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Developing more reliable predictors of seizure outcome following temporal lobe surgery for intractable epilepsy
is an important clinical goal. In this context, we investigatedpatientswith refractory temporal lobe epilepsy (TLE)
before and after temporal resection. In detail, we explored gray matter (GM) volume change in relation with
seizure outcome, using a voxel-based morphometry (VBM) approach. To do so, this study was divided into
two parts. The first one involved group analysis of differences in regional GM volume between the groups
(good outcome (GO), e.g., no seizures after surgery; poor outcome (PO), e.g., persistent postoperative seizures;
and controls, N = 24 in each group), pre- and post-surgery. The second part of the study focused on pre-
surgical data only (N=61), determiningwhether the degree of GMabnormalities can predict surgical outcomes.
For this second step, GM abnormalities were identified, within each lobe, in each patientwhen comparedwith an
ad hoc sample of age-matched controls. For thefirst analysis, the results showed larger GMatrophy,mostly in the
frontal lobe, in PO patients, relative to both GO patients and controls, pre-surgery. When comparing pre-to-post
changes,we found relative GMgains in the GObut not in the PO patients,mostly in the non-resected hemisphere.
For the second analysis, only the frontal lobe displayed reliable prediction of seizure outcome. 81% of the patients
showing pre-surgical increased GM volume in the frontal lobe became seizure free, post-surgery; while 77% of
the patients with pre-surgical reduced frontal GM volume had refractory seizures, post-surgery. A regression
analysis revealed that the proportion of voxelswith reduced frontal GM volumewas a significant predictor of sei-
zure outcome (p= 0.014). Importantly, having less than 1% of the frontal voxels with GM atrophy increased the
likelihood of being seizure-free, post-surgery, by seven times. Overall, our results suggest that using pre-surgical
GM abnormalities within the frontal lobe is a reliable predictor of seizure outcome post-surgery in TLE. We be-
lieve that this frontal GM atrophy captures seizure burden outside the pre-existing ictal temporal lobe, reflecting
either the development of epileptogenesis or the loss of a protective, adaptive force helping to control or limit
seizures. This study provides evidence of the potential of VBM-based approaches to predict surgical outcomes
in refractory TLE candidates.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Temporal lobe epilepsy (TLE) is themost frequent type of refractory
epilepsy, which commonly leads to surgical treatment (Engel, 2001).
However, the successful rate of brain surgery to obtain complete seizure
freedom is only about 66% in this population at 1 year (Spencer and
Huh, 2008; Tellez-Zenteno et al., 2005), dropping to less than 50%
after 10 years (de Tisi et al., 2011). It has been suggested that poor sei-
zure control is the result ofmultiple factors, including insufficient resec-
tion, or the existence of other extra-temporal ictal generators likely

stemming from occult or unknown pathology elsewhere in the brain.
Therefore, developing more reliable predictors of clinical (seizure) out-
come following epilepsy brain surgery is an elusive, but critical contin-
uous clinical goal. To date, the most commonly used predictors are
clinical characteristics such as the presence of a lesion such as ictal me-
sial temporal sclerosis (MTS) or the size of the resection (see review by
Zhang et al., 2013). Nevertheless, in the last years, new promising pre-
dictors of clinical outcomes in refractory TLE have been described
based on pre-surgery MRI measures. For instance, using resting-state
functional connectivity, Xu et al. (2014) found that compared with
poor outcomes, a successful surgical outcome in TLE was associated
with larger interhemispheric homotopic functional connectivity (FC)
differences, pre-surgery. Using structural imaging techniques, recurrent
post-surgical seizures have been associated with atrophy in multiple
areas such as the thalamus (Keller et al., 2015a; Keller et al., 2015b),
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temporopolar, and insular cortices, (Bernhardt et al., 2010; Bernhardt
et al., 2015), along with abnormal white matter tracts emerging from
the thalamus (Keller et al., 2015b). In a study using voxel-based mor-
phometry (VBM), Yasuda et al. (2010) found that poor seizure outcome
(PO) was associated with a larger pattern of preoperative gray matter
(GM) atrophy than good seizure outcome (GO). Importantly, these au-
thors also studied GM change post-surgery, and observed that GO pa-
tients displayed an increase in GM postoperatively, compared to PO
patients.

Such results suggest that protective neuroplastic mechanisms, a
form of functional or structural reserve, may exist in patients that will
become seizure free post-surgery. While these results are promising
both for understanding the basis of a positive response to the surgery
and improving the prediction of surgical outcome, to date, they have
not yet been reproduced nor tested at the individual level, which is
the major limitation in terms of clinical application.

Accordingly, the current investigationwas undertaken to test the as-
sociation between GM volume and seizure outcome following proce-
dures such as standard anterior temporal lobectomy (ATL) or laser
ablation of the MTS, all toward the goal of advancing our ability to use
GM measures as predictors of outcome. Based on VBM, we first report
on GM volume differences between good and poor outcome groups
both prior to and after brain surgery. Second, we focus on pre-surgical
individual whole brain GM volume and seek to determine a pattern
distinguishing patients with a good versus poor seizure outcome.
Based on a prior report (Yasuda et al., 2010), in addition to our initial
group results, we hypothesized that individual good or poor outcomes
can be identified on a pre-surgical basis by using the level of GMvolume
loss relative to a large normative age-matched control group. The over-
arching goal of this work is to try to identify a new structural GMmea-
sure, conceptualized as an index of either structural vulnerability or
reserve, easily computed as part of pre-surgical workups, capable of re-
liably predicting individual seizure outcomes in refractory TLE patients.

2. Material and methods

2.1. Participants

2.1.1. TLE patients
A total of 61 patients with refractory TLE that underwent surgical in-

tervention were recruited from the Thomas Jefferson University
Comprehensive Epilepsy Center. The recruitment period was between
2007 and 2014, with eligible patients selected serially with no change
in inclusion criteria or scanner software parameters during that time.
Among eligible patients, a total of 48 (79%) were scanned both pre-
and post-surgery. Patients received either a standard en bloc resec-
tion of their anterior temporal lobe (ATL, including a partial
amygdalohippocampectomy [approximately 4–6 cm from the tem-
poral pole with the size smaller for the patients with left (language
dominant) TLE]) (N = 49), laser ablation of the ictal hippocampus
(N = 7), or a neocortical resection with the mesial regions spared
(N = 5). Using data collected at least 6 months post-surgery, pa-
tients were identified as either “good” (Engel Class I, n = 34,
e.g., no seizure since the surgery) or “poor” outcome (Engel Class
II or higher, n = 27, e.g., persistent post-surgical seizures) (GO
and PO, respectively) (Engel et al., 1993). Details of the Thomas
Jefferson Comprehensive Epilepsy Center algorithm for surgical
decision making is described in Sperling et al. (1992). A combina-
tion of video/surface EEG (at least 96 h), MRI, PET, neuropsycholog-
ical testing and, for a subgroup of patients (25%, n= 15), implanted
electrodes and electrocorticography was used to lateralize the side
of seizure focus. In order to become a good surgical candidate and
be included in this study, a patient must have met the following in-
clusion criteria: failed at least three seizure medications; unilateral
temporal lobe seizure focus; concordant MRI and/or PET findings of
unilateral temporal lobe abnormality. TLE patients were excluded

from the study for any of the following reasons: medical illness
with central nervous system impact other than epilepsy; contrain-
dications to MRI; multiple seizure foci (including bilateral tempo-
ral foci); extra-temporal seizures; psychiatric diagnosis other
than an Axis-I Depression or Anxiety Disorder; or hospitalization
for any Axis I disorder listed in the Diagnostic and Statistical
Manual of Mental Disorders, IV. Patients provided written in-
formed consent. Table 1 outlines the patients3 demographic and
clinical characteristics.

2.1.2. Healthy controls
A total of 119 healthy normal controls (NCs)were recruited from the

Thomas Jefferson University community, in order to match the patient
participants in age and gender. All controls were free of psychiatric or
neurological (central nervous system) disorders based on a health
screening measure. Among them, 24 were scanned twice with an aver-
age interval of 429 days (SD: 119) to match the pre- to post-scan inter-
val for the patients. This studywas approved by the Institutional Review
Board for Research with Human Subjects at Thomas Jefferson Universi-
ty, and all participants provided a written informed consent.

2.2. MRI data acquisition

All participants underwent Magnetic Resonance Imaging on a 3-T
X-series Philips Achieva clinical MRI scanner (Amsterdam, the
Netherlands) using an 8-channel head coil. Both the NCs and the
TLE patients underwent identical scanning sessions. In detail, each
patient underwent a pre-surgical (mean=114 days prior to surgery,
N = 61) and post-surgical scan (m = 305 days after surgery, mini-
mum of 6 months, N = 48). High resolution T1-weighted images
were collected using anMPRage sequence (180 slices, 256 × 256 iso-
tropic voxels; TR = 640 ms, TE = 3.2 ms, FOV = 256 mm, flip
angle = 8°, voxel size = 1 × 1×1 mm). Subjects lay in a foam pad
to comfortably stabilize the head, and were instructed to remain
still throughout the scan.

2.3. Preprocessing analyses

In order to preprocess each individual T1 sequence, we used the
VBM8 toolbox, available in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm8). To improve the probability of detecting areas with
GM volume changes in relation to surgical outcome, the images of pa-
tients with right TLE were flipped left-to-right so that all data could be
analyzed together and treated as ipsilateral and contralateral to seizure
onset and surgical target area. In order to minimize left-to-right bias
when comparing with controls, we also side flipped the same propor-
tion of the healthy control sample. In this context, the left hemisphere
was considered the ictal hemisphere.

T1-weighted images were preprocessed using a standard routine
(“estimate and write”): the images were spatially normalized to the
same stereotaxic space (A Fast Diffeomorphic Registration Algorithm
(DARTEL) algorithm, MNI (Montreal Neurological Institute)-152), seg-
mented into GM, white matter and cerebrospinal fluid, non-linearly
modulated (aiming to correct to local volume changes during the nor-
malization) and smoothed with an isotropic Gaussian kernel of 8 mm.
A test of quality was performed to observe homogeneity and co-
registration between the data. Also, post-surgery postprocessed T1s
were individually checked to ensure that the normalization stepwas ac-
curate and comparable to the pre-surgery postprocessed T1s (see
Supplementary Fig. 1 for an example).

2.4. Prediction of seizure outcome

2.4.1. Creation of age-matched control templates
The group of controls was split into three groups based on their age:

Under 30 (N = 44, minimum age: 18), Between 30 and 40 (N = 34),
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and Above 40 (N= 42, up to 60 years-old). Within each control group,
two maps were created based on the GM images: one average (“Avg
map”) and one standard-deviation (“Std map”). Such groups were
created to take into account potential age effects on GM volume
(Supplementary Fig. 2).

2.4.2. Creation of individual map of GM volume abnormalities
Each of the 61 patients3 pre-surgery scan was analyzed individually.

To determine statistically significant differences between each patient
and the controls, we calculated the Z value at each voxel in the individ-
ual patient3s image using as comparison our age-matched normative
control map. The Z score of each voxel i in each patient3s map is given
by Zi = (Xi – Avg map)/Std map. As an example, a 25 year-old patient3s
GM map was compared to the “under 30” control group map. As a re-
sult, each individual obtained a 3D Z-map, reflecting the difference in
GM relative to the normative group.

Next, the number of voxels with either a value above Z N 2.5
(e.g., voxels showing a significant increase in GM relative to the norma-
tive sample) or under Z b −2.5 (e.g., voxels showing significant reduc-
tion of GM relative to the normative sample) was counted within each
lobe, completed separately for the frontal, occipital, parietal and tempo-
ral cortices. Of note, the ipsilateral and contralateral temporal lobes
were analyzed separately because of the possible distinct impact of
the seizures on the ipsilateral versus contralateral temporal regions.
This method and threshold chosen were based on Stufflebeam et al.3s
(2011) study. Lastly, each individual patient obtained two scores

indicating the proportion of voxels reflecting either an abnormal in-
crease or decrease of GM volume within each lobe, relative to the age-
matched normative sample.

Lastly, in order to test the reliability of the chosen threshold
(|Z| N 2.5), we tested this method using two alternative thresholds:
Z = 2 and Z = 3, and computed the proportion of voxels within each
lobe as described above. We then computed correlations between the
measures from the different thresholds.

2.5. Statistical analyses

2.5.1. Group analysis: pre-surgery only
To test for differences in pre-surgical GMvolumes between the three

groups (GO, PO, NCs), a one-way ANOVA was run on the GM volume
maps. This analysis included a relative threshold masking of 0.8. Age
and gender were added as covariates of no interest. Statistical whole-
brain differences were reported with an initial statistical threshold of
p = 0.001, uncorrected and a minimum cluster size of 30 contiguous
voxels.

2.5.2. Group analysis: pre / post-surgery
Group analyses were computed on 24 GO, 24 PO, and 24 controls,

where each individual had two scans. A repeated-measure ANOVA
was run to test the effects of session (pre/post-surgery for patients,
or sessions one and two for the NCs) and experimental group (GO,
PO, NCs) on the GM volume maps. This analysis included a relative

Table 1
Clinical characteristics of the experimental groups.

Group analyses at the pre- and post-surgery sessions

Good outcome Poor outcome Controls

N (females) 24 (9) 24 (11) 24 (9)
Seizure lateralization 14 left 13 left
Age at 1st MRI scan 41.1 (12.2) 42.2 (12.8) 41.1 (11.8)
Age at seizure onset 19.5 (14) 24.3 (12.9)
Type of surgery ATL: 21 ATL: 16

Laser ablation: 2 Laser ablation: 4
Neocortical resection: 1 Neocortical resection: 4

MRI pathology Normal MRI: 6 Normal MRI: 14
MTS: 14 MTS: 6
Other temporal pathologya: 4 Other temporal pathologya: 4

PET Positive: 18 Positive: 20
Negative: 2 Negative: 1
Not available: 4 Not available: 3

Time interval between surgery and scan (days, m (std)) 305 (195) 296 (208)
Time interval between the two scans (days, m (std)) 400 (210) 441 (258) 429 (119)
Seizure type CPS: 11 CPS: 12

CPS + rare GSb: 6 CPS + rare GSb: 5
CPS + GSc: 7 CPS + GSc: 7

Prediction analyses using the pre-surgical data

Good outcome Poor outcome

N (females) 34 (16) 27 (14)
Seizure lateralization 19 left 13 left
Age (m (std)) 40.5 (12.4) 42.4 (13.7)
Type of surgery ATL: 30 ATL: 20

Laser ablation: 3 Laser ablation: 3
Neocortical resection: 1 Neocortical resection: 4

MRI pathology Normal MRI: 8 Normal MRI: 16
MTS: 18 MTS: 7
Other temporal pathologya: 8 Other temporal pathologya: 4

PET Positive: 25 (74%) Positive: 21 (78%)
Negative: 3 (9%) Negative: 3 (11%)
Not available: 6 (17%) Not available: 3 (11%)

Time interval between scan and surgery (days, m (std)) 112 (156) 116 (152)
Seizure type CPS: 17 CPS: 11

CPS + rare GSb: 8 CPS + rare GSb: 6
CPS + GSc: 9 CPS + GSc: 10

a Low grade tumors (DNET, glioma, cavernoma), temporal dysplasia or general temporal atrophy. MTS: mesial temporal sclerosis.
b CPS (primary type) with 5 or less generalized tonic–clonic seizure and/or secondarily generalized seizure.
c CPS (primary type) with more than 5 generalized tonic–clonic seizure and/or secondarily generalized seizure in lifetime.
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threshold masking of 0.8. In order to avoid any confounding effect
between normal and true post-surgery changes, we masked the con-
trast comparing pre- and post-surgery conditions in the patients by
the same contrast computed in the controls. Statistical whole-brain
differences were reported with an initial statistical threshold of
p = 0.001, uncorrected and a minimum cluster size of 30 contiguous
voxels.

2.5.3. Prediction of seizure outcome using GM volume abnormalities
In order to investigate whether the GO and PO patients showed sig-

nificant GM differences, several analyses were conducted. First, chi-
squared tests were computed to test the proportion of patients with at
least 1% of voxels showing a significant difference relative to controls.
The proportion of patients with less than 1% of GM voxels different
than controls was also computed (n.b., proportions reflecting increases
and decreaseswere analyzed separately). Of note, this 1% thresholdwas
an arbitrary choice, as there is no consensus threshold available for this
individualized method. In order to avoid thresholding, non-parametric
Mann–Whitney U Tests were also run to determine significant group
(GO versus PO) differences on these continuous (proportion) variables.

Lastly, a logistic regression was computed to predict seizure out-
come, using the proportion of voxels with increased or reduced GMvol-
umewithin each lobe, separately, as the independent variable.We then
re-ran the regression to compare the predictive power of these variables
with the predictive power of MTS (presence/absence), a more standard
clinical predictor.

3. Results

3.1. Clinical characteristics

No significant differences were revealed in age, gender, illness dura-
tion, or age at seizure onset between the GO and PO groups (p N 0.05).
The proportion of patients reporting multiple generalized seizures
(such as generalized tonic–clonic seizures or secondary generalized sei-
zures, see Table 1) was not significantly different between the two
groups (GO: 26%, PO: 33%; p = 0.8). The proportion of patients with a
PET positive (e.g., hypometabolism in the ictal temporal lobe) versus
PET negative was not different between the PO and GO groups
(Table 1). Also, the number of patients that went through electrocorti-
cography to localize the seizure onset did not differ between the two
groups (chi-square = 1.3, p = 0.3; 7/34 GO vs. 10/27 PO). However,
there were significantly more patients with a mesial temporal patholo-
gy in the GO than the PO group (chi-square test, p = 0.001). In detail,
77% of the patients showing a mesial temporal pathology became
seizure free, post-surgery. Among the patients scanned pre- and post-
surgery, when analyzing each resective procedure separately, the resec-
tion size did not differ between the GO and PO groups (2 sample t-tests,
ATL: p = 0.2; laser: p = 0.2; neocortical resection: not applicable be-
cause only one GO patient had this procedure).

3.2. Group changes in GM volume

3.2.1. Pre-surgery only
The ANOVA revealed that the GO compared to PO patients displayed

several regions of higher GM volume, with these mostly located in the
right/non-ictal frontal cortex (Fig. 1, Supplementary Table 1). In con-
trast, the PO patients showed no GM increases relative to the GO pa-
tients. When compared to controls, the GO patients showed increased
GM volume in the right/non-ictal middle frontal cortex, the same area
noted above with reference to the PO group. The PO patients did not
show increased GM, relative to controls. In contrast, the PO group
showed reduced GM volume in multiple regions mostly located in the
frontal and temporal lobes, with other losses evident in the left/ictal
parahippocampus/hippocampus, left/ictal sensory–motor cortex, left/
ictal parietal cortex, and right/non-ictal temporal cortex, relative to

the controls. Lastly, the GO group had reduced GM volume in a limited
set of regions mostly located in the ictal hemisphere (cerebellum,
parahippocampal gyrus/hippocampus, rolandic gyrus).

When combining GO and PO groups, we found increased GM in the
right/non-ictal parahippocampal gyrus, relative to the controls. In
contrast, the patients showedmultiple regionswith GM atrophymostly
located in the ictal hemisphere only, involving the hippocampus ex-
tending to the thalamus, putamen, insular cortex, cerebellum, but also
bilaterally, in the superior temporal cortex andmedial prefrontal cortex
(Supplementary Fig. 3).

3.2.2. Pre-/post-change
Regarding the surgical effect, the repeated measures ANOVA re-

vealed a reduction of GM volume post-surgerymostly in areas proximal
to the impact of the procedure, regardless of the group of the patients
(Table 2). In addition, we detected decreased GM in the ictal thalamus
aswell as in the left/ictal angular gyrus and precuneus, for both TLE sur-
gery groups.

Within the GO group only, increased GM volume post-surgery was
found,when compared to pre-surgery. The regions involvedweremost-
ly located in the contralateral hemisphere, including the temporal, fron-
tal, occipital cortices and cerebellum. The only regions in the ictal
hemisphere with increased GM were all located in the frontal cortex
(Fig. 2). Such findings were not found in the PO group.

When comparing the pre-/post-surgical changes between the two
patient groups, we did not reveal significant differences.

3.3. Prediction of seizure outcome

We tested whether pre-surgical GM volume status can distinguish
between patients who or will not become seizure free after surgery
(GO versus PO).

Fig. 1. Regions showing significantly more GM volume in the GO than in the PO patients,
pre-surgery.
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The only lobe demonstrating significant differences between the
two patient groups was the frontal lobe. In other words, the GM abnor-
malitiesmeasuredwithin the temporal, occipital or parietal lobe did not
distinguish between the GO and PO groups, and did not reliably predict

seizure outcome. Therefore, wewill only report the results involving the
frontal lobe.

With regard to this frontal lobe finding, the proportion of GO pa-
tients with increased GM volume in the frontal lobe was significant
higher than in the PO patients (22 of 34, 65% versus 9 of 27, 33%, p =
0.029, χ2= 4.7). In contrast, the proportion of POwith reduced GM vol-
ume in the frontal lobe was slightly higher than in the GO group (13 of
27, 48% versus 9 of 34, 26%, p = 0.14). These proportions remained
identical for patients who underwent a standard ATL (n = 50), with
the number of patients in our sample who had other procedures too
small examine in this regard (e.g., n=11 of 61). A total of 81% of the pa-
tients showing significant increasedGMvolume in the frontal lobe (pro-
portion of the voxels N 1%) became seizure free after surgery; while 77%
of the patients with significant reduced GM volume in the frontal lobe
(proportion of the voxels N 1%) showed seizure recurrence and poor
post-operative seizure control (Fig. 3).

Consistently, independent sample t-tests revealed significant differ-
ences for each of these two continuous measures between the GO and
PO groups. More specifically, compared to the PO patients, the GO
patients demonstrated approximately three times more voxels with
higher GMvolume (0.51%vs. 1.58%, p=0.001), and 27 times less voxels
with reduced GM volume (1.28% vs. 0.34%, p = 0.009) in the frontal
lobe.

A logistic regression on seizure outcome (GO versus PO) utilizing
two predictors (the proportion of voxels with either reduced or in-
creased GM volume) revealed that the reduced GM volume measure
was the most significant predictor of outcome (p = 0.014), explaining
16% of the variance (on Cox and Snell R2 coefficient), and classifying
66% of the total sample accurately. Note, a model with one variable
(i.e., the proportion of voxels with reduced volume) obtained classifica-
tion success at an identical level (66%), though the model itself was not
significant (p= .072). In detail, 85.3% of the GO patients werewell clas-
sified while only 40.7% of the PO patients were accurately classified
(Fig. 4). Perhaps most important, odds ratio data indicated that when
less than 1% of the voxels had reduced GM volume in the frontal lobe
compared to normal controls, the likelihood of seizure freedom in-
creased sevenfold.

Lastly, we tested the potential mediating role mesial pathology
might play in the above logistic regression findings. As a single categor-
ical predictor (i.e., the presence or absence of mesial pathology), the
mesial pathology classified 70.5% of the sample accurately, and ex-
plained 16% of the model variance (p = 0.002). The odds ratio data re-
vealed that the presence of mesial pathology increased the likelihood of
seizure freedom sixfold within our TLE sample. When we added to the
model the measure reflecting the proportion of voxels with reduced
GM volume in the frontal lobe, the model remained significant (p =
0.032), explaining 26% of the variance, and classifying 79% of the sample

Table 2
Regionsdemonstrating significant structural (GMvolume) change betweenpre- andpost-
surgery, within each patient group.

Maximal pics

K T x y z

GO post-pre
R rolandic operculum 376 4.88 56 −18 22
R inferior frontal 669 4.8 48 20 18
L middle frontal 368 4.27 −30 41 34
L inferior frontal 33 4.23 −44 12 18
R middle frontal 215 4.23 30 35 37
R middle occipital 49 4.22 27 −90 13
R middle frontal 241 4.21 29 20 49
R superior frontal 101 3.98 20 32 45
R middle temporal 96 3.98 62 0 −17
R cerebellum 198 3.92 39 −69 −32
L superior frontal 53 3.82 −12 27 52
R fusiform 138 3.76 38 −54 −20
R middle temporal 52 3.75 57 −48 −5
R middle temporal 49 3.59 59 −45 10

PO post–pre
None

GO pre–posta

L thalamus 5658 10.07 −9 −30 6
L amygdala (outside the resection area) 9.73 −23 3 −17
L parahippocampal (outside the resection area) 8 −23 9 −24
L precuneus 3377 9.42 −14 −40 1
L cerebellum 9.2 −23 −31 −27
L lingual 8.43 −15 −37 −6
L fusiform 104 4.92 −41 −64 −15
L angular 76 3.94 −51 −69 25
L middle occipital 36 3.82 −41 −82 15
L superior marginal 33 3.75 −60 −48 28

PO pre–posta

L fusiform 3920 8.59 −24 −43 −11
L precuneus 7.57 −14 −40 1
L fusiform 6.63 −32 −43 −18
L amygdala (outside the resection area) 4865 7.35 −23 3 −17
L thalamus 6.92 −9 −30 6
L superior temporal 136 5.43 −53 −37 24
L angular 91 4.46 −47 −61 25
L PCC 79 4.24 −5 −40 25
L middle occipital 30 3.8 −47 −72 4

Abbreviations: L: left/ictal, PCC: posterior cingular cortex, R: Right/non-ictal.
a Exclusion of the ictal temporal lobe.

Fig. 2. Regions showing relative gain of GM volume post-surgery, relative to pre-surgery, in the GO patients.
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accurately (85% of the GO group, and 70% of the PO). Thus, the presence
of mesial pathology provided additional predictive value to the model
containing solely our frontal lobe measure of GM volume reduction,
but yielded improvement only in the classification of PO, not GO pa-
tients. Importantly, when examining the unique variance and classifica-
tion accuracy of the variables, the odds ratios for each of the two
variables remain impressive in terms of predicting seizure freedom
(presence versus absence of reduced frontal GM volume: 5–1 odds of
seizure freedom; presence versus absence of mesial temporal patholo-
gy: 4 to 1odds).

Overall, our results suggest that a statistical model utilizing a
measure capturing the proportion of voxels with significant GM
volume loss (relative to matched controls) in the frontal lobe, pro-
vides significant improvement and added value in the prediction of
seizure outcome, when included in a model containing an index of
mesial pathology, the more-established and better known predictor
of seizure outcome following ATL.

3.4. Reliability of the thresholds

We tested the reliability of our results by examining two alternative
thresholds (Z = 2 and 3; Supplementary Fig. 4) for capturing the pro-
portion of voxels with abnormal GM volume. We found high correla-
tions between the variables based on our primary (|Z| N 2.5) and these
new thresholds. For instance, the correlation between the proportion
of voxels with abnormal increased GM volume at |Z| N 2.5, and these
new thresholds was r = 0.98 for |Z| N 2.0, and r = 0.99 for |Z| N 3.0 for
the frontal lobe. The weakest correlation was observed for the non-

ictal temporal lobe (r = .9, involving the Z = 2.5/Z = 2.0 thresholds,
and r = .89, involving the Z = 2.5/Z = 3.0 thresholds). This suggests
that our findings are robust with respect to proximal changes in thresh-
old, providing a reasonable replication and confirmation of our findings.

4. Discussion

The primary purpose of this study was to determine whether pre-
surgical GM structural measures are associated with seizure outcome in
patients with refractory unilateral TLE. All the patients included in this
study were refractory to medication and based on a comprehensive pre-
surgical algorithm(MRI, PET, EEG, intracorticography, neuropsychological
testing) were considered good candidates for either a resective (ATL or
neocortical resection) or ablative surgical procedure.

4.1. Pre-surgery findings

Prior to surgery, regardless of the seizure outcome, the patients
showedmultiple regionswithGMatrophy, relative to controls. In detail,
we found loss of GM in the ictal hippocampus, the thalamus as well as
the insular cortex, but also bilaterally, in the temporal cortex. These
findings are consistent with previous studies (see review by Keller
and Roberts, 2008). Indeed, thalamic abnormalities has been observed
in several studies of refractory TLE, and been reported as a predictor of
seizure outcome (Keller et al., 2015b; Sakamoto et al., 2009). We also
found that our TLE patients as a whole demonstrated a GM increase in
the non-ictal parahippocampal gyrus. This finding is consistent with
resting-state fMRI studies of TLE showing decreased connectivitywithin
the epileptogenic network in conjunction with increased connectivity
within the contralateral regions (Bettus et al., 2009). Such resting-
state data are considered to reflect neuroplasticity and contralateral
compensatory mechanisms (Bettus et al., 2009; Doucet et al., 2013;
Tracy and Doucet, 2015). Our study provides evidence of structural
GM increases, supportive of this compensatory explanation.

When comparing the GO and PO groups, however, GM differences
were evident, particularly in the frontal lobe. Such findings stand in
agreement with other studies that used other structural measures
such as cortical thinning (Bernhardt et al., 2010) orwhitematter stream
microstructure (Bonilha et al., 2013; Keller et al., 2015b). In detail, our
PO group displayed more extensive regional atrophy than both the GO
and controls, mostly located in the frontal cortex, bilaterally. In contrast,
the GO group mostly showed limited GM losses located in the ictal
hemisphere, relative to the controls. This data is consistent with diffu-
sion tensor imaging studies which demonstrated that compared to
PO ATL patients, GO patients have fewer abnormalities in the ictal

Fig. 3. Proportion of GO or PO patients with significantly increased or reduced GMvolume
(relative to controls) within the frontal lobe, pre-surgery.

Fig. 4. Result of the logistic regression predicting seizure outcome, using themeasure of the proportion of voxels with reduced GM volume in the frontal lobe. Part A shows the predictive
probability of GO or PO group membership. Part B displays the resulting classification count, N.B., GO patients are better classified (N = 29/34).
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hemisphere, with these limited to the temporal and frontal cortices (see
review by Bonilha and Keller, 2015). However, our data go beyond the
extant literature by indicating that an advantage in frontal lobe GM
may constitute a key difference in the pre-surgical status of these two
groups. Our data suggest that the PO patients suffer from stronger vul-
nerability in their frontal lobe, possibly caused by seizure spread or
diaschisis. Indeed, previous imaging studies have provided strong evi-
dence that the frontal lobe is involved in the spread of the temporal
lobe seizures. For instance, Lin et al. (2008) showed that patients with
TLE specifically suffer from abnormal integrity of frontal–temporal
white matter tracts within the ictal hemisphere. Using single photon
emission computed tomography, Van Paesschen et al. (2003) described
the frontal lobe as abnormally perfused during temporal lobe seizures,
relative to the inter-ictal state. Lastly, a number of researchers have
noted a common ictal propagation pathway from the mesial temporal
lobe, to the ipsilateral frontal lobe (preferentially the orbitofrontal cor-
tex), to the contralateral frontal lobe, and finally, the contralateral tem-
poral lobe (Adam et al., 1994; Lieb et al., 1991). These data are
consistent with our findings, and imply that the spread of seizures in
our PO group may have impaired the frontal lobe in a more extensive
way than in GO patients, producing significant consequences in terms
of seizure outcome. Alternatively, previous work from our laboratory
has shown that the frontal lobe may play a role in a protective mecha-
nism, an inhibitory surround, that works against seizure spread (see
Tracy et al. (2014)). Unfortunately, our study cannot discriminate
between the possibility of a protective mechanism in our GO patients
ormore extensive seizure burden in our POpatients from seizure spread
or epileptogenesis. More investigations need to be done to tests these
different hypotheses.

4.2. Pre-to-post changes

When investigating the change of GM between pre- and post-
surgery, we found that the relative loss of GM volume, post-surgery,
was limited to ipsilateral regions to the resected area, for both the GO
and PO patients. This loss is likely related to the surgical manipulation
and/or tissue shrinkage over time (aging) after resection (Mueller
et al., 2009). Importantly, our pre–post analysis controlled for this effect,
which may explain the differences between our findings and Yasuda
et al. (2010) who described post-surgical atrophy in both ipsilateral
and contralateral regions. Indeed, these authors did not control for
such a procedural and time-based effect. As a confirmation, we com-
pared pre- and post-surgery GM in the GO patients (using a paired t
test, without controlling for the time effect), and found a relative loss
of GM volume in the contralateral hemisphere (data not shown), pro-
viding evidence that these more atrophic contralateral regions are not
related to seizure control, nor the surgical procedure per se, but more
likely to a time-based (aging) effect.

In contrast, when comparing post- to pre-surgery GM status, we
found a relative gain in volume in multiple regions in the GO but
not in the PO patients. Most of the regions showing gain were locat-
ed in the contralateral (non-resected) frontal and temporal lobes,
suggesting that these changes were not directly caused by the re-
section (Mueller et al., 2009), but other mechanisms involved in
seizure control. It is important to note that the controls did not
show any significant GM volume change or gain, when comparing
data across the scanning sessions, noting that the time interval be-
tween this group3s scans and the interval between pre- and post-
surgical scans for the patients did not differ. This post-surgical
gain in GM volume is considered potentially related to increased
axonal and dendritic arborization, neuronal size and number
(May et al., 2007; Mechelli et al., 2005; Yasuda et al., 2010). Ac-
cordingly, our data are consistent with the possibility that the GM
gains in the GO group reflect brain recovery through a neuroplastic
mechanism generated by the new state of seizure control.

We should note that our pre- to post-surgical comparison data are
generally in agreementwith the findings of Yasuda et al. (2010) despite
the difference in scanners, different magnet strengths, and the different
GM processing methods utilized in the two studies. This is particularly
encouraging in a clinical context, suggesting that these findings are reli-
able and reproducible regardless of the scanner used.

4.3. Prediction of seizure outcome

Using the proportion of voxels with increased or reduced GM vol-
ume within each lobe, we investigated whether the degree of GM ab-
normality was a reliable predictor of seizure outcome. Results yielded
by our regression approach revealed that GM abnormalities located in
the frontal lobe were significant predictors of seizure outcome. To our
knowledge, this is the first study describing the use of GM abnormalities
to predict seizure outcome following brain surgery in patients with re-
fractory TLE. Importantly, the regression analysis showed that this mea-
sure was as robust and effective as the presence of mesial temporal
atrophy in predicting seizure outcome (66% vs. 70%), but combining
the twomeasures did improve the model, moving the proportion accu-
rately classified to 80% of the sample. Also, the odds ratios for bothmea-
sures were relatively similar and high. Such findings are particularly
encouraging from a clinical perspective, as improved outcome predic-
tion is the major goal of pre-surgical algorithms. While the GM index
we chose to use (proportion abnormal for each lobe), can readily be cal-
culated atmost surgical sites, it is important to develop site specific nor-
mative data (from the same scanner) from a large sample of healthy
controls, age-matched to the TLE patient sample, as GM volume maps
are known to be particularly sensitive to age (see Supplementary Fig. 2).

Importantly, our data highlight the importance of utilizing extra-
temporal GM measures when predicting outcome, and provide addi-
tional confirmation that structural effects of unilateral, focal TLE are
not restricted to a single region (for a review of the extra-temporal
effects of TLE seizures see Tracy et al., 2015).

Unlike previous studies (Bernhardt et al., 2015; Lin et al., 2005), we
did not find that abnormal GM volume in either temporal lobe was a
good predictor of seizure outcome. We believe that this may be related
to difference in the masks utilized for volume calculation. We did not
test a mask that included only the mesial temporal lobe (hippocampus
and parahippocampal gyrus); ours included the full temporal lobe.
Similarly, we did not test the predictive power of subcortical regions
(e.g., the thalamus), and, therefore, cannot compare our findings to
studies using thalamic atrophy as a predictor of seizure outcome
(Keller et al., 2015b). In this regard, comparing different size masks
will be important, a tradeoff between GM signal strength versus GM
signal specificity, in the determination of clinical value when using
GM volume measures to predict post-surgical seizure outcome. Also,
to increase reliability in the prediction, the use of bootstrapping
methods and machine learning algorithms, incorporating multiple GM
measures, may be of benefit for the selection of the most robust predic-
tors of seizure outcome (Munsell et al., 2015).

4.4. Limitations

Several limitations regarding our study must be noted. Our sample
was relatively small. Unfortunately, we could not fully match the GO
and PO patients on the type of mesial pathology, such as MTS. While
we cannot fully preclude MTS as a factor in our results, we did demon-
strate, one, that the frontal lobe effect we describe goes beyond the pre-
dictive power of MTS, and, two, that the effect (or lack thereof) was
present in both our GO and PO patients who did not possess MTS. As
it is widely recognized that the rate of seizure freedom diminishes at
longer term follow-up (e.g., 5 years after resective surgery (Tellez-
Zenteno et al., 2005)), we cannot exclude the possibility that some of
the GO patients will experience seizure recurrence, and are, therefore,
in some sense misidentified by our current classification. Accordingly,
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this issue may explain why we did not find generalized seizures to be a
reliable predictor of seizure outcome in our sample, in contrast to other
studies (Zhang et al., 2013). Nevertheless, it is encouraging to note that
35% of our GO patients had resective surgery in 2010 or earlier, suggest-
ing that their seizure freedom is well established.

For the purpose of investigating seizure outcome, we chose to com-
bine patients with TLE that went through standard ATL, thermal abla-
tion or neocortical resection procedures. Although the surgeries were
localized in the temporal lobe, these are obviously very different proce-
dures, with the seizure outcome data on thermal ablation still a work in
progress (Chang et al., 2015). Germane to our findings, there is also the
likelihood that these two procedures have different effects on GM sub-
sequent to the procedure, much as neocortical temporal versus mesial
temporal seizures are likely to effect extra-temporal GM (both pre-
and post-surgery) in different ways (Kim et al., 2003; Umeoka et al.,
2007). Unfortunately, because of low sample size, it was not possible
to test the distinct effect of the different procedures, nor was it possible
to examine and compare patientswithmesial versus neocortical pathol-
ogy. We do know that most of the patients (57%) that went through
laser ablation of their mesial temporal pathology experienced a poor
seizure outcome, suggesting insufficient removal of epileptogenic tis-
sues. Yet, given our data we cannot preclude the possibility that despite
these differences, temporal lobe surgery patients who possess better
GM integrity in the frontal lobe before surgery, will be at an advantage
in terms of seizure control. Clearly, future investigation in this area is
needed.

Lastly, it is important to highlight somemethodological issues. First,
the threshold chosen at the group level (first part of our study) was un-
corrected for multiple comparisons. This choice increased the risk of
type I false positive errors, and therefore, the group differences should
be interpreted with caution. However, it is important to remember
that the purpose of our study was less about demonstrating outcome
group differences in GM volume, and more about: (1) testing the
power of GM volume to predict seizure outcome, and (2) determining
the regionally specific GM measure that would be the best predictor.
Hence, we undertook analyses that would be highly sensitive to predic-
tive success,without allowing too high a rate of Type I error. Also impor-
tant to note is that the second part of our study focusing on measures
that capture theproportion of voxels showingGMgroupdifferences uti-
lized analyses completely independent of the threshold chosen at the
group level. We tested different thresholds and found identical results,
providing reasonable confirmation of the validity of our method. The
fact that our frontal lobe finding remains consistent across the two
phases of our analyses provides some validation of the effect, and its
reliable discrimination between the outcome groups. Therefore, we be-
lieve that our results remain valid, despite, at points, allowing for higher
levels of Type I error.

Second, we decided to flip the right-sided TLE patients3 brain, so
that all images were in accord with respect to the site of ictal onset
(i.e., on the left side). Such amethod has been undertaken previously
(Bernhardt et al., 2010; Lin et al., 2005; Yasuda et al., 2010), though
we acknowledge that this may have prevented us from discerning
specific predictive GM features unique to the right or left TLE pa-
tients (Doucet et al., 2013; Tracy and Doucet, 2015). We believe
that combining the right and left TLE patients into one group remains
an effective method of revealing whole-brain changes associated
with TLE pathology, especially when the purpose of the study is to in-
vestigate the prediction of recurrent seizures (independently of the
side of the epileptogenic focus).

5. Conclusion

Our study showed significant differences in GM volume betweenGO
and PO TLE patients, at time points both before and after brain surgery.
These results are consistent with a previous study (Yasuda et al., 2010),

indicating that these findings are reliable and reproducible regardless of
the scanner type, strength of magnet, and processingmethods. The pre-
surgical GMabnormalitieswe observed in the frontal lobe for the PO pa-
tientsmay reflect the impact of seizure spread or occult epileptogenesis.
Indeed, it is consistent with evidence suggesting that seizures are less
likely to stop after surgerywhen presurgical abnormalities are observed
in brain regions located outside the resected temporal lobe (Bonilha and
Keller, 2015). The pre-to-post changes showing a relative gain in GM
volume post-surgery for the GO group may reflect tissue recovery
from the relief of seizure burden (spread), a protective mechanism to
prevent seizures from returning, or some other adaptive neuroplastic
mechanism generated by the new state of seizure control (or perhaps
all three). Importantly, here, we report the first evidence that patients
with TLE with significantly reduced GM in the frontal lobe, pre-
surgery, will more likely experience a poor seizure outcome, post-
surgery. The converse is also true with our data: patients with TLE
advantaged with higher GM volume in the frontal lobe, pre-surgery,
will more likely experience seizure freedom after surgery. To our
knowledge, this study is the first to demonstrate that an extra-
temporal GMmeasure can reliably predict seizure outcome in refrac-
tory TLE patients, and do so as robustly as the presence of mesial
temporal sclerosis, a more standard predictor. Certainly, indepen-
dent investigations are needed to reproduce these results, but we
hope to have demonstrated that this easy to compute regional GM
measure may be of value in determining good surgical candidates,
serving to improve rates of post-surgical seizure freedom in this
population.
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