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Numerical Investigation of Novel Microwave Applicators Based 
on Zero-Order Mode Resonance for Hyperthermia Treatment of 

Cancer 

David Vrbaa*, Jan Vrbaa, Dario B. Rodriguesb, Paul Staufferb 

aFaculty of Biomedical Engineering, Czech Technical University in Prague, Zikova 4, 166 36 Prague, Czech Republic 
b Radiation Oncology Dept., Thomas Jefferson University, Bodine Cancer Center 111 S. 11th. St.Philadelphia PA 19107, USA 

 

Abstract 

This paper characterizes three novel microwave applicators based on zero-order mode resonators for use in hyperthermia 

treatment of cancer. The radiation patterns are studied with numerical simulations in muscle tissue-equivalent model at 

434 MHz. The relative performance of the applicators is compared in terms of reflection coefficient, current distribution, 

power deposition (SAR) pattern, effective field size in 2D and 3D tissue volumes, and penetration depth. One particular 

configuration generated the most uniform SAR pattern, with 25% SAR covering 84 % of the treatment volume extending 

to 1 cm depth under the aperture, while remaining above 58% coverage as deep as 3 cm under the aperture. 

Recommendations are made to further optimize this structure.  

 
Keywords: Microwave hyperthermia, zero-order mode resonator, metamaterial applicator, power deposition. 

1. Introduction 

Metamaterial (MTM) Zeroth-Order mode resonators (ZOR) have been recently introduced and shown 

potential to improve thermotherapy of cancer [1]. These can be integrated in antenna applicators by improving 

the homogeneity of electromagnetic (EM) power deposition and the depth of EM wave penetration in tissue 

under the antenna aperture. With proper assembly, ZOR resonators can improve the homogeneity of heating 

of large areas or conversely localize EM power within well-defined small regions [2]. In addition, ZOR 

resonators allowthe creation of electrically small applicators that work without filling its structure with high 

dielectric water typical of current clinical applicators [REF]. The resultant thinner structure could facilitate the 

delivery of microwave hyperthermia treatments simultaneous with 3D monitoring of tissue temperature 

distribution using Magnetic Resonance (MR) thermal imaging which is subject to artefacts from circulating 

water [REF]. 

A major advantage of the ZOR phenomenon is that it enables the development of a special kind of 

resonator whose physical length is completely independent of the classical resonance condition (wavelength), 

as described in [3]. The phase constant 𝛽 = 0 (x axis of Fig. 1a) in this case implies infinite guided wavelength 

𝜆𝑔 = 2𝜋/|𝛽| along the MTM structure as well as zero phase shift (𝜃𝑚 = −  𝛽𝑙 = 0) [3]. On the dispersion 

diagram of Fig. 1a, one can observe the positive (classical /2,  and 3/2) resonances f1, f2 and f3 and 

negative resonances f-1, f-2, f-3, which correspond to the modes m = -1, m = -2 and m = -3 in Fig. 1b, 

respectively. Since the Zeroth Order Mode is not dependent on the classical resonant condition of /2 
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multiplies, this allows us to design the applicator with dimensions matching the clinical need. Moreover, as a 

result of the spatial arrangement of MTM resonators, the radiation pattern approximates an almost perfect 

electromagnetic plane wave as it emerges from the aperture and radiates into tissue. This improvement in 

wave propagation produces the advantage of optimizing homogeneity of power deposition under the aperture 

with corresponding improvement in uniformity of the temperature distribution throughout the target volume.  

In this paper, relevant properties of three novel microwave applicators based on ZOR phenomenon are 

investigated for use in hyperthermia cancer treatment. Each applicator is modeled using an established 

commercial numerical simulator, COMSOL Multiphysics (COMSOL AB, Stockholm, Sweden). Relative 

performance of the three applicators is compared with respect to the homogeneity of power deposition 

virtually induced in numerical muscle tissue-equivalent model. 

 

Fig. 1. Relation of the transmission line (TL) and resonant frequencies f of the corresponding resonator (a). Voltage distribution in the 

case of open-circuited TL of length ℓ (b). Mode 𝑚 = 0 represents the ZOR with infinite guided wavelength. 

2. Applicator design 

Three novel MTM applicators were designed for hyperthermia treatments at 434 MHz based on similar ZOR 

working principles. By exciting the zero-order mode, current density vectors are generated in the tissue facing 

inductive components of the applicators with approximately the same magnitude and phase. The radiated 

contributions from all inductive parts of the applicator are constructively added as they exit the front aperture 

of the applicator and combine in phase in tissue. This allows the Huygens principle to be applied to describe 

the resulting EM field distribution in tissue.  

The first step in the applicator design is to estimate preliminary values of all equivalent circuit elements of a 

single MTM unit cell [3-4]. This includes initial estimates for the inductive radiating element dimensions, 

tuning capacitance, and dielectric constant of the substrate. Each unit cell consists of an artificially inserted 

series interdigital capacitor CL and parallel shunt inductor LL (subscript L denotes left-handed properties), 

which are evaluated according to empirical approximate relations. The value of CL (pF) is calculated 

according to [5] by using the following equations 
 

𝐶L =
𝜖r+1

𝑤p
𝑙[(𝑛 − 3)𝐴1 + 𝐴2] (1) 
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where n is a number of interdigital arms, l is the length of fingers, wp is width of finger, h is the height above 

the ground plane and s is width of the gap between fingers. 

 Assuming a wire construction, the inductance of LL can be calculated according to [6] as follows: 

 

𝐿L =
𝜇0

2𝜋
[𝑙ind𝑙𝑛 (

𝑙ind+√𝑟2+𝑙ind
2

𝑟
) +

3

2
(𝑟 − √𝑟2 + 𝑙ind

2 )] (2) 

where lind is length of inductive parts of structures (denoted in yellow in Fig. 6) and r is its radius. For cases 

where LL is represented as a microstrip line, it can be determined using: 

 

𝐿L = 𝐿S = 0.2𝑙ind (𝑙𝑜𝑔
2𝑙ind

𝑤s+𝑡
) + 0.5 + 0.2235 (

𝑤s+𝑡

𝑙ind
)  

where ws is the width of the strip and t is thickness of the metal. (3) 

The final applicator design is a result of a parametric optimization using numerical simulations. The critical 

inductive elements that generate the radiating wave are highlighted in yellow in Figs. 2-4.The simulations 

were performed using a very fine mesh, where the maximum element size (the edge of the tetrahedral) was set 

to 7 mm which corresponds approximately to 1/100 λ0, where λ0 is the free space wavelength for 434 MHz. 

Computational time was about 20 minutes for one frequency point with a PC equipped with CPU Intel 6-core 

i7-3930K and 48? Gb of RAM. 

The first proposed applicator (applicator 1) is based on micro-coplanar technology with four MTM unit 

cells (Fig. 2). The micro-coplanar transmission line consists of widely spaced signal and referred ground 

conductors. This design includes a ground plane under the substrate which suppresses backside radiation from 

the applicator. More detailed description of a similar structure developed for telecommunication purposes can 

be found in ref. [7]. The applicator is designed on a FR4 substrate with height h = 5 mm and relative 

permittivity r = 4.3. The interdigital capacitor consists of 10 fingers with length Lf = 18 mm, where the width 

(w) of each finger and the gap (g) between fingers is the same: w = g = 1 mm. The same capacitor dimensions 

are used for all three applicators proposed in this work. The length of inductive components (denoted in 

yellow in Fig. 2) is Lind = 50 mm. The interdigital capacitor is connected to the referred ground pad by four 

inductive air-bridges. By using the zeroth-order mode, currents flowing through the air bridges are 

approximately the same amplitude and phase and thus contribute significantly to the overall radiation. The 

micro-coplanar transmission line can be implemented with or without a ground plane. However, hyperthermia 

applicators must be shielded using a ground plane to suppress radiation emitted in the opposite direction of 

targeted human tissues.  

Antennas based on MTM theory show a particular number of resonances, e.g., antennas that consist of 4 

MTM cells have 9 resonances [3]. One of the main design goals for hyperthermia applicators is to achieve the 

best homogeneity of absorbed power in the treated tissue. Thus, it is important to excite just ZOR, since this 

condition ensures almost equal distribution of current, with equal phase and magnitude, to all MTM unit cells. 

Consequently, the contributions from each radiating element will contribute in the same proportion to the total 

radiated EM field. Excitation of the ZOR mode can be verified via the current density distribution on the 

radiating elements as shown in Fig. 3. 
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Fig. 2. Aperture view of applicator 1. The yellow out–of-plane inductive jumpers (air bridges) connect the interdigital capacitors with 

parallel referred ground structure. The air bridges have a height of 10 mm above the substrate, which extends 5 mm above the ground 

plane. Overall dimensions of the structure are 190 x 120 x 15.1 mm3. The red arrow shows the direction of propagation into tissue. 

a) b)  c) 

Fig. 3. Characterization of electric currents in applicator 1. a) Surface current density, at some time instant, represented by yellow arrows 

on the surface of metallic conductors in applicator 1. The currents are exported from COMSOL with arrows pointing in the direction of 

current flow and arrowhead size linearly proportional to the magnitude of current density. b) Detail of one air bridge radiator showing 

nearly uniform distribution of current along the whole length of a single air bridge. c) Detail of interdigital capacitor where currents 

flowing from left to right are currents on the interdigital capacitors and the currents flowing from right to left are the currents on the 

underlying ground plane. For improved visualization, the interdigital capacitor currents are magnified three fold relative to the inductive 

radiating elements. 

 

The second proposed applicator (applicator 2) is shown in Fig. 4 and is based on microstrip technology. 

This design allows the development of very thin and low profile applicators, which are more convenient for 

some clinical sites. The antenna structure consists of 4 inductive strip radiators (Lind = 41 mm) that extend 

from the four finger interdigital capacitors (Lf = 18 mm) to the grounded capacitive plates with dimensions of 

16 x 13 mm2. The separation of radiators corresponds to the length of the unit cell and is L = 22 mm. The 

input impedance of this structure at the operating frequency 434 MHz is approximately 5Ω [8, 9]. The 

resulting current density along the inductive components of applicator 2 is relatively uniform as shown in 

Fig. 5.  

Fig. 4. Aperture view of applicator 2. This applicator is based on microstrip technology and its dimensions are 110 x 70 mm2, with a 

substrate thickness of 1.5 mm. The red arrow shows the direction of propagation into tissue. 

 

a) b) c) 

c) 

b) 

c) 

b) 
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Fig. 5. Characterization of electric currents in applicator 2. a) Surface current density, at some time instant, represented by yellow arrows 

on the surface of metallic parts of applicator 2. b) Currents flowing from bottom to top occur in the antenna structure, while currents with 

the opposite orientation occur in the ground plane underlying the 1.5 mm thick substrate. c) Detail of one interdigital capacitor, where 

currents flowing from right to left  occur in the interdigital capacitors and the current flowing from left to right occur in the ground plane. 

The third analyzed applicator (applicator 3) is shown in Fig. 6 and was already proposed in ref. [1], where 

its radiation patterns were only briefly characterized. This applicator is also based on microstrip technology, 

but differs from applicator 2 since the space between the top metallic layer and ground plane is composed of 

two layers: FR4 substrate of height hFR4 = 1.5 mm and a layer of air with height hair = 68.5 mm. In this design, 

the 5 vertical inductive elements (highlighted in yellow in Fig. 6) connect the upper FR4 distribution network 

to the lower FR4 ground plane and are responsible for generating the dominant radiation. Due to the 

appropriate tuning of interspersed inductive and capacitive elements, the electric currents in all five vertical 

elements have equal phase. This type of applicator is fed in the middle to generate symmetry in the induced 

power deposition pattern. Applicator 3 is shielded around all sides except the one which faces the patient. The 

bottom side of the applicator is shielded by a ground plane which is attached to the grounded sides, back and 

top shielding at distances of 1.5, 7 and 2.5 cm to the metallic motive, respectively. Similarly to the other two 

applicators, the surface current density along the inductive elements of applicator 3 shows SAR uniformity 

and confirms zero-order mode resonance of the structure (Fig. 7). In this type of structure it is important to 

maintain the same phase in all feed lines, since these contribute to the overall radiation pattern in addition to 

the five vertical conductors. 

Fig.6. Applicator 3 design based on microstrip multi-layer dielectric/air substrate technology. Applicator dimensions are 

277 x 98 x 70 mm3 [1]. The red arrow shows the direction of propagation into the treated region.  

b) 
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a) b) 

Fig. 7. Characterization of electric currents in applicator 3. a) Surface current density, at some time instant, represented by yellow 

arrows on the surface of the metallic conductors. b) Detail of the feeding part and the middle vertical part showing uniform distribution of 

current.   

Fig. 8. Frequency dependence of reflection coefficients for the 3 applicators under analysis. 

 The magnitudes of the reflection coefficient are presented in Fig. 8 as a function of frequency for all three 

applicators. At the desired operating frequency 434 MHz, the reflection coefficients are -18 dB, -17 dB and -

6 dB for applicators 1, 2 and 3, respectively. The bandwidths, defined at -10dB, are 12 MHz and 15 MHz, for 

applicators 1 and 2, respectively.  

 

3. Results 

In the numerical model, all three applicators radiate into the homogeneous muscle tissue-equivalent model 

through a layer of deionized water of 1 cm thickness representing a water bolus. While not necessary for 

impedance matching or for miniaturization of applicator dimensions, this water bolus is critical to cool the 

surface of the treated tissue volume during hyperthermia treatment. Dielectric properties of the materials 

considered in the numerical models are listed in Table I. 

Figs. 9-11 show the s numerical simulations of power deposition distributions induced in muscle 1 cm 

under the tissue surface. Plotted contours circumscribe the regions of 75, 50 and 25 percent of maximum 

absorbed power in tissue at that depth. The symmetry and homogeneity of SAR depend on the distribution of 

current on the applicator structures. The current distribution, and thus power deposition pattern, is symmetric 

only in applicator 3. In applicators 1 and 2, the symmetry of power deposition is influenced by both a non-

symmetric location of the feed point and spatial orientation of the applicator layout. 

 

Table I 

Dielectric Properties (@ 434 MHz) of Materials Considered in Numerical Models 

 Material 
FR4 

[12] 

De-ionized water 

(20°C) [13] 
Muscle tissue [11] 

Relative permittivity εr [-]  4.2 80.1 57 

Equivalent conductivity σe [S / m] 0.0016 0.047 0.81 

 

Tables II-IV list the effective field size (EFS) for three different depths in muscle tissue-equivalent model. 
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EFS (Radiating Element) is defined as the ratio of area enclosed by X % of maximum tissue SAR at different 

depths in muscle divided by the area of radiating element. EFS (Applicator) is the ratio of area enclosed by 

X % SAR divided by the total ground plane area. EFS is numerically estimated for three different levels of 

SAR, namely X = 25 %, 50 % and 75 %. All SAR levels are normalized to the maximum SAR in the 1 cm 

deep plane [10]. Due to attenuation of the EM wave in biological tissue, only the two lower levels of SAR are 

given in the 2 cm deep plane and just the 25 % of SAR maximum contour results in the 3 cm deep plane. For 

applicators 1 and 2, which are designed on printed circuit board, the applicator area equal the areas of their 

ground planes. For applicator 3, dimensions of the radiating structure include the surrounding substrate out to 

the shielded metal enclosure. For completeness, the EFS related to the just the area of radiating elements is 

added as well. 
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Fig. 9. Power deposition pattern 1 cm deep in muscle 

model using applicator 1. 

 

 
Fig. 10. Power deposition pattern 1 cm deep in muscle  

model using applicator 2. 

 

 

 

 

 
Fig. 11. Power deposition pattern 1 cm deep in muscle 
model using applicator 3. 

 

 

 

Table II  

APPLICATOR 1 CHARACTERIZATION: EFFECTIVE FIELD SIZE AND 

PENETRATION DEPTH  

Penetration 

depth in 

muscle tissue 

(cm) 

SAR 

Level 

(%) 

Irradiated 

area > 

SAR% 

(cm2) 

EFS 

(Radiating 

element) 

(%) 

EFS 

(Applicator)  

(%) 

1 75 46 45 20 

  50 91 89 40 

  25 160 156 70 

2 50 37 36 16 

  25 107 104 47 

3 25 58 56 25 

Table III  

APPLICATOR 2 CHARACTERIZATION: EFFECTIVE FIELD SIZE AND 

PENETRATION DEPTH  
Penetration 

depth in 

muscle tissue 

(cm) 

SAR 

Level 

(%) 

Irradiated 

area > 

SAR% 

(cm2) 

EFS 

(Radiating 

element) 

(%) 

EFS 

(Applicator)  

(%) 

1 75 16 33 24 

 
50 37 77 55 

 
25 64 133 95 

2 50 1 2 1 

 
25 31 64 46 

3 25 3 6 4 

Table IV 

APPLICATOR 3 CHARACTERIZATION: EFFECTIVE FIELD SIZE AND 

PENETRATION DEPTH 

Penetration 

depth in 

muscle tissue 

(cm) 

SAR 

Level  

(%) 

Irradiated 

area > 

SAR% 

(cm2) 

EFS 

(Radiating 

element) 

(%) 

EFS 

(Applicator) 

(%) 

1 75 158 68 46 

 

50 216 94 62 

 

25 280 121 81 

2 50 140 61 40 

 

25 232 100 67 

3 25 172 74 50 
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Fig. 12. Dependence of EFS (Applicator) of proposed applicators in 2D cross sectional planes 1, 2, and 3 cm deep in 

muscle model for 25% SAR level. 

 

Similar to the evaluation of EFS in 2D cross sectional planes at depth, Tables V-VII describe the 3D 

volumes irradiated by the three applicators. The EFS (Radiating Element) is defined as the ratio of volume 

enclosed by X % SAR contour times 1, 2 or 3 cm depth in muscle divided by the volume of radiating element 

times depth.  EFS (Applicator) is the ratio of volume enclosed by X % SAR divided by the applicator aperture 

area times depth. The irradiated volume is normalized to the volume of muscle corresponding to the aperture 

face area multiplied by the target depth of 1, 2 or 3 cm respectively. For these calculations, SAR is normalized 

to the maximum power deposition value within the irradiated volume.  
 

TABLE V 

APPLICATOR 1 CHARACTERIZATION: DEPENDENCE OF 

EFFECTIVE FIELD SIZE AND PENETRATION DEPTH 

Penetration 

depth in 

muscle 
tissue[cm] 

SAR 

Level 
(%) 

Volume 

(cm3) 

EFS 

(Radiating 

Element) 
(%) 

EFS 
(Applicator) 

(%) 

1 75 90 88 39 

 
50 116 114 51 

 
25 192 188 84 

2 50 177 87 39 

 
25 324 159 71 

3 25 400 131 58 

 

  

TABLE VI 

APPLICATOR 2 CHARACTERIZATION: DEPENDENCE OF 

EFFECTIVE FIELD SIZE AND PENETRATION DEPTH  

Penetration 
depth in 

muscle 

tissue[cm] 

SAR 

Level 
(%) 

Volume 

(cm3) 

EFS 
(Radiating 

Element) 

(%) 

EFS 

(Applicator) 
(%) 

1 75 37 77 55 

 
50 54 113 81 

 
25 78 163 116 

2 50 69 72 51 

 
25 122 127 91 

3 25 137 95 68 
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Fig. 13. Dependence of EFS (25% SAR level) on 3D 

volumes irradiated by proposed applicators  

 

4. Discussion 

Three novel ZOR applicators were investigated in order to demonstrate their potential for the field of 

microwave hyperthermia. Figs. 12 and 13 show the trend of EFS decreasing with depth of penetration. These 

plots show the 25 % of maximum SAR which is generally considered to be the minimum power deposition 

required for effective thermal treatment of tissue. For most uniform heating, we aim for similar EFS at all 

depths rather than significant slope in these curves. In this work, applicator 2 had the steepest downward 

trend, likely caused by the low-profile thin substrate structure which has currents on the thin ground plane 

running in the opposite direction of currents on the inductive radiators. Comparing applicators 1 and 3, it is 

readily apparent that applicator 3 has the flatter slope. For applicator 3, the cross sectional area EFS declines 

from 81 % to 50 % between the 1 and 3 cm deep planes, and the volume EFS reduces only from 78 % to 63 % 

in the 1 and 3 cm deep volumes.  By comparison, the area EFS of applicator 1 declines from 70 % to 25 % 

between the 1 cm and 3 cm deep planes in muscle, and the volume EFS from 84 % to 58 %.  Evaluating the 

applicators from the perspective of SAR uniformity, the applicator 3 generate the most uniform heatin, filling 

the volume under the aperture to the greatest depth. This is due to position of the feeding point, which lies on 

the symmetry plane of the applicator. The other two applicators do not possess such symmetry and therefore 

their SAR patterns are asymmetric. In the future, the geometries of these two applicators could be modified to 

provide a symmetric feed location that better exploits their potential. 

Although applicator 3 provides the best homogeneity, applicator 1 is thinner and can be easily fabricated 

on a flexible PCB, which facilitates treatment of tissues located over contoured anatomy. On the other hand, 

applicator 2 is easier to design and fabricate than the other two, and the EFS is still high in the 1 and 2 cm 

deep planes, which may be more suitable for superficial hyperthermia. 

SAR patterns of three new applicators were evaluated in homogeneous muscle tissue models. This is a 

standard procedure in the field of microwave hyperthermia since the SAR patterns of new applicators are 

readily compared with SAR patterns of previous applicators also calculated in homogenous muscle load 

[REF]. Interpretation of SAR patterns in heterogeneous tissue loads is more difficult due to the high number 

of degrees of freedom of load anatomy and physiology. Future studies will be implemented in realistic 3D 

tissue models that include skin, fat, muscle and bone models. Based on EM field theory we can expect that 

microwave penetration will be even better in subsequent studies, since fat tissues present lower loss than 

TABLE VII 

APPLICATOR 3 CHARACTERIZATION: DEPENDENCE OF 

EFFECTIVE FIELD SIZE AND PENETRATION DEPTH 

Penetration 

depth in 
muscle 

tissue[cm] 

SAR 

Level 
(%) 

Volume 
(cm3) 

EFS 

(Radiating 
Element) 

(%) 

EFS 

(Applicator) 

(%) 

1 75 135 58 39 

 
50 203 88 30 

 
25 272 118 78 

2 50 495 70 46 

 
25 322 107 71 

3 25 650 94 63 
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muscle, and thus the presented patterns represent worst case penetration. 

 

5. Conclusions 

In this paper, three different novel applicators based on ZOR principle were introduced and characterized 

for potential use in microwave hyperthermia treatment of cancer. The uniformity of power deposition in 

muscle tissue-equivalent numerical model was assessed for all three designs and relative performance of the 

applicators was compared in terms of S11, uniformity and extent of SAR, as well as current distributions. The 

relative quality of heating of these applicators was assessed from SAR patterns in terms of effective field size 

in 2D cross sections and 3D tissue volumes under the aperture. This investigation demonstrates that 

applicators 1 and 3 have relatively slow change of EFS at different depths in tissue and thus appear suitable 

for well controlled deep heating of tissue under the MTM applicators. The ultimate choice of applicator for 

use in microwave hyperthermia will consider ease of design and effective penetration depth, where some 

applicators might be more suitable for deep targets (applicator 1 and 3) and others for superficial targets 

(applicator 2) such as chest wall recurrence of breast cancer.  
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