune/epithelial cells derived cytokines. Host defense peptides (HDP or antimicrobial
peptides (AMP)) of the innate immune system, such as Cathelicidin (LL-37), α, β defensins,
lactoferrin, lysozyme, and heterotypic salivary agglutinin (gp340, DMBT1) are secreted
from the epithelial cells of the mouth, can consequently block the virus entry into epithelial
cells or inhibit virus pathogenesis [29]. Rhesus theta-defensin 1 (RTD-1) is a new cyclic
defensin that has a prophylactic effect on SARS-CoV infection and prevents death in animal
models [30]. It is decorated in dendrimer-based nanoparticles and acts to enhance the
antiviral function [31]. APCs, specifically Langerhans cells, can migrate to the epithelium
due to local infection, uptake antigens, and return to the lymphoid tissues to activate T
cells and induce B cell differentiation into plasma cells [32]. The Langerhans cell activation
in the oral cavity and small intestine is the essential basis of IgA, inducing vaccine design.
According to this, some of the nano-formulated vaccines can boost the mucosal immune
responses and raise the specific IgA titration, depending on the adjuvant decoration
and administration routes. For example, colloidal saponin containing micelle liposomes,
or immune-stimulating complexes (ISCOMs), with a size of approximately 40 nm are
considered the most prevalent self-adjuvants in oral nano-vaccine formulations [33] (26).

One of the most important AMPs in saliva and mucus is Cathelicidin (LL37); known
for its antimicrobial role via lipopolysaccharide (LPS)-binding function, the anti-viral
impacts were recently established in rhinoviruses and influenza [34–36]. Although saliva-
derived HDPs and other antimicrobial elements might be used in the formulation of some
nanoparticles, the saliva content can impact the fate of oral nanoparticles [37]. Nowadays,
some nano-antibiotics have been developed, containing membrane-active human LL37 and
synthetic compounds that mimic antimicrobial peptides, such as ceragenins [38]. CSA-13
is a ceragenin with an anti-viral effect on viral DNA replication in vaccinia virus and
smallpox virus [39]. While magnetic nanoparticles containing LL37 (MNP@LL37) and CSA-
13 (MNP@CSA-13) can increase the antimicrobial potency of LL37 and cathelicidin [40],
carbon nanoparticle decoration of these compounds reduces this effect through structure
alteration and affinity variation [41,42]. Synthetic LL37 has been found to inhibit spike
protein binding to ACE2 in vitro in SARS-CoV-2 infections [43]. Since LL37 is induced
after Vitamin D uptake, cathelcidin was measured after Vitamin D intervention in SARS-
CoV-2 patients (NCT04636086) [44]. Conjugation of LL37 with carbon nano tubes (CNTs)
facilitated the binding of LL37 on monocytes and accelerated their stimulation [45]. A large
number of the most important mediators in innate immunity act as activating ligands of
scavenger receptors expressed on APCs. The scavenger receptors are classified into three
categories (SR-A, SR-B, and SR-C) and contain a highly glycosylated extracellular domain.
This extracellular domain can interact with pathogen lipoproteins and liver circulating
HDLs and LDLs. Studies have shown that silver nanoparticles (Ag-NPs) mimicking HDL
are effective in activating the scavenger receptor pathway [46]. It has also been found that
polyvinylpyrrolidone (PVP) -formulated Ag-NPs, such as nanowires and silver-coated
plates can enhance the uptake of nanoparticles by mast cells and subsequently impact
inflammation in the respiratory tracts in allergy models [47]. Sundararaj et al. worked on
PVP-AgNPs to demonstrate the inhibitory function of these nanoparticles to the entry of
SARS-CoV-2 in VeroE6/TMPRSS2 cells. However, it is strongly suggested that antiviral
sprays inhibit virus entry [47].
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Alveolar macrophages (AMQ) are the most prevalent immune cells located in all parts
of the respiratory tract. AMQs stabilize the hemostasis of the alveolar regions through rapid
recognition of infections and activation of immune responses, such as DCs, T cells, and
B cells. AMQ have an important immunomodulatory role in mucosal immunity and can
cause the cytokine storm initiation via TNF-α, IFN-g, and IL-6 production, or cascade repair
beginning through TGF-β and culminating in IDO release due to viral infection [48]. The
pathogenesis of IL-6 and AMQs in alveolar thickness and fibrosis induction is important for
immunopathogenesis in VARIDS, which is described in SARS-CoV-2 infection and illustrated
in Figure 1. Recent studies have concentrated on AMQ targeting nanoparticles and support
virus grabbing agents such as decoy nanoparticles. These nanoparticles are made of vesicles
containing receptors such as ACE2, IL6R, and GMCSFR, and can cause beneficial dampening
of inflammation via the virus capturing and inflammatory cytokines [49].
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Figure 1. (A) Nasal virus entry homing in the nasopharynx cavity and virus attachment on epithelial cells and olfactory
neurons. Virus replication in olfactory cells can decrease the ability of smell sensing and cause inflammation in the
nasopharynx. (B) Oral cavity, salivary component including dimeric IgA, cathepsins, and sublingual and laryngeal lymph
nodes are the first line of lymphoid tissue and antibody production. (C) Oral-nasal virus entry, oropharynx cavity, and
virus attachment on the epithelial cells of throat. (D) Normal alveoli in first days of virus entry: thin layer of fibroblasts,
low density and distribution of immune cells in a single epithelial layer, eosinophil and neutrophils number in a normal
range. (E) Severe infection in the alveolar region: macrophages became foam cells. Inflammatory agents induce mucus
secretion and increase the viscosity of the mucosal barrier. Alveolar epithelial cells die via apoptosis or viral cytolysis, NK
cells increment, and neutrophils induce a cytokine storm. (F) Inflammatory conditions induce fibrosis and fibroblast cells
proliferation, which can cause thickness of the alveolar cavity, resulting in respiratory distress. (G) Lung obstruction results
in decreased respiratory rate.
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Inducible Bronchial Associated Lymphoid Tissue (iBALT) are a subgroup of MALT
that are generated due to viral infections in the extremities of the lungs. iBALT initially
helps to produce a specific immune response and increase the rate of chemotaxis of immune
cells. Some nanoparticles, such as protein cage nanoparticles (PCN), can moderate the
iBALT function or increase the protection against respiratory viruses via macrophages
and T cell chemotaxis increment [50]. iBALT induction is a critical aspect of vaccination
in respiratory diseases. However, in some cases, due to the progression of the disease, it
can exacerbate the pathogenesis of the immune cells by increasing inflammation in the
alveolar areas. Finally, more mucus production, increased inflammation, and exacerba-
tion of fibrosis will cause narrowing of the alveoli, reduced respiratory saturation, and
subsequent ARDS [51]. Reactive oxygen species (ROS) release incrementally by immune
cells and AMQs, producing inflammatory cytokines, such as TNFα and IL-6, thus, increas-
ing the inflammation level and causing poor prognosis as the immunopathogenesis of
VARID leading to ARDS. Some immunomodulatory treatments based on nanoparticles,
such as piceatannol incorporated albumin nanoparticles (PANPs), can be used to reduce
ARDS through neutrophils adherence targeting [52]. For SARS-CoV-2, anti-inflammatory
nanoparticles such as silver and gold nanoparticles are very important and can change the
microenvironment in favor of immunomodulation [53]. Other metal oxide nanoparticles,
especially ZnO combinations, reduce inflammation through ROS reduction [54].

2.2. Surfactant Role in Viral Infection

Pulmonary surfactant is a layer of phospho-lipoprotein compound secreted by Type
2 alveolar epithelial cells that covers the surface of the alveoli. This surfactant layer has
amphipathic properties and traps water in the mucosal barrier to regulate the alveoli size
and tension. There are four important functions of surfactants in anti-viral immunity and
homeostasis, including anti-viral immunity enhancement, inhibition of viral infectivity,
inflammation regulation, and virus entry facilitating. The pulmonary surfactants are cate-
gorized into four subtypes (SP-A, SP-B, SP-C, and SP-D) depending on their hydrophobic
features and the protein contents. Generally, SP-B and SP-C are more hydrophobic and
smaller, while the anti-viral immunity of surfactants is more related to SP-A and SP-D.
These compounds can bind to the viral glycoproteins and facilitate phagocytosis; the
loss of SP-A would lead to delayed virus clearance. The amphipathic properties of these
surfactants make them suitable candidates for anti-viral nanoparticle decoration [55].

While surfactant-based vesicles containing dipalmitoyl phosphatidylglycerol (DPPG)
can inhibit the viral infection, others have been shown to facilitate viral host cell entry [56].
Dipalmitoyl phosphatidylcholine (DPPC) is one of the surfactant components that can
facilitate adenovirus entry into epithelium, thus would make a good candidate for lung
disease gene therapies [57].

The anti-inflammatory features of these surfactants would also be exploited via bind-
ing to the signal inhibitory peptide (SIRP-α) on macrophages, causing them to attenuate
the release of pro-inflammatory products. Currently, exogenous surfactants are admin-
istrated to diminish inflammation in ARDS patients. This exogenous surfactant may be
synthetic like Surfaxin®, natural (bovine-derived) like Beractant (Survanta®), or nano-
formulated. The injection route is also different in many trials: It is executed intrathecal,
bronchoscopically, or aerosolized [58]. Clinical trials for the assessment of the efficacy
of Lucinactant and other generic commercial brands in treating COVID-19 patients are
ongoing. Anionic phospholipids like palmitoyl-oleoyl-phosphatidylglycerol (POPG) and
phosphatidylinositol (PI) may inhibit TNF-α production and suppress the activity of
macrophages in pro-inflammatory production [59]. The most common use of synthetic
surfactants is in premature infants for the treatment of respiratory syndrome, as well as in
severe cases of respiratory viral infections for lung recovery [60].
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2.3. Antiviral IFN Route

It seems that, either an appropriate underlying genetic background showing a specific
anti-viral response, or the utilization of anti-sera or PEGylated IFNα to stimulate the
immune response, is significant at the incubation stage in people infected with SARS-
CoV-2. The response to Type I interferon in the patients with poor prognosis has been
significantly lower than that in the recovered patients during adaptive immune responses.
When using a Type I IFN for treatment in a mouse model of SARS-CoV or MERS-CoV
infection, the timing of administration is essential to obtain a protective response. During
this type of response, CD4+ and CD8+ memory T cells can be stored for an extended period
of time even if there is no antigen present and can induce the proliferation of T lymphocytes
(the type of hypersensitivity response, delayed (DTH), and the production of IFN-γ, as
found in the blood). Recent research showed that, while the CD8+ T cell response is crucial
in individuals recovered from SARS-CoV-2, it must be well-monitored, in order to avoid
lung inflammation [61,62]

As shown in Figure 2, coronaviruses possibly suppress several steps while the initial
innate immune response is addressed. Cytosolic RNA sensors (RIG-I/MDA5), production
of Type I IFN responses, and activation of IFN attached to its receptor, will be inhibited.
Prolonged late Type I IFN responses cause immune collapse, which leads to poor prognosis
of patients infected with SARS-CoV-2 [62].
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Figure 2. Proposed immune escape mechanism of SARS-CoV, MERS-CoV and possibly SARS-CoV-2. SARS-
CoV-2 is attached to its receptor on the surface of target ACE2 positive cells, such as alveolar or other target
cells, reducing the anti-viral IFN responses, leading to viral replication and propagation. COVID-19 may
inhibit the pathways induced by TLRs3, 7, and 8, which are expressed in the endosomes. The suppression of
these molecules leads to dampening of NF-kB, IRF signaling cascades, and STAT1/2 function in the nucleus,
which decreases in the production of Type I IFNs responses. Delayed Type I IFNs responses may trigger
immune exhaustion and the invasion of neutrophils and monocytes/macrophages into the infected cell,
which may lead to cytokine storms and Th2 type responses resulting in poor outcomes.
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2.4. Natural and Secondary IgA

Although IgG, IgM and IgA have an important role in the systemic humoral immu-
nity, one of the most important compartments of mucosal immunity that can regulate
lung hemostasis is the dimeric secretory immunoglobulin Type A that is released into
the mucosal layer of the respiratory tract, saliva, and nasal mucus [63]. Secretory IgA,
as another oral immunity content in the saliva, is produced by the lamina properia resi-
dent/induced plasma cells, which can pass the epithelium and concentrate in saliva. This
primary secreted IgA can bind the virus-specific proteins, block the virus entry, and inhibit
epithelium infection, especially in oral-respiratory infections, such as Cytomegalovirus
(CMV), influenza, and SARS-CoV-2 [64].

Dimeric IgA production can modulate the inflammation in the alveolar area and pro-
tect the respiratory epithelium from high inflammatory response-related damage. It occurs
due to viral particles blocking and modulating the respiratory dysfunction, especially in
chlamydia dependent infections in neonates [65]. The uptake of IgA-loaded nanoparti-
cles especially in chitin/chitosan nanoparticles within the nasal membranes following
intranasal administration shows passive immunity in some respiratory diseases. Chitosan
(CS) -dextran sulphate (DS) nanoparticles potentially increase the IgA-loaded combinations
into nasal membranes and are widely used in intranasal formulations [66]. Some DNA
vaccines have coupling capabilities with poly-lactide-co-glycolide (PLGA) and boost IgA
production against respiratory syncytial virus (RSV) in acute respiratory disease caused
by RSV in children [67]. The antibody-conjugated nanoparticles have a very important
effect on the durability, stability increment, and decrease of the serum metabolism rate
of immunoglobulins [68]. DiagNano™, a silica magnetic nanoparticle, is designed as an
anti-human IgA, IgG, IgM conjugated nanoparticle formulated for rapid test diagnostic kits
and can be used for other clinical approaches. PreveCeutical®, as a SiO2 sol-gel delivery
platform, is an FDA approved nanoparticle used for nose-to-brain drug delivery [69] (63).
The most effective vaccine routes in the COVID-19 pandemic may be inhaled vaccines, as
this type of vaccine produces very powerful mucosal dimeric IgA that can block the virus
entry in the first line of infection defense [70,71].

2.5. Cell Mediated Immunity (CMI)

Cell-mediated immunity (CMI) is a specific immune response for the destruction
of cells infected with viruses and subsequently protects the body against cancers, fungi,
protozoa, and bacteria. Generally, virus-infected cells activate CMI, causing CD4 or T helper
cells to affect the appearance of phagocytes, antigen-specific cytotoxic T lymphocytes
(CTLs), and the secretion of various cytokines against the antigen. CTL activation is
dependent on DC interactions and antigen presentation. In this regard, some polymeric
nanoparticles such as PEI-coated PLGA NPs can stimulate the specific DC generation to
stimulate specific anti-viral CTL [72].

Besides T cell activation during viral infection, viruses can also stimulate the produc-
tion of α-interferon from macrophages, which improves the function of natural killer cells
and restrains the increase of viruses in neighboring cells. In this point, hyaluronic acid-gold
nanoparticle/α-interferon complexes (HA–AuNP/IFNα) were used to increase the anti-
viral response due to IFN-α stabilization and virus replication inhibition [73]. Additionally,
NK cells can regulate the degree and duration of immune responses generated by T cells, B
cells, macrophages, lymphocytes, and neutrophils. NK cells can also intervene antibody-
dependent cell-mediated cytotoxicity (ADCC), enabling ADCC to intervene against cells
infected with the virus. When IgG binds to antigens specific to a virus on the surface of an
infected cell, the Fc portion becomes a target for effector cells paving the way for ADCC to
intervene and bring about the lysis of the infected cell.
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3. Anti-Viral Systemic or Local Nano-Vaccination and Immunotherapy

Vaccination is a general strategy for the control of infectious diseases and is considered
a significant choice for fighting viral diseases [74]. Due to several limitations (e.g., failure to
trigger the immune system, potential of high toxicity, invasive administration, low in vivo
stability, storage, and transport temperatures requirement), the clinical outcomes of some
vaccines against different viral infections are not significant enough [75]. However, with
emerging new formulations of vaccines (i.e., nano-vaccines), many of the shortcomings of
conventional vaccination protocols are successfully addressed. Nano-vaccines can induce
and enhance both humoral and cell-mediated immune responses in a more effective way
than their former generations [76].

As mentioned previously, NALT acts as a crucial defense barrier against respiratory
viruses in the nasopharyngeal cavity [77] and provides a site for humoral and cellular im-
mune responses, thus, representing a promising target for nano-vaccines against respiratory
viruses [74]. Generally, nano-vaccination carriers include inorganic and polymeric nanopar-
ticles, virus-like particles (VLPs), liposomes, and self-assembled protein nanoparticles [78].
These nano-vaccines can mimic specific mucosal immune responses by providing a distinct
formulation, size, and antigen exposition similar to respiratory viruses [78–80]. VARID
nano-vaccines lead to a specific immune response using inactivated pathogens, attenuated
virus, or subunit protein antigens. Examples of inactivated virus vaccine formulations
for seasonal respiratory diseases, such as influenza include Influvac® [81], Vaxigrip® [82],
and Fluzone® [83] against influenza Type A and Type B viruses. Examples of attenuated
virus vaccine formulations include Nasovac® and Flumist® [84,85]. During the ongoing
SARS-CoV-2 pandemic, a significant number of vaccines have been designed using nan-
otechnology such as Pfizer®, Moderna, NovaVax, Sinopharm, Sanofi–GSK, and others.

In relation to the surface charge, the positively charged polymeric, metallic, inorganic,
phospholipidic and protein-based nanoparticles have shown higher immune response stim-
ulations, in comparison to their negatively charged counterparts [86,87]. These particles
can physically encapsulate antigen or covalently conjugate to an antigen and facilitate a
suitable platform for vaccine delivery [88]. The most common strategies in viral respiratory
vaccine solutions are to encapsulate antigens/epitopes within the nanoparticles to protect the
structure of antigens from proteolytic degradation, as well as to deliver the antigen/epitopes
to APCs and NALT. Another efficient reported strategy is the conjugation of antigens or
epitopes on the surface of the polymer nanoparticles through which the viral behavior is
mimicked [88–90]. These antigens are classified based on the pathogen, such as VLP, mRNA
of antigenic protein, full peptide of immunogenic antigen, and dsDNA of antigen. For all
types of antigens, first APCs internalize the vaccine and trigger lysosomal destabilization and
ROS production. This leads to the release of lysosomal contents such as cysteine protease
cathepsin B, which is detected by the nod-like receptor (NLR) family Pyrin domain containing
3 (NLRP3). Following this, the activation and subsequent formation of the inflammasome
complex leads to the production of interleukins and activate immune cells [74].

The SARS-CoV-2 receptor-binding domain (RBD) on S protein binds strongly to
human and bat angiotensin-converting enzyme 2 (ACE2) receptors, resulting in specific
humoral responses through RBD-specific antibodies secretion neutralization. This method
has an exciting potential for use in developing RBD-based vaccines against SARS-CoV-2
infections [91]. Along with this approach, immunogenic epitopes of the spike glycoprotein
with antigenic properties were also characterized by immunoinformatic analysis and their
promising capacity to formulate a multi-epitope peptide vaccine [92].

In general, there are two types of vaccination methods in VARID: Systemic vaccination
and intranasal vaccination. Intravenous administration is used for some NP-based drugs,
but is not considered an optimal route for vaccination. In systemic vaccination, the final
formulation of vaccine, which can be mRNA, recombinant protein, attenuated virus, or
virus-like particle, is injected deep into the deltoid muscle. Vaccine particles are taken up
by tissue resident APCs (macrophages and dendritic cells) and are transported via the
lymphatic system. Once in the lymph nodes, these antigens are presented to T cells to
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induce the specific plasma cells differentiation of Type 1 helper T cells and CTLs. Once
activated plasma cells produce IgG against viral antigens, and CTLs kill virus-infected cells.
Circulation of the vaccine particles in the lymphatic vessels can transport it to the BALT,
where it also helps to generate a specific local antiviral response. However, the structure
of the vaccine is an important consideration for stability and sustained antigenic release
applications; this is referred to as the depot effect.

Alternatively, in intranasal vaccination, stable vaccines are formulated, such as mRNA
loaded LNPs and are introduced to the nasal cavity through swaps or sprays. They are then
absorbed into the mucosa, where the particles penetrate into the epithelial layer and are
taken up by M cells. In the secondary lymphatic associated tissues in the lamina-propria,
the vaccines antigens are presented to T cells, causing plasma cell activation, leading to
IgA production. Dimeric secretory IgA block the virus and prevent infection [93].

Compared to conventional approaches, recent advances in vaccine nanomedicine offer
superior therapeutic potential for viral respiratory diseases [94]. The unique features of the
nanoparticles, including small particle size (100–200 nm), adjustable surface charge, and
specific surfaces, result in a powerful platform for pharmaceutical applications and medicine.
In recent years, many nanoparticles’ formulations, including liposomes, polymers and den-
drimers, inorganic nanoparticles (silver nanoparticles, gold nanoparticles), mesoporous silicon
nanoparticles, and quantum dots, have been developed to meet the challenges against viral
infections. In this section, the importance of nanoparticle-based systemic therapeutic and
vaccine administration for targeting immune system cells and BALT, suppressing hyper
inflammation, and targeting various viral structural proteins, are summarized.

3.1. Nanocarriers for Targeted Anti-Viral Drug Delivery and Nano-Vaccine Design
3.1.1. Liposomes

Liposomes are spherical shape lipid nanoparticles (20–200 nm) composed of a syn-
thetic or natural phospholipid bilayer. Liposomes mimic cell membrane’s structure and can
carry both hydrophilic and lipophilic pharmaceutics compounds [95]. The size and surface
charge diversity make liposomes good candidates for non-cytotoxic and biodegradable
drug delivery carriers, especially as an adjuvant in vaccine delivery studies [96,97]. The
vesicle size of the liposomes for drug and vaccine delivery can have a significant role in
triggering the immune activation process as soon as introducing to the body through the
development of different pathways, such as Th1- or Th2 responses [98]. Additionally, they
can stimulate the APCs uptake rate based on their size and surface charge. The surface
charge of the liposomes can also have a giant effect on the rate of Ag loading efficacy
through either entrapment or electrostatic adsorption methods [99].

RES has a potency for entrapment by liposomes, making them suitable for targeted
delivery in APCs. This mechanism is the basis of vaccine design [100]. According to this
phenomenon, many types of vaccines have been designed against SARS-CoV-2. Lipid
nanoparticles (LNP) are considered revolutionary for vaccination development, with
BNT162b2 (Pfizer®) being the first FDA approved LNP vaccine [101]. Here, the mRNA-
based nano-vaccine contains a full-length mRNA spike protein of SARS-CoV-2 in an LNP
composed of ((4-hydroxybutyl) azanediyl) bis (hexane-6,1-diyl) bis(2-hexyldecanoate),
2 [(polyethylene glycol)-2000]-N, N-ditetradecylacetamide, 1,2-distearoyl-sn-glycero-3-
phosphocholine, and cholesterol), potassium chloride, monobasic potassium phosphate,
sodium chloride, dibasic sodium phosphate dihydrate, and sucrose. A second’s mRNA-
based SARS-SoV-2 vaccine is Moderna®, which is comprised from mRNA1273 encoding
full length spike protein loaded on an ionic LNP (SM-102) containing dimyristoyl glycerol
(DMG) as an artificial phospholipid, cholesterol, and a modified polymer of ethylene glycol
(Polyethylene glycol (PEG) 2000), 1,2-distearoyl-sn-glycero-3-phosphocholine [DSPC]),
sucrose, acetic acid, sodium acetate and tromethamin hydrochloride [102]. In addition to
the slight differences in mRNA sequence, the ratio of nanoparticle compounds in these two
vaccine formulations also have special differences. The Moderna® vaccine does not have
restrictions on transport and storage at ultra-cold temperatures and it is advantageous for
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nanotechnology. Finally, ARCoV is a thermostable mRNA vaccine that encode receptor
binding domain (RBD) of SARS-COV2 and is encapsulated in an LNP [103].

3.1.2. Polymeric Nanoparticles

Polymeric nanoparticles (PNs) are another example of nanocarriers for anti-viral
therapeutic delivery systems. PNs are generally composed of monomeric units in the form
of a colloidal phase, categorized into synthetic polymers, natural polymers, and copolymers.
Besides the application of polymeric nanostructures in the pharmaceutical industry, PNs
have multiple advantages for vaccine delivery applications, including controlled release
of antigens, intracellular persistence in APCs, and adjustable properties such as size,
composition, and surface properties [104]. Although PNs can inhibit the cytotoxicity of the
common molecular adjuvants by encapsulating them, the potential toxicity of the polymeric
nanoparticle by itself is another significant issue that should be considered in using them
as a vaccine delivery system [105]. This might arise from some surfactants which are used
during the chemical synthesis of the nanoparticles [106]. Moreover, probable aggregation of
some nanoparticles after Ag loading might be also effective in inducing cytotoxic response
in-vitro or in-vivo [107]. PN size and surface charge have an important role in passive
diffusion of them towards the lymph nodes and their interaction with APCs such as
internalization by DCs or macrophages [105]. Similar to LNs, the surface charge of the
PNs shows a great effect on the activation of the T helper cell types so that cationic PNs
trigger the Th1-based immune responses, while anionic ones can activate both Th1 and
Th2 immune responses [108].

Commonly used polymeric nanoparticles for such applications are PLGA, poly-ε capro-
lactone (PCL), poly-(γ-glutamic acid) (γ-PGA), polymethylmethacrylate (PMMA), poly-alkyl-
cyanoacrylates, polyvinylpyridine, polygluteraldehyde, polyacrylamides, polyethyleneimine
(PEI), gelatin chitosan, and human serum albumin (HSA) [109]. Similar to liposomes, PNs
are quickly taken up by the RES and Kupffer cells, with similar effects [110]. In one study, a
poly (ethylene oxide)-modified poly (ε-caprolactone) (PEO-PCL) nanoparticulate system was
developed for the encapsulation of saquinavir (SQV), an antiretroviral agent, using a solvent
displacement process. THP-1 cells of the monocyte/macrophage origin demonstrated rapid cel-
lular uptake of the encapsulated PEO-PCL nanoparticles. Intracellular SQV concentrations of
the PEO-PCL-SQV nanoparticles were significantly higher than that of aqueous SQV solutions,
indicating their benefits in viral therapy [111]. As previously mentioned, modified PEG is used
in the final compound of both Pfizer® and Moderna® mRNA-based vaccines. NVX-CoV2373
(Novavax) is a protein-based vaccine containing saponin Matrix-M™ adjuvant [112]. With the
use of polymeric nanoparticles, drug molecules are protected and both therapy and imaging
can be combined [113,114]. Other promising characteristics of the polymeric nanoparticles
such as biocompatibility [115], long-time spatiotemporal stability [116,117], and pathogen-like
characteristics [118] make them a suitable candidate for intranasal vaccine administration [119].

As an example, PLGA nanocapsules have been used for the encapsulation of various
virus antigens or RNA for systemic or local nano-vaccine designing. The safety of poly
lactic-co-glycolic acid (PLGA) as a biodegradable and biocompatible polymer has been
approved by the FDA and European Medicines Agency (EMA) for medicinal applica-
tions [120]. The encapsulation of different biomolecules in PLGA nanoparticles can result
in sustainable release over long time periods [121,122], which is a critical result of mucosal
vaccinations [123]. For instance, PLGA nanoparticles have been used for encapsulation of
the bovine parainfluenza 3 virus (BPI3V) antigen as a novel intranasal nano-pharmaceutical
vaccine. The immune response against BPI3V was compared to the current commercial
version used in dairy calves. Following nanoparticle vaccine administration, the early
induced immune response demonstrated continued growth until the end of the study,
while similar results were not observed in the bare (BPI3V) antigen vaccine groups [123].
The spherical PLGA-NPs (200–300 nm) encapsulated inactivated swine influenza virus
(SIV) H1N2 antigen (KAg) via water/oil/water double emulsion solvent evaporation. The
pigs were infected with a virulent heterologous influenza virus strain after double vacci-
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nation with this preparation. The animals showed significantly milder disease, reduced
lung pathogenicity, and substantial clearance of the virus from the lungs compared to the
non-vaccinated control group [124].

In another study, Okamoto and his co-workers designed a nanoparticle by adding
γ-PGA hydrophobic derivative (a natural polymer) to influenza virus hemagglutinin (HA)
vaccine, in order to amplify the protective immune responses against influenza virus
(H1N1) in the mice. The researchers proved that the PGA-NP HA vaccine was more
effective in protection against different influenza viruses when administered via intranasal
vaccination, compared to subcutaneous injection [125].

Chitosan, a natural polymer composed of randomly distributed β-(1–4)-linked d-
glucosamine, N-acetyl-d-glucosamine, and N-(2-hydroxypropyl) methacrylamide/
N-isopropylacrylamide (HPMA/NIPAM), are two frequently used polymeric nanopar-
ticles for nano-vaccine delivery. Chitosan nanogels have been investigated as intranasal
vaccine nanocarrier against different respiratory viruses, specifically influenza virus, with
enhanced mucosal and systemic immune responses demonstrated in pigs [125,126]. Chi-
tosan nanogels have also shown high levels of systemic and mucosal antibodies, as well
as serum HI titers, in mice [127]. Another polymeric nanocarrier, polyanhydride, has
been used to encapsulate the post-fusion F and G glycoproteins from bovine RSV. This
formulation showed increased mucosal and systemic antiviral immunity in a neonatal calf
model, which can potentially be generalized to humans [128].

3.1.3. Dendrimers

Dendrimers are a group of star-shaped three-dimensional macromolecular networks
with some particular properties that make them a lucrative nanocarrier for anti-viral ther-
apy. It is theorized that their anti-viral effect mechanism is attributable to host cell-virus
interaction disruption during infection, where they form stable complexes with viral struc-
tures or receptors at the surface of cells [125]. In this regard, scientists evaluated the
anti-viral capacity of 3′-sialyllactose- and 6′-sialyllactose-conjugated dendritic polymers
against human and avian influenza viruses. The disaccharide lactose and the tri-saccharides
3SL and 6SL conjugate to primary amines in polyamidoamine (PAMAM) dendrimer back-
bones for the generation of 4 and 8. The results demonstrate that octavalent compounds are
more potent than the tetravalent. Furthermore, human IAV strains can be subdued by (6SL)
and, to a lesser extent, by (3SL)-conjugated PAMAM dendrimers [129]. Researchers also
developed anionic and cationic polyamidoamine with PAMAM on MERS-COV infectious,
with their intervention showing improved antiviral responses [130]. KK-46 dendrimer is a
peptide-based compound used for intracellular delivery of anti-SARS-CoV-2 siRNA for
inhibition of virus replication [131]. Finally, astrodimer sodium is a four-lysine dendrimer
with a poly anionic charge that has been shown to inhibit viral infections in VeroE6 cells
and reduce the replication of virus [132].

3.1.4. Quantum Dots and Inorganic Nanoparticle

Quantum dots (QDs) are semiconductor inorganic nanocrystals with size-dependent
optical and electronic properties, and have been widely used for virus detection and imaging,
given their inherent fluorescent emission [133]. QDs can also be used in viral replication inhi-
bition approaches due to their inherent additional anti-viral capabilities. To this end, Huang
et al. formulated benzoxazine monomer derived carbon dots (BZM-CDs) and demonstrated
their infection-mitigation ability against flaviviruses and non-enveloped viruses, such as
adenovirus-associated viruses. It was found that the viricidal ability of functional BZM-CDs
was related to surface binding of virions, which inhibited the main step of virus and host cell
interaction [134]. The same group has also found that carbon quantum dots (CQDs) with
subtle ligand modifications can play an outstanding role in inhibitory activities against human
coronavirus [135]. 4-aminophenyl boronic acid hydrochloride (4-AB/C-dots) is another QD
compound with very powerful antiviral effects, especially in HSV [136]. In addition to the
success of these QDs in the fabrication and design of the SARS-CoV diagnostic aptamer-based
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chip at 2011 [137], these elements can be used to carry nucleic acid-based antigens, such as
dsDNA (viral vector) and mRNA vaccines.

Other inorganic nanoparticles include mesoporous silica as well as metal oxide NPs
like zirconia (ZrO2) NPs, zinc oxide nanoparticles, titanium dioxide (TiO2) NPs, silver NPS
(Ag-NP), and gold NPs (Au-NP) [138]. Among these options, mesoporous silica (MSN) has
been widely utilized for anti-viral applications. Antiviral drugs are known to be localized
into their target location based on blood circulation, which can cause substantial side effects.
To alleviate this issue, mesoporous silica nanoparticles (SiNPs) are considered an ideal anti-
viral drug delivery nanocarrier for targeting specific viruses through binding to the viral
proteins. Consequently, due to the unique porous structure, SiNPs can inhibit infectious virus
strain replication through either their antiviral characteristics or by providing a sustained
release profile of the antiviral pharmaceutic agents. Therefore, one of the features of SiNPs is
their significant inherent antiviral agent without any selective vaccines or specific drugs for
treatment [139]. Karamov et al. have evaluated the antiviral activity of silica nanoparticles
against respiratory syncytial virus (RSV) and determined their high viricidal capacity. The
researchers demonstrated that non-specific interactions between SiNPs and viruses resulted
in the blocking of virions by SiNPs [140]. In order to study the anti-viral properties of the
other inorganic nanoparticles, Huo et al. evaluated the antiviral effect of ZnO2 nanoparticles
against avian influenza virus [141], with the aim of proving the protecting activity of zirconia
NPs against the highly pathogenic virus without side effects. In this regard, zinc oxide
nanoparticles (ZnO-NPs) were also designed for the inhibition of H1N1 influenza virus. It
was shown that PEGylated ZnO-NPs were antiviral agents, effective in countering H1N1
influenza virus infections [142]. Additionally, the anti-viral properties of titanium dioxide
(TiO2) nanoparticles were assessed, and it was confirmed that they could potentially inactivate
the influenza virus H3N2 by directly destroying the virus particles [143].

While gold nanoparticles are most commonly used for rapid SARS-CoV-2 diagnostic
kits [144,145], the presence of these nanoparticles in the final composition of vaccine en-
hances the adjuvant performance and immune response. Au NPs can be used in intranasal
vaccines and can infiltrate into the lymph nodes, where they trigger a significant antigen-
specific cytotoxic T cell immune response [146]. Tao W et al. demonstrated that Au NPs
formed a new complex with non-native cysteine residue at the C-terminal of influenza M2
via thiolate group ((M2) e-Au NP). The complex was intranasal administered to mice along
with cytosine-guanine rich oligonucleotide (CpG) adjuvant, which triggered a protective
immune response against PR8 influenza A virus [147]. This formulation also showed pro-
tection against A/California/04/2009 (H1N1pdm) pandemic strain, A/Victoria/3/75 (H3N2)
strain, and A/Vietnam/1203/2004 (H5N1) infections [89]. Silver nanoparticles (AgNPs) have
also been used in formulations with the plasmid-encoding hemagglutinin (HA) gene of
avian influenza virus A/Ck/Malaysia/5858/04 (H5N1) (pcDNA3.1/H5), and were shown
to induce both antibody and cell-mediated immune responses with enhanced cytokine
production [148]. Hanako Sekimukai et al. produced a nano-vaccine of Au NP-coated spike
protein and two TLR agonists (LPS and poly:IC) as adjuvants. The results of this study
showed that this vaccine induces a strong antigen-specific IgG response against SARS-CoV-
2, but it is not protective enough to inhibit eosinophils chemotaxis in the lungs [149].

3.1.5. SAPNs and VLPs

Self-assembling protein and peptide nanoparticles (SAPNs) are complexes made from
monomeric protein oligomerization using recombinant technologies and are considered
suitable candidates for pharmaceutical nanocarriers [150]. They can be formed in nano-
diameter ranges and used as nano-vaccine candidates against viruses, making them suitable
for intranasal delivery [150,151]. They can be designed to mimic viruses or bacteria in size
and surface antigenicity and have been reported to elicit CD8+ T cell responses.

In one study, SAPNs were used against the purified coronavirus spike protein in
the Middle East Respiratory Syndrome coronavirus (MERS-CoV) and ferritin [152,153].
In another study, assemblies of four tandem copies of M2e and headless HA proteins of
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influenza virus stabilized by sulfosuccinimidyl, were prepared. Vaccinations with these
nanoparticles in mice induced robust, long-lasting immunity with complete protection
against challenging symptoms induced by divergent influenza A viruses [154].

Further, Linling He et al. decorated a three-part SAPN including RBD, the modified
spike peptide (S2G-HR2) of SARS-CoV-2, and ferritin, using a SpyTag/SpyCatcher system.
This formulation enhanced the neutralizing antibody of SARS-CoV-2 ten times more than
one SANP and other nanoparticles [155]. Kang et al. worked on SANP-based vaccines
using two-part SAPN with modified RBD (mi3), ferritin, and RBD-153-50NP with the
SpyCatcher system, and individual SANPs. Their interventions on animal models (BALB/c)
showed improved thermostability for RBD-153-50NP, compared to other NPs. In fact, the
antibody titer of this compound was much better than other compounds [156]. VLPs are
another type of nano-vaccines that mimic the structure and the antigenic epitopes of their
virus without including genetic material. They also promote efficient phagocytosis by
APCs and immune response activation [157–159]. Today, ‘smart’ VLPs are often created
using immunoinformatic strategies, the identification of epitopes, and artificially and
genetically modifications. Construct design and viral vector engineering usually plays a
very important role in this regard. Combining the VLPs with other nanoparticles is the
basis of an effective vaccine [160]. It has also been reported that intranasal delivery of VLPs
composed of 5 repeats of M2e epitopes (M2e5x) of the influenza virus resulted in strong
humoral and cellular immune responses, therefore providing protection against different
serotypes of influenza viruses [161]. In another effort, self-assembling repeats of the severe
acute respiratory syndrome (SARS) B cell epitope from the C-terminal heptad of the virus’
spike (S) protein resulted in VLPs with the size of 25 nm. It showed the significant antibody
response specific for the coiled-coil epitope of the peptide [123]. Xu et al. designed a
four gene (M, N, S, and E) construct in a pcDNA3.1 mammalian expression vector and
harvested VLP from the resulting supernatant [162]. Similarly, Swann et al. used CMV-
driven mammalian expression vectors for three SARS-CoV-2 genes (E, M and S) and
harvested the VLPs from HEKT293 cell supernatant (154). Further, Lu et al. combined an
mRNA vaccine against RBD (RQ3011-RBD) with three structure VLP (S, E, and M) and
LNPs for comparison. Notably, the NAb titration of mice that received RQ3013-VLP was
significantly higher than the S-specific binding antibody of mice that receiving RQ3012-
spike [163]. A summary of nanoparticle-based vaccine formulations that have been used
against respiratory virus infections are shown in Table 2.
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Table 2. Nanoparticle-based vaccine formulations against respiratory virus infections.

Nanoparticle Size (nm) Virus Antigen/Epitope Adjuvant Status Route of
Administration Ref

INORGANIC NANOPARTICLES

Gold
12 Influenza M2e CpG Preclinical IN [88]

173 ± 2.4 SARS-COV 2 S LPS, P:IC Preclinical SC [145]
POLYMERIC NANOPARTICLES

PLGA
225.4 Bovine parainfluenza 3 virus BPI3V proteins - Preclinical IN [121]

200–300 Swine influenza virus (H1N2) Inactivated virus H1N2 antigen - Preclinical IN

γ-PGA
(Poly-glutamic acid) 100–200 Influenza (H1N1) HA - Preclinical IN [123]

Chitosan

140 Influenza (H1N1) H1N1 antigen - Preclinical IN [125]

300–350 Influenza (H1N1) HA-Split - Preclinical IM [162]

571.7 Swine influenza virus (H1N2) Killed swine influenza antigen - Preclinical IN [124]

200–250 Influenza (H1N1) M2e Heat shock protein 70C Preclinical IN [164]

125 SARS-COV2 S - Preclinical IN [163]

HPMA/NIPAM 12–25 RSV F protein TLR-7/8 agonist Preclinical IN [165]

Polyanhydride 200–800 RSV F and G glycoproteins - Preclinical IM [126]
SELF-ASSEMBLING PROTEINS AND PEPTIDE-BASED NANOPARTICLES

N nucleocapside
protein of RSV

15 RSV RSV phosphoprotein R192G Preclinical IM [166]

15 RSV FsII MontanideTM

Gel 01
Phase I IM [167]

15 Influenza (H1N1) M2e MontanideTM

Gel 01
Phase I,II IN [168]

Ferritin 12.5 Influenza (H1N1) M2e - PhaseII IN [169]

Q11 - Influenza (H1N1) Acid polymerase - PhaseI,II IN [169]

S2G-HR2-RBD SARS-COV 2 RBD-S PhaseII IM [151]

RBD-153-50 50.67±0.11 SARS-COV 2 RBD PhaseII IM [152]

LuS *-S-F ** 50 SARS-COV 2 S-LuS-F SAS *** PhaseII IN [170]
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Table 2. Conts.

Nanoparticle Size (nm) Virus Antigen/Epitope Adjuvant Status Route of
Administration Ref

OTHERS

VLP

80–120 Influenza (H1N1) HA - Preclinical IM [171]

80–120 Influenza (H1N1, H3N2, H5N1 M2e - Preclinical IM [159]

80–120 RSV F protein and G glycoprotein of RSV
and M1 protein of Influenza - Preclinical IM [172]

100 SARS-COV 2 M-N-S-E - Preclinical IN [158]

100 SARS-COV 2 M-S-E - Preclinical IM [160]

ISCOM
(Quillaia saponin,

cholesterol, phospholipid,
and associated antigen)

40 Influenza (H1N1) HA ISCOMATRIX Preclinical IN [173,174]

DLPC liposomes
(Dilauroylphosphatidylcholine) 30–100 Influenza (H1N1) M2, HA, NP MPL and trehalose

6,6′ dimycolate Preclinical IN [175]

Surface-linked
liposomal peptide - Vaccinia virus SARS-CoV N epitopes - Preclinical IM [176]

Cationic lipid/DNA complex - Influenza (H1N1) whole inactivated IAV vaccine
(H1N1, H3N2)

cationic lipid/
DNA complex Preclinical IM [177]

* Aquifex aeolicus lumazine synthase (LuS), ** respiratory syncytial virus fusion (F) *** SAS: Sigma Adjuvant System. Intra-Muscular (IM), Intra-Nasal (IN), Sub-Cutaneous (SC).
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4. Local Airway Delivery of Nanoparticles in VARID

In addition to systemic nano-vaccine delivery, therapeutic medications can be directly
delivered to the lungs via intranasal administration. This method of airway delivery pro-
vides advantages over systemic methods such as targeted delivery, rapid drug absorption
due to the high surface area of the capillary network and extensive vascularization of
lungs, protection of drug molecules from enzymatic degradation due to fewer degradative
enzymes within the lungs, and most importantly, minimally invasive delivery [178,179].
The nano-formulations of drugs may improve the delivery rate into the lungs either as
a colloidal dispersion in a medium using nebulization or as a dried powder using pres-
surized metered-dose inhalers and dry powder inhalers [180]. Dry powders are typically
preferred given the benefits of longer shelf-life, stability, simple administration, and better
aerodynamic properties [181]. The methods of synthesis mainly include co-precipitation,
nanoprecipitation, spray-drying, freeze-drying, and microemulsion [182–186].

4.1. Intranasal Airway Delivery of Therapeutic Nano-Carriers in VARID

Nanotechnology can potentially facilitate the efficacy of advanced therapeutics or vac-
cines by encapsulation inside the micro/nano-carriers to be administered using intranasal
inhalation, as opposed to systematic delivery. In this way, Broichsitter et al. claimed that
the anti-inflammatory corticosteroid Salbutamol could be effectively loaded in a polymeric
nanocarrier composed of poly (vinyl sulfonate-co-vinyl alcohol)- graft-poly (D, L-lactide-
co-glycolide, PLGA) for sustained pulmonary drug release [187]. To further enhance the
selectivity of vaccine/drug delivery, the nanocarrier can be designed to have a targeted and
smart release approach through stimuli-responsive delivery systems. As an example, the
anti-inflammatory therapeutic hydroxy benzyl alcohol was incorporated into polyoxalate,
which responds to hydrogen peroxide. The drug incorporated polymer was then encapsulated
inside PLGA nanoparticles. The results showed that the cleavage of peroxalate ester links
between the drug and the polyoxalate polymer in the presence of hydrogen peroxide releases
the drug to improve selectivity and environmental responsivity in drug delivery [188,189].

Other specific drugs, such as antibiotics can also be encapsulated inside nano-carriers to
enhance the efficacy of therapy against bacterial lung infections through intranasal adminis-
tration [190,191]. In the same way, the co-encapsulation of multiple antimicrobial agents can
potentially improve the efficacy of the VARID treatment process [191]. For example, Quercetin,
an antioxidant and anti-inflammatory drug, was encapsulated inside solid lipid nano-carriers
for airway delivery to the lungs via nebulization [192]. The results of this study clarified
the capability of the nano-carrier use for localized delivery and deposition inside deep lung
areas [192]. Among the various nanocarriers, liposomes have attracted ample attention for
airway therapeutic delivery to the lung. Inhaled liposomal formulations for localized airway
delivery has been widely evaluated for the treatment of lung infection diseases. Currently,
there exist commercially available liposome inhalation products such as Arikayce® (amikacin,
Insmed, Monmouth Junction, NJ, USA) liposome inhalation suspension. In a related study,
a liposomal formulation of ciprofloxacin with the average size of 350 nm was synthesized
using a film-hydration method with phospholipids and cholesterol as precursor materials.
Besides the high drug loading efficiency (ca. 93%), the amount of drug release from the
liposomal formulation was shown to be higher in the simulated lung medium compared to
the saline medium, thus, demonstrating selective drug release in a lung simulating medium.
Furthermore, in vivo studies in rat models revealed the effective lung targeting ability of the
drug-loaded liposome formulation in comparison to the free form of the drug [193].

Airway delivery of therapeutic nucleic acids (DNA and RNA) is also a practical
approach for the treatment of side effect diseases caused by a viral infection. The invasion
of viruses causes several lung associated diseases through their pathogenic genes infection
or genetic malfunction [194]. Therefore, gene therapy is a practical approach against certain
viral infections. It was reported that the delivery of mostly negatively charged nucleic acids
is difficult when they are in a free form [195]. Subsequently, positively charged polymers
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such as chitosan and polyethyleneimine can be utilized for the encapsulation of negatively
charged nucleic acids with the aid of electrostatic attraction forces.

Airway delivery of drug-loaded nano-carriers to the lungs and other parts of the
respiratory tract could be performed by various methods such as nasal or oral spray, nebu-
lization, dry powder inhaler devices or pressurized metered-dose inhalers [196]. Among
these methods, inhaler devices provide some advantages over nebulization, such as higher
efficiency, higher portability, no propellant requirements, simplicity in use, and longer
shelf-life. However, inhaler devices for gene delivery suffer from some disadvantages
such as difficulty in controlling the flow rate, dose uniformity, and reduced control of
environmental effects on formulation integrity. To address these problems, several stud-
ies have been conducted on gene delivery using inhalable micro/nanocarriers systems.
In such a study, a pressurized metered-dose inhaler was utilized for airway delivery of
DNA envelope in which surfactant-coated DNA particles were prepared using the reverse
microemulsion method [197]. In another study, the complex coacervation encapsulation
method was utilized for the preparation of a chitosan nano-carrier loaded with DNA.
Chitosan nanocarriers were later coated with a water-soluble and biodegradable layer of a
hydrofluoroalkane [198]. The results showed that this design could be utilized for gene
delivery to the lungs using pressurized metered-dose inhaler devices at a relatively low
cost with high portability for the potential treatment of VARID diseases such as asthma and
COPD. Further, small interfering RNAs (siRNA) are a relatively new class of therapeutic
agents for the treatment of lung diseases through controlled levels of transcript at specific
molecular targets. Therapeutic siRNAs could be similarly conjugated with positively
charged polymers such as chitosan and polyethyleneimine and delivered locally in the
deep lung area. In this regard, other nonviral polycationic polyplexes have been developed,
and their efficiency for siRNAs delivery to lungs in mice models was evaluated [199,200]).
However, the delivery of these polycationic polyplexes or free siRNA faces drawbacks
such as the possibility of the aerosol degradation by the shear stresses caused by nebulizer
devices. To address this issue and improve the efficacy of delivery, encapsulation of siRNAs
inside biodegradable and muco-adhesive nanocarriers such as chitosan and PLGA, with
high loading efficiencies and high stability in airways and lung mediums, have been tested.
Nano-carriers composed of PLGA for carrying siRNA provides a sustained-release profile
and higher colloidal stabilities compared to polycationic polyplexes, and are favorable for
siRNA local delivery.

In the case of SARS-CoV-2 as a type of VARID, various FDA-approved prescribed
drugs have been evaluated for the treatment of infected patients [201–204]. However,
despite considerable nanotechnology research and patent publications on various aspects
of the coronavirus treatments [205,206], there is only one report on the utilization of
nanotechnology-based design to address SARS-CoV-2 VARID using a localized airway
delivery route. This nano-formulation of pharmaceutics design suggests the application
of a previously developed nano-carrier based on chitosan (Novochizol™) for delivery of
potential anti-COVID-19 drugs to the lungs [207]. Therefore, there is a remarkable capacity
for the development of new drug formulations to prevent and/or treat the newly emerged
SARS-CoV-2 virus, using nanotechnology enhanced airway delivery drugs through mod-
ulation of molecular targets or treatments of VARID. Aerosol liposomal therapy has also
been used for several years with acceptable and safe clinical results [122,125], in terms
of potential SARS-CoV-2 infection prevention and treatment, some reports claimed the
efficiency of inhalation and oral use of a liposomal formulation of lactoferrin [124].

4.2. Intranasal Airway Delivery of Nano-Vaccines in VARID

Intranasal vaccines, in addition to antigen delivery to the epithelial cells and local
APCs at the site of infection, also stimulate NALT and BALT to produce IgA, which blocks
the binding and entry of the virus. The formulation of these types of vaccines is a key point
in the design and manufacturing of vaccines with enhanced stability and efficacy. These
vaccines may be used in single doses due to the strong enrollment of mucosal immunity [58].
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ChAd intranasal vaccine it is formulated with polymeric NPs is a novel inhaled nasal spray
vaccine for inducing powerful mucosal protection against SARS-CoV-2 after just a single
dosage [164]. Examples of intranasal vaccines against VARID are summarized in Table 3.

Figure 3 illustrates the schematic view of different routes of nano-vaccine administra-
tion in respiratory viral infections such as SARS-COv-2. Different nanoparticles containing
genetic materials of the virus interact with different immune cells through NALT/BALT
immune responses.

Table 3. Nano-vaccines developed for intranasal delivery in viral respiratory diseases.

Type of Nanoparticle Main Material Size (nm) Target Respiratory Virus Antigen/Epitope Ref.

Polymeric

PLGA 225 Bovine parainfluenza
3 virus (BPI3V) BPI3V proteins [121]

PLGA 200–300 Swine influenza virus
(H1N2)

Inactivated virus
H1N2 antigen [122]

γ-PGA 100–200 Influenza (H1N1) Hemagglutinin [123]

Chitosan 140 Influenza (H1N1) H1N1 antigen [125]

Chitosan 300–350 Influenza (H1N1) HA-Split [162]

Chitosan 572 Swine influenza virus
(H1N2)

Killed swine
influenza antigen [124]

Chitosan 200–250 Influenza (H1N1) M2e peptide [164]

HPMA/NIPAM 12–25 RSV F protein [165]

PEG 40–500 RSV F protein [202]

SA-CPH copolymer 348–397 RSV Eα peptide [208]

CPH-CPTEG copolymer - RSV F and G
glycoproteins [126]

Self-assembled proteins
and peptides (SANP)

Nucleocapsid (N) protein of RSV 15 RSV RSV phosphoprotein [167]

Nucleocapsid (N) protein of RSV 15 RSV FsII epitope [167]

Nucleocapsid (N) protein of RSV 15 Influenza (H1N1) M2e peptide [168]

Ferritin 12.5 Influenza (H1N1) M2e peptide [169]

Influenza acid polymerase and
the Q11 self-assembly domain - Influenza (H1N1) Acid polymerase [176]

Inorganic gold 12 Influenza (H1N1, H3N2,
H5N1) M2e peptide [88]

VLP
- - Influenza (H1N1) Hemagglutinin [143]

- 80–120 Influenza (H1N1, H3N2,
H5N1) M2e5x peptide [159]

- 60–80 RSV

F protein et G
glycoprotein of

RSV and M1 protein
of Influenza

[171]

Liposome DLPC 30–100 Influenza (H1N1) M2, HA, NP [175]

Liposome, Polymer
10:1:1:1 of DPPC, DPPG,
Cholesterol (Chol), and

DPPE-PEG2000
89 SARS-COV 2 S+ STING agonist [209]

LNP ChAdenovirus (S) - SARS-COV 2 ChAd-S [207]

1,6-bis(p-carboxyphenoxy) hexane (CPH); 1,6-bis-(p-carboxyphenoxy) hexane (CPH) anhydride; 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane
(CPTEG); Dilauroylphosphatidylcholine (DLPC); Matrix Protein 2 (M2e); Poly (D, L-lactide-co-glycolide, (PLGA); Poly-γ-Glutamic Acid
(γ-PGA); Respiratory Syncytial Virus (RSV); Sebacic Anhydride (SA); Virus-Like Particle (VLP).
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cination: The aerosol-based nanoparticles containing the mRNA of virus antigen is transferred 
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through epithelial cell junctions. Nanoparticles are captured by DCs, and alveolar macrophages 
(AMQ) are passed by epithelial junctions and by other APCs, such as B cells. The mRNA of the 
antigen is translated into a specific peptide and presented to immature T cells, activating them and 
B cells. The activated B cells proliferate in the B cell zone to maturity and enter the systemic circula-
tion to reach the inflammation site. IgA and B cells locally differentiate into antibody-secreting 
plasma cells to produce IgA dimers. The IgA dimers are secreted via polymeric Ig receptor (pIgR) 
at the mucosal surface. NALT/BALT immune response induces long-lasting B and T memory cells 
able to activate a rapid memory response [110]. (B) Other types of nano-vaccine injection, such as 
intramuscular, subcutaneous, and intravenous, can induce systemic reactions and IgG production, 
thus inducing lung protection. (C) Some specific nanoparticles induce the immunomodulatory re-
sponses using CPN, which can induce the IgG and specific CTL production against antigens. Sys-
temic injection of nanoparticles can induce iBALT and local responses. 

Localized delivery of the antigens and epitopes to the specific cells in the respiratory 
tract requires the rational design of nano-carriers for targeted delivery in a controlled and 
prolonged manner [84,85]. Nevertheless, some reports indicate that certain nanoparticles 
have intrinsic immunomodulatory activity; these include carbon nanotubes, gold, TiO2, 
and SiO2 nanoparticles [210,211]. Antigens can be loaded using different approaches such 
as physical encapsulation or chemical bond conjugation. For the rational design of local-
ized administered nano-vaccine for the management of respiratory diseases, the following 
criteria should be considered. Firstly, the nano-vaccine size should be similar to the target 
viruses (i.e., 20–200 nm), in order to pass over the biological barriers of the respiratory 
tract. Therefore, the nano-vaccine size distribution should be carefully adjusted. Secondly, 
the nano-vaccine should be positively charged to induce stronger immune responses in 
comparison to the negatively charged nanocarriers [212,213]. Next, the nano-vaccine 
should mimic the virus structure, allowing the antigens/epitopes to be effectively encap-
sulated inside the nano-carrier or immobilized on the nanoparticle surface. In addition, 
the formulation of the nano-vaccine and its route of administration should be carefully 
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Figure 3. Mechanisms of vaccine administration using nanoparticles in VARID. (A) Intranasal vaccination: The aerosol-
based nanoparticles containing the mRNA of virus antigen is transferred through the mucus layer into the nasal epithelial
tissues by micro-fold cells (M cells) or passively through epithelial cell junctions. Nanoparticles are captured by DCs, and
alveolar macrophages (AMQ) are passed by epithelial junctions and by other APCs, such as B cells. The mRNA of the
antigen is translated into a specific peptide and presented to immature T cells, activating them and B cells. The activated B
cells proliferate in the B cell zone to maturity and enter the systemic circulation to reach the inflammation site. IgA and
B cells locally differentiate into antibody-secreting plasma cells to produce IgA dimers. The IgA dimers are secreted via
polymeric Ig receptor (pIgR) at the mucosal surface. NALT/BALT immune response induces long-lasting B and T memory
cells able to activate a rapid memory response [110]. (B) Other types of nano-vaccine injection, such as intramuscular,
subcutaneous, and intravenous, can induce systemic reactions and IgG production, thus inducing lung protection. (C) Some
specific nanoparticles induce the immunomodulatory responses using CPN, which can induce the IgG and specific CTL
production against antigens. Systemic injection of nanoparticles can induce iBALT and local responses.

Localized delivery of the antigens and epitopes to the specific cells in the respiratory
tract requires the rational design of nano-carriers for targeted delivery in a controlled and
prolonged manner [84,85]. Nevertheless, some reports indicate that certain nanoparticles
have intrinsic immunomodulatory activity; these include carbon nanotubes, gold, TiO2,
and SiO2 nanoparticles [210,211]. Antigens can be loaded using different approaches
such as physical encapsulation or chemical bond conjugation. For the rational design
of localized administered nano-vaccine for the management of respiratory diseases, the
following criteria should be considered. Firstly, the nano-vaccine size should be similar
to the target viruses (i.e., 20–200 nm), in order to pass over the biological barriers of
the respiratory tract. Therefore, the nano-vaccine size distribution should be carefully
adjusted. Secondly, the nano-vaccine should be positively charged to induce stronger
immune responses in comparison to the negatively charged nanocarriers [212,213]. Next,
the nano-vaccine should mimic the virus structure, allowing the antigens/epitopes to be
effectively encapsulated inside the nano-carrier or immobilized on the nanoparticle surface.
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In addition, the formulation of the nano-vaccine and its route of administration should be
carefully evaluated. As per previous studies, it has been reported that airway vaccination
through mucosal administration via oral or intranasal routes provide more efficiency in the
management of respiratory viral infections so that strong cellular and humoral immune
responses are induced systemically or at the mucosal surfaces [214,215]. The intranasal
route is preferred as it leads to higher antigen-specific lymphocyte proliferation, induction
of antigen-specific IgA antibodies, and cytokine production [216–220]. Last, the nano-
carrier should not induce any significant cytotoxicity to non-targeted cells. As such, the
carrier material should be biocompatible and biodegradable [201,221].

5. Key Points on Nanomedicine and Nano-Vaccine against COVID-19

COVID-19 vaccine candidates may follow different technology platforms [201,220].
Live attenuated vaccines use live virus with reduced virulence, which can induce a strong
immune response, but may be dangerous for immunosuppressed individuals. Despite a
100-year history of producing vaccines against viral infections using the traditional attenu-
ated live attenuation method, the first vaccines to receive emergency approval for general
use in the United States and other countries were new generations of vaccines, including
mRNA and vector-based vaccines [101]. Viral-vector based vaccines are among the other
type of vaccines using a non-pathogenic viral backbone, such as adenovirus (ChAd, Ad5,
Ad26) to introduce a SARS-CoV-2 gene, such as S, RBD, E, and M, into the host cells. A
preliminary report of purified inactivated vaccine candidate (PiCoVacc) against SARS-
CoV-2 demonstrated complete protection in non-human primates against SARS-CoV-2
strains by eliciting the potent humoral response of SARS-CoV-2-specific neutralizing anti-
bodies. Another study based on the S1 protein nano-vaccines has received FDA approval
for emergency vaccination (Novavax, NVX-CoV2373). This vaccine is composed of VLP
nanocarriers containing recombinant spike protein and the suponin-based adjuvant Matrix-
M. This technology follows the researcher’s patented nano-formulation WO2015042373,
in which VLPs containing at least one trimer of S protein induced neutralizing antibody
response in mice and transgenic cattle [221].

Despite the overall success of mRNA vaccines in inducing a proper immune response,
nano-formulation of these subcategories via encapsulation in positively charged nanocar-
riers, can potentially enhance the stability and reduce the delivery challenges of mRNA
or DNA across the cell membrane or even through the cell nucleus. In this regard, the
patent application (WO2017070626) by Moderna Inc. disclosed mRNA vaccines consist
of mRNAs encoding viral antigenic full-length S, S1, or S2 subunits from SARS-CoV and
MERS-CoV viruses, formulated in cationic lipid nanoparticles. The mice vaccinated with
mRNA encoding full-length S protein elicited much higher neutralizing antibody titers
when compared to the S2 subunit. In this study, New Zealand white rabbits immunized
with the MERS-CoV mRNA vaccine, encoding the full-length S protein, demonstrated a
90% reduction in viral load with significant levels of neutralizing antibody against MERS-
CoV. On February 2020, Moderna announced the release of the first batch of mRNA-1273
against SARS-CoV-2 for use in humans.

The most advanced candidates that have recently shifted into clinical development
include mRNA-1273 from Moderna (LNP-encapsulated mRNA vaccine encoding S protein),
Ad5-nCoV from CanSino Biologicals (Adenovirus type 5 vector that expresses S protein),
INO-4800 from Inovio (DNA plasmid encoding S protein delivered by electroporation), and
LV-SMENP-DC (DCs modified with a lentiviral vector expressing synthetic minigene based on
domains of selected viral proteins; administered with antigen-specific CTLs), and pathogen-
specific APC (artificial APCs modified with a lentiviral vector expressing synthetic minigene
based on domains of selected viral proteins) from Shenzhen Geno-Immune Medical Institute.
The clinical trial details of these candidates are summarized in Table 4 [222].
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Table 4. Clinical phase SARS-CoV-2 vaccines.

Candidate Vaccine Characteristics Nano-Composition Developer-Country Status

mRNA-1273 mRNA vaccine encoding
S protein

SM-102, PEG2000,
Tromethamine, Moderna/USA FDA- EMA Approved

BNT162b2 mRNA vaccine encoding
S protein

ALC-0315, ALC-0159,
1,2-distearoyl-sn-glycero-

3-phosphocholine

Pfizer-BioNtech/USA-
Germany FDA-EMA Approved

Ad5-nCoV Adenovirus type 5 vector that
expresses S protein LNP CanSino

Biologicals/China China-Approved

AZD1222 (Covishield) ChAdOx1-S AstraZenca/UK-Sweden FDA-EMA Approved

Ad26.COV2. S Adenovirus type 26 vector that
expresses S protein

Johnson & Johnson
(Janssen) FDA-Approved

INO-4800
DNA plasmid encoding S

protein delivered by
electroporation

Inovio Pharmaceuticals Phase I (NCT04336410)

LV-SMENP-DC

DCs modified with
a lentiviral vector expressing
synthetic minigene based on

domains of selected viral
proteins; administered with

antigen specific CTLs

Shenzhen Geno-Immune
Medical Institute Phase I (NCT04276896)

Pathogen-specific aAPC

aAPCs modified with
a lentiviral vector expressing
synthetic minigene based on

domains of
selected viral proteins

Shenzhen Geno-Immune
Medical Institute Phase I (NCT04299724)

aAPC: artificial antigen-presenting cell; CTL: cytotoxic T lymphocyte; DC: dendritic cell; LNP: lipid nanoparticle; S protein: SARS-CoV-2
spike protein [222].

6. Conclusions and Future Perspectives

Engineered nanocarriers have demonstrated their outstanding role in efficient drug
and vaccine delivery against viral diseases. Various nanostructures have been proposed
for use as carriers for antiviral deposition. Depending on the target tissue, these structures
can be chemically modified to enhance conventional antiviral properties by providing
controlled release and drug protection with the aid of nano systems. In the case of vaccine
production, the use of nano-formulations as carriers of adjuvant therapies can further
improve the shortcomings of conventional vaccines by enhancing antigen stability and
targeted delivery properties. In relation to the specific nano-vaccines used for immunizing
against respiratory viruses, local administration through the nasal route generates efficient
mucosal or systemic immunity. The immunogenicity of these nano-formulated vaccines
can be enhanced through facile recognition and endocytosis by the APCs.

As a perspective view of the vaccines and nano-vaccines development against the
COVID-19 pandemic, the structural proteins of SARS-CoV-2 make attractive candidates
and should be considered as necessary elements for the cellular infection and virion
assembly [223]. As the global population faces compounding challenges involving the
COVID-19 pandemic, an effective vaccine plays an undeniably important role in controlling
the spread of SARS-CoV-2. However, more comprehensive information is needed about
the virus, as well as around the specific immune response that it elicits in the human body.
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Abbreviations

ADE antibody-dependent enhancement
APC antigen-presenting cell
CpG cytosine-guanine rich oligonucleotide
DC dendritic cell
EMA European Medicines Agency
FDA Food and Drug Administration
hACE2 human angiotensin converter enzyme-2
HPMA/NIPAM N-(2-hydroxypropyl) methacrylamide/N-isopropylacrylamide
IEDB Immune Epitope Database and Analysis Resource
IFN-γ interferon-g
IL interleukin
MERS-CoV Middle East respiratory syndrome coronavirus
NALT nasal-associated lymphoid tissue
NLR nucleotide-binding domain and leucine-rich repeat-containing
NLRP3 NLR Family Pyrin Domain Containing 3
PapMV papaya mosaic virus
PEG polyethylene glycol
PGA poly-glutamic acid
pIgR polymeric Ig receptor
PLGA poly lactic-co-glycolic acid
RBD receptor-binding domain
ROS reactive oxygen species
RSV respiratory syncytial virus
SAPNs self-assembling protein and peptide nanoparticles
SARS severe acute respiratory syndrome
VLPs virus-like particles
CMV Cytomegalovirus
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