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Background—Prostate cancer (PCa) molecular subtypes have been defined by essentially 

mutually exclusive events, including ETS gene fusions (most commonly involving ERG) and 

SPINK1 over-expression. Clinical assessment may aid in disease stratification, complementing 

available prognostic tests.

Objective—To determine the analytical validity and clinicopatholgical associations of 

microarray-based molecular subtyping.

Design, Setting and Participants—We analyzed Affymetrix GeneChip expression profiles 

for 1,577 patients from eight radical prostatectomy (RP) cohorts, including 1,351 cases assessed 

using the Decipher prognostic assay (performed in a CLIA-certified laboratory). A microarray-

based (m-) random forest ERG classification model was trained and validated. Outlier expression 

analysis was used to predict other mutually exclusive non-ERG ETS gene rearrangements (ETS+) 

or SPINK1 over-expression (SPINK1+).

Outcome Measurements—Associations with clinical features and outcomes by multivariable 

logistic regression analysis and receiver operating curves.

Results and Limitations—The m-ERG classifier showed 95% accuracy in an independent 

validation subset (n=155 samples). Across cohorts, 45%, 9%, 8% and 38% of PCa were classified 

as m-ERG+, m-ETS+, m-SPINK1+, and triple negative (m-ERG−/m-ETS−/m-SPINK1−), 

respectively. Gene expression profiling supports three underlying molecularly defined groups (m-

ERG+, m-ETS+ and m-SPINK1+/triple negative). On multivariable analysis, m-ERG+ tumors 

were associated with lower preoperative serum PSA and Gleason scores, but enriched for 

extraprostatic extension (p<0.001). m-ETS+ tumors were associated with seminal vesicle invasion 

(p=0.01), while m-SPINK1+/triple negative tumors had higher Gleason scores and were more 

frequent in Black/African American patients (p<0.001). Clinical outcomes were not significantly 

different between subtypes.

Conclusions—A clinically available prognostic test (Decipher) can also assess PCa molecular 

subtypes, obviating the need for additional testing. Clinicopathological differences were found 

among subtypes based on global expression patterns.

Keywords

Prostate cancer; ERG; ETS; SPINK1; microarray; prognosis

INTRODUCTION

Prostate cancer (PCa) is clinically and molecularly heterogeneous. PCa genome and 

transcriptome characterization has identified molecular subtypes defined by essentially 

mutually exclusive genetic/transcriptomic events [1]. For example, approximately 50% of 

PCa foci from PSA-screened Caucasian cohorts harbor rearrangements between the 5′ 

untranslated region of androgen responsive genes (most commonly TMPRSS2) and members 

of the ETS transcription factor family [2,3]; fusions involving the ETS gene ERG are the 

most common (referred to as ERG+ (comprising ~90% of all ETS fusions), while mutually 

exclusive gene fusions involving non-ERG ETS genes, including ETV1, ETV4, ETV5 and 

FLI1, are infrequent (referred to as ERG−/ETS+ or ETS+; collectively comprising ~10% of 
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all ETS fusions)[4]. Given the rarity of ETS+ PCa, it is unclear whether they are molecularly 

and clinicopathologically similar to ERG+ tumors. Approximately 10% of PCa, which are 

nearly exclusively negative for ERG or other ETS gene fusions (ETS−), harbor marked 

SPINK1 over-expression, consistent with a unique molecular subtype (SPINK1+)[3,5]. 

Although we and others have validated antibodies (against ERG and SPINK1) and 

fluorescence in situ hybridization (FISH) or RNA in situ hybridization (RISH) assays 

(against ETV1, ETV4, and ETV5)[4,6,7], routine comprehensive subtyping remains 

challenging and is cost prohibitive given the lack of current clinical indications.

High-throughput PCa transcriptome characterization has identified prognostic biomarkers, 

which have been translated to clinically available multi-gene prognostic tests compatible 

with routine formalin fixed paraffin embedded (FFPE) clinical biopsy or radical 

prostatectomy (RP) specimens[8–11]. Such tests must account for disease multifocality, as 

most men with PCa actually harbor multiple, genetically independent tumor clones that may 

have variable morphology (including Gleason score) and molecular alterations [12]. For 

example, 40-70% of RP samples harbor PCa foci with divergent TMPRSS2:ERG gene 

fusion status in distinct tumor foci, consistent with multiclonality [13–15]. Conflicting 

reports on associations of PCa molecular subtype defining lesions—such as TMPRSS2:ERG 

fusions and SPINK1 over-expression—with prognosis have been reported. Prognostic 

associations are confounded by cohort differences (i.e. PSA screened vs. unscreened, biopsy 

vs transurethral resection (TURP) detected, treatment modality and definition of “poor” 

outcome) as well as detection methodologies[16,17]. Nevertheless, inclusion of molecular 

subtyping in clinically available prognostic tests may provide additional information beyond 

routine prognosis in the post-RP setting, including assessment of multiclonality/

multifocality [18–20] and predictive applications given clinical trials incorporating ETS 

status (NCT01576172). Additionally, it is unclear if prognostic signatures perform equally 

in different molecular PCa subtypes.

The goal of this study was to determine if PCa molecular subtyping could be performed 

from the “extra” data generated by a clinically available prognostic assay (Decipher), which 

utilizes genome-wide microarray expression profiling from formalin fixed paraffin 

embedded (FFPE) tissues to determine a prognostic score using the expression of 22 genes 

[9]. Hence, here we developed and validated computational tools for molecular subtyping 

using Decipher generated microarray expression data. We then determined clinicopathologic 

and prognostic associations from these microarray derived subtypes using 1,577 RP 

samples.

MATERIALS AND METHODS

Prostate cancer (PCa) samples

A total of 1,577 patient PCa expression profiles (1,351 from FFPE tissue) were analyzed 

from eight RP cohorts: Mayo Clinic (MCI & II) [9,21], Thomas Jefferson University (TJU)

[22], Cleveland Clinic (CCF)[23], Johns Hopkins (JHMI), Memorial Sloan Kettering 

(MSKCC)[24], Erasmus MC (EMC)[25] and the German National Cancer Registry (DKFZ)

[26] (Table S1). In each of the eight RP cohorts, a single tumor focus per patient was 

profiled (see Table S1 for selection criteria. The 1,351 FFPE samples were processed, 
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assessed and analyzed using the Decipher clinical assay in the CLIA certified GenomeDx 

Biosciences Laboratory (San Diego, CA). The remaining 226 samples from three cohorts 

utilized RNA extracted in research laboratories from fresh-frozen or unfixed tissue 

preserved in RNAlater. These samples were profiled in microarray core facilities of major 

teaching hospitals and universities, although not to clinical grade standards. Data analysis 

was performed as for the Decipher clinical assay.

For development of microarray-based classifiers, MCI was used as a discovery cohort where 

407/580 patients had ERG status (by fluorescence in situ hybridization [FISH]) as 

previously reported [27]; this cohort was split into training and validation sets of 252 and 

155 patients, respectively, for training and validation of the microarray based ERG classifier 

(m-ERG). The other cohorts without FISH or IHC ERG status (or assessment of non-ERG 

ETS genes or SPINK1 expression) were used for classifier evaluation. See Appendix for 

additional details.

Microarray data processing

RNA extraction and microarray expression data generation using the Affymetrix Human 

Exon 1.0 ST arrays as part of the Decipher assay, including generation of the 22 gene 

prognostic score, were described previously[9,21,24–26]. See Appendix for additional 

details.

Development of ERG microarray-based classification models

We developed a Random Forrest (RF) supervised model (m-ERG) to predict FISH assessed 

ERG rearrangement status using the MCI cohort, which has available FISH-ERG 

information. The RF model was developed in a training subset of tumor patient profiles 

(n=252) combined with 29 benign prostate tissue profiles (from the MSKCC cohort) prior to 

assessment in the validation subset of MCI patient profiles (n=155) with known FISH-ERG 

status. The m-ERG model generated scores ranging from 0 to 1, with higher scores 

indicating increased likelihood of ERG rearrangement presence. Based on cut-off 

optimization methods[28], a m-ERG score above 0.6 was used to define m-ERG+ profiles 

from the training subset prior to application in the validation subset.

Development of ETV1, ETV4, ETV5, FLI1 and SPINK1 microarray-based classification 
models

FISH and/or IHC was not available for the other non-ERG ETS family members or SPINK1 

in cohorts assessed herein, precluding gold standard validation of classifiers for these 

alterations. Hence, to develop classifiers, we performed unsupervised outlier analysis using 

the ‘extremevalues’ R package on expression of core probesets (those in canonical exons) 

for each gene using the entire MCI cohort (discovery) to define an expression threshold to 

classify each sample as an outlier (or not) for each gene. This outlier detection method 

estimates a model distribution for the discovery population (MCI) and using regression 

analysis identifies outliers as observations that are unlikely to be drawn from the same 

distribution. The minimum value of outliers in MCI was then set as the cutpoint to classify 

samples from the evaluation cohorts as outliers. Patients with outlier profiles defined as just 

described were annotated as m-ETV1+, m-ETV4+, m-ETV5+, m-FLI1+ or m-SPINK1+.
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PCa Molecular subtyping

In this study, we initially classified patient profiles into four previously reported subtypes 

based on the results of the m-ERG, m-ETS and m-SPINK1 models. Tumor profiles with 

high m-ERG score (m-ERG+) and m-ETV1−, m-ETV4−, m-ETV5−, m-FLI1− and m-

SPINK1− were classified as m-ERG+ subtype. Profiles that were m-ETV1+, m-ETV4+, m-

ETV5+ or m-FLI1+ and m-ERG− were classified as m-ETS+ subtype, and those that were m-

SPINK1+ and m-ERG− were classified as m-SPINK1+ subtype. Finally, patient profiles that 

are m-ERG−, m-ETV1−, m-ETV4−, m-ETV5−, m-FLI1− and m-SPINK1− were classified as 

‘triple negative’. The four subtypes from this step were used to characterize the clinical and 

molecular characteristics of each subtype. m-ERG+/m-ETS+ or m-ERG+/m-SPINK1+ 

profiles were considered as “conflict cases” and were assessed separately.

Statistical analysis

Statistical analyses were performed in R v3.0. All statistical tests were two-sided using 

p<0.05 significance level. Univariable and multivariable logistic regression analysis were 

performed to evaluate the statistical associations between microarray defined molecular 

subtypes and clinical variables including age, race/ethnicity, pre-operative PSA, surgical 

margin status (SMS), extraprostatic extension (EPE), seminal vesicle invasion (SVI), lymph 

node involvement (LNI) and Gleason Score (GS). The multiple cohorts were considered as 

random effect in the MVA regression model to remove individual cohort bias.

RESULTS

Clinical Characteristics of the Study Cohorts

To develop and validate computational tools for basic PCa molecular subtyping by gene 

expression generated as part of the Decipher prognostic assay, we pooled RP samples from 

1,577 patients from a total of 8 cohorts profiled using the Affymetrix Human Exon 1.0 ST 

arrays (Table S1). These cohorts represent the spectrum of RP treated PCa from low to high-

risk localized disease. Overall, 61% of patients in the pooled cohort had one or more adverse 

pathology findings (APF: RP Gleason score ≥8, >pT2 or pN1); however, APF incidence of 

ranged from 5%-89% between individual cohorts (Table S1). The majority of patients were 

Caucasian (89%) and had aggressive PCa. Most of the patients received post-operative 

hormonal and/or radiation therapy. Patients with metastasis had a median follow up time of 

62 months (range, 3-213), and patients with no metastasis had a median follow up of 129 

months [1-280]. Detailed clinicopathological information for the pooled cohort provided in 

Table S2.

Microarray-based ERG (m-ERG) Model Development and Validation

The most informative microarray probesets for the m-ERG model were identified through a 

multi-step procedure. First, in the training set (n=252), expression clustering of the 132 ERG 

locus probesets demonstrated that most are highly correlated and informative of FISH-ERG 

status (Figures 1A and S1A). Filtering of redundant and non-informative features (e.g., not 

expressed above background) was performed prior to training a random forests (RF) 

classifier for predicting FISH-ERG status. The final model used the expression values of 3 

Tomlins et al. Page 5

Eur Urol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ERG locus probesets and 2 probesets associated with FISH-ERG+ but low ERG expression; 

AUC for predicting FISH-ERG status in the training set using the final m-ERG model was 

0.98. In the validation subset (n=155 profiles, not used for training), the m-ERG model had 

an AUC of 0.94 and an overall accuracy of 95% (Figure 1B). Most misclassified patients 

had low ERG expression, consistent with previous reports that very small subsets of ERG 

fusion-positive tumors (as detected by FISH) do not overexpress ERG protein [29]. 

Validation in benign tissue, cell line controls and technical replicates are reported in the 

Appendix and Figure S1. When then applied to 1,170 patient profiles from the 7 cohorts not 

used for training or testing, 550 (47%) were classified as m-ERG+ (38-64% across cohorts) 

as shown in Figure 2.

Development of ETS and SPINK1 microarray classifiers

We next sought to classify patients based on SPINK1 over-expression, or outlier expression 

of non-ERG ETS genes (ETV1, ETV4, ETV5 and FLI1) using over-expression as a surrogate 

for rearrangement of the respective ETS gene. Heatmaps of all probesets from the ETV1, 

ETV4, ETV5 and SPINK1 loci showed that a subset of patients over-expressed each gene, as 

expected (Figure S2). Outlier analysis was first performed in the MCI cohort to define 

outlier threshold cut-points for each gene (see Methods), which were then applied to the 

remaining evaluation cohorts, as no gold standard data was available for profiled datasets 

(Figure 1C). In MCI, microarray outlier analysis classified 5%, 1.7%, 0.5%, 1% and 7.7% as 

m-ETV1+, m-ETV4+, m-ETV5+, m-FLI+ and m-SPINK1+
, respectively (Table S3). 

Performance of these classifiers in benign tissue, cell line controls and technical replicates 

are reported in the Appendix.

Molecular subtyping of 1,577 RP patient specimens using the microarray-based classifiers

Across the 1,577 profiles from 8 cohorts, microarray analysis classified 46%, 8%, 1.1%, 

1.6%, 0.6% and 8% as m-ERG+, m-ETV1+, m-ETV4+, m-ETV5+, m-FLI+ and m-SPINK1+
, 

respectively; 36% (n=575) lacked any outlier expression and were considered TripleNeg 

(Table S3). Additionally, 3% of patient profiles had outlier expression for two or more 

markers (m-ERG+/m-ETS+ or m-ERG+/m-SPINK1+ profiles), as shown in Table S3, which 

we consider as conflict cases (see Discussion). To focus on cases with clearly defined 

subtypes, we considered these conflict cases separately and collapsed the four ETS family 

members into one group (given the low numbers of individual m-ETV1+, m-ETV4+, m-

ETV5+ and m-FLI1+ profiles even in this large cohort). This analysis resulted in in four 

molecular subtypes—m-ERG+, m-ETS+, m-SPINK1+ and TripleNeg— at 45%, 9%, 8% and 

38% of samples, respectively (Figure 2), consistent with distributions in other predominantly 

Caucasian cohorts assessed by for these individual subtypes by gene expression, FISH 

and/or IHC[2,30].

Gene expression clustering of PCa molecular subtypes—The low frequency of 

ETS+ and SPINK1+ subtypes has precluded comprehensive molecular and 

clinicopathological evaluation in large cohorts to determine whether these minor PCa 

subtypes represent distinct molecular subtypes, or are best classified as ERG+ and 

TripleNeg, respectively. Hence, we first assessed whether m-ETS+ tumors (or m-SPINK1+ 

tumors) show global transcriptional profiles more similar to m-ERG+ or TripleNeg tumors. 
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Thus, we first defined expression centroids for m-ERG+ and TripleNeg tumors using 

transcriptome-wide differential expression analysis. To define m-ERG+ and TripleNeg 

expression centroids, we selected all probesets with AUC>0.75 for discriminating for these 

two subtypes (n=360 probesets). Calculating the distance between each m-ETS+ or m-

SPINK1+ sample and the m-ERG+ and TripleNeg subtypes centroids demonstrated that 98% 

(117/119) of m-SPINK1+ tumors had cluster distances closer to the TripleNeg centroid. In 

contrast, 35% of m-ETS+ tumors (48/139) had cluster distances closer to the m-ERG+ 

centroid, while 65% of m-ETS+ tumors were closer to the TripleNeg centroid (Figure 3A). 

Defining m-ERG+ and TripleNeg expression centroids using other gene sets, as well as 

fuzzy c-means clustering supported these results as described in Table S4, the Appendix, 

and Figure S3. Together these analyses demonstrate that m-SPINK1+ tumors are highly 

similar to TripleNeg tumors while m-ETS+ tumors are distinct from m-ERG+ tumors.

To gain additional insight into subtype relationships, the most predictive genes for each 

subtype were defined based on AUC for discrimination of each subtype from the others. 

Seventy six, 15, 14 and 3 genes had an AUC>0.7 for m-ERG+, m-ETS+, m-SPINK1+, and 

TripleNeg, respectively (Table S5). Clustering expression of these discriminatory genes 

across all samples demonstrated two main dendrogram branches corresponding to m-ERG+ 

and Triple Negative predictive genes. While m-ETS+ tumors shared expression of m-ERG+ 

predictive genes and expressed a unique subset of genes, the expression pattern of m-

SPINK1+ tumors was highly similar to TripleNeg PCa (Figure 3B). As expected, benign 

samples clustered separately from all tumor samples. Subtype specific genes are described in 

the Appendix.

Clinical associations of PCa molecular subtypes

On univariable analysis, race, preoperative PSA, Gleason score (GS), extraprostatic 

extension (EPE) and seminal vesicle invasion (SVI) status were non-uniformly distributed 

across microarray defined subtypes (Table S6). We used multinomial multivariable analysis 

to compare clinical and pathological characteristics between subtypes (Table 1). Compared 

to TripleNeg, m-ERG+ PCa is associated with lower pre-operative PSA (OR=0.47, p<0.001) 

and lower Gleason score (OR=0.43, p<0.001), but nearly twice as likely to have EPE 

(OR=1.80, p<0.001) and nearly five times more likely to occur in Caucasian men (p<0.001) 

(Table 1). The m-ETS+ subtype was more likely to have SVI compared to both TripleNeg 

(OR=2.27, p=0.004) or m-ERG+ PCa (OR=1.96, p=0.01) (Table 1). Both TripleNeg and m-

SPINK1+ tumors had significantly higher preoperative PSA (OR=2.12, p<0.001 and 

OR=1.73, p=0.05, respectively) and Gleason scores (OR=2.3, p<0.001 and OR=3.0, 

p<0.001, respectively), and were more common in African American patients (OR=5.44, 

p=0.002 and OR=16.87, p<0.001, respectively), compared to m-ERG+ tumors. Interestingly, 

m-SPINK1+ is significantly associated with lack of SMS compared to m-ERG+ (OR=0.58, 

p=0.006). Together, these clinicopathologic associations are consistent with our 

transcriptome analysis demonstrating that m-SPINK1+ and TripleNeg are highly similar, 

while m-ERG+ and m-ETS+ have distinct features.
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Impact of molecular subtypes on prognosis

To evaluate the impact of molecular subtyping on prognosis, we assessed the ability of the 

subtypes to predict patient outcomes such as biochemical recurrence (BCR), metastasis 

(MET) and prostate cancer death (PCSM) after RP (Table S7). ROC analysis showed that 

the subtypes do not discriminate well for these endpoints (AUC ~0.5). Likewise, across all 

cohorts (excluding the MCI cohort used for development), Decipher [9] showed similar 

discrimination (as measured by AUC) for metastasis in all four subtypes (Figure 4). Other 

prognostic signatures such as CCP, GPS and the Penney et al. signature [10,31,32], which 

can be derived from our global gene expression data, also showed similar discrimination for 

metastasis in all subtypes except the microarray derived (md-)GPS signature, which was not 

discriminative in the m-SPINK+ subtype (Figure S4). Lastly, Kaplan-Meier analyses in the 

MCII cohort failed to show significant differences in time to events for BCR (Figure 5A) 

and metastasis (Figure 5B) endpoints between the subtypes. However, a trend toward 

significance was observed with the Triple Negative subtype patients having worse PCSM 

than the other subtypes (Figure 5C). Together, these results support limited prognostic utility 

for molecular subtypes in the post-RP setting where most patients receive post-operative 

hormonal and/or radiation therapy.

DISCUSSION

High throughput technologies such as DNA microarrays and next generation sequencing 

have greatly increased our understanding of PCa molecular alterations, including defining 

molecular subtypes and the identification of prognostic gene expression signatures. 

Although well validated antibodies and FISH/RISH assays have been developed for research 

and clinical applications, comprehensive subtyping using these assays remains challenging 

and has not been applied to large translational research cohorts. Likewise, the lack of current 

clinical indications in PCa makes comprehensive molecular subtyping cost prohibitive in 

routine clinical practice. This lack of large, comprehensively subtyped clinical cohorts has 

hindered thorough evaluation of subtype specific clinicopathological associations and 

molecular features. However, the development and uptake of clinically available, FFPE 

compatible, gene expression based prognostic assays [8–11] suggests that expression 

profiling data will be available for tens of thousands of patients in the immediate future.

Hence, in this study, we sought to determine whether the “extra” gene expression data 

generated as part of the clinically available Decipher assay, which derives a 22 gene 

prognostic score from genome-wide microarray expression profiling, can be used to 

determine molecular subtypes. Thus, we built computational models to predict the most 

common PCa molecular subtypes defined by alterations resulting in marked transcript over-

expression: ERG, ETV1, ETV4, ETV5 and FLI1(due to rearrangement) as well as SPINK1 

(unknown mechanism). Our m-ERG classifier demonstrated 95% accuracy in predicting 

FISH-ERG status in an independent validation set, similar to the reported accuracy of ERG 

IHC [29,33,34] as used diagnostically in challenging cases [35]. In the pooled cohort, 45% 

of patients were predicted as m-ERG+, similar to 47% ERG rearrangement positive 

frequency reported from a meta-analysis of over 10,000 PCa samples [36]. We also 

demonstrated the robustness of this m-ERG classifier using PCa/normal prostate tissue pairs 
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and technical replicates. Hence, using this validated classifier, the Decipher prognostic assay 

can also assess ERG status, without the cost or delay of separate IHC or FISH based 

evaluation.

We also developed microarray based classifiers for gene fusions involving other non-ERG 

ETS genes (m-ETS), as well as SPINK1 over-expression (m-SPINK1). As gold standard 

FISH/IHC data for assessing the performance of these classifiers was unavailable, findings 

from these analyses should be considered exploratory, representing a limitation of our study. 

We also identified a total of 3% of cases with m-ERG+/m-ETS+ or m-ERG+/m-SPINK1+ 

profiles. In our experience, ERG, non-ERG ETS and SPINK1 subtype defining alterations 

are nearly always mutually exclusive, and observed co-occurrence is most likely due to 

either misclassification (given the lack of gold standard training data for non-ERG 

classifiers) or profiling of collisions between genetically distinct tumor clones (which may 

appear morphologically indistinguishable), although exceptionally rare examples of focal 

SPINK1 expression in otherwise ERG+ tumor have been reported[7,37,38]. As shown by 

multivariate analysis (Table S8), conflict cases identified herein show similar 

clinicopathological associations as m-ERG+ PCa, consistent with an enrichment of m-ERG+ 

tumors in these conflict cases Thus, studies are ongoing to generate gold standard data for 

these non-ERG based classifiers. Importantly, however, for clinicopathological assessment 

of our microarray defined subtypes, only cases with clearly defined single subtypes were 

included, limiting the impact of these conflict cases on our findings.

Our combined cohort was comprised of over 1,500 PCa patient profiles, allowing us to 

explore clinicopathological and molecular correlates from these microarray defined subtypes 

which have not been addressed in smaller or less comprehensive studies. By multivariable 

analysis, m-ERG+ status was significantly associated with lower Gleason score, lower pre-

operative serum PSA, and European American race. These findings were in keeping with 

other large RP cohorts [36] and further support the validity of our approach. Interestingly, 

although m-ETS+ PCa was associated with lower PSA when compared to TripleNeg PCa, 

this subtype was specifically associated with increased SVI when compared to both m-

ERG+ and TripleNeg. On the other hand, m-SPINK1+ PCa was specifically associated with 

Black/African American race, in line with recent findings from an IHC based RP study 

assessing molecular subtypes and race [39].

At the molecular level, we also attempted to address whether m-ETS+ and m-SPINK1+ PCa 

are similar to m-ERG+ or TripleNeg tumors, respectively, or represent distinct subtypes. 

Results revealed that most m-SPINK1+ PCa cluster with TripleNeg based on global and 

supervised gene expression, unlike m-ETS+ PCa, which shared molecular overlap with both 

TripleNeg and m-ERG+ subtypes. Clinicopathologic associations similarly demonstrate the 

differences between m-ERG+ and other m-ETS+ PCa, as well as the similarity between m-

SPINK1+ and TripleNeg PCa. Thus we believe PCa can be grouped into three clinically and 

molecularly distinct groups (m-ERG+, m-ETS+ and m-SPINK1+/TripleNeg), although the 

detection of SPINK1 may still be useful as a single gene marker, particularly given the 

frequency of over-expression in Black/African American patients (even compared to 

TripleNeg).
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A limitation of our study is the lack of assessment of other relevant genomic lesions that 

occur across (e.g. PTEN deletion) or within specific molecular subtypes (e.g. SPOP 

mutations or CHD1 deletions/mutations in ERG− PCa). Efforts are ongoing to develop 

classifiers for these events, however they are more challenging to detect in gene expression 

data than outlier over-expression based events. Likewise, although our study suggests that 

ERG+ and non-ERG ETS+ PCa subtypes should not be combined in clinicopathological 

analyses, several thousand more samples will need to be profiled to inform on whether the 

non-ERG ETS+ subtype should be stratified by individual alterations (e.g. ETV1+ vs. 

ETV4+). Additional limitations include the lack of central histological review and the 

inclusion of a small subset of fresh frozen samples (n=226) assessed outside the CLIA 

laboratory. All cohorts derive from centers with expert genitourinary pathologists and we 

have shown high concordance of Decipher profiles from matched fresh frozen and FFPE 

samples assessed as herein ([40] and data not shown). Hence, although these factors may 

limit our ability to observe associations, our results are likely more generalizable and several 

individual clinicopathological associations observed herein (e.g. less frequent ERG+ in 

African American men) are consistent with prior studies.

The recognition of over-treatment has led to an enormous interest in the development of 

prognostic biomarkers, including several commercially available gene expression based 

prognostic assays applicable to routine biopsy or RP specimens [9,10,31]. Whether such 

assays are similarly prognostic across previously defined molecular subtypes had not been 

assessed. Our results herein, which show limited effect of subtyping on prognosis and 

prognostic assay performance, are consistent with large FISH/IHC based studies of ERG and 

SPINK1 status in RP cohorts that show a lack of prognostic ability for predicting post-

surgical outcomes. Why subtypes lack prognostic ability despite strong associations with 

known prognostic pathological parameters (i.e. m-ETS+ associated with SVI), and the 

reasons for potential conflicting prognostic associations (i.e. m-ERG+ associated with 

Gleason score <7 and EPE), will require additional research. We and others have 

hypothesized that subtype defining lesions may play a more important role in tumor 

initiation and local growth characteristics, rather than in the factors that drive post-resection 

recurrence[36,41], suggesting prognostic/predictive applications in non-RP based cohorts 

(as discussed below).

Despite the lack of impact on post-RP prognosis, we anticipate that incorporating molecular 

subtyping into a clinically available prognostic assay has several areas of potential near term 

clinical utility. For example, ERG status has been reported as prognostic in several non-RP 

cohorts. Most notably, assessing a cohort of 217 active surveillance (AS) patients, Berg et 

al. reported that patients with any ERG+ cores at diagnosis (by IHC) were more than twice 

as likely to progress compared to ERG− patients; ERG+ was the most significant predictor of 

AS progression in multivariable Cox regression analysis[42]. These findings are in keeping 

with the hypothesis that ERG rearrangements may drive local growth as described above and 

hence molecular subtyping may be particularly relevant in the AS setting. Although 

Decipher has received Medicare coverage in the U.S. for post-RP prognosis, efforts to apply 

this assay to diagnostic biopsy specimen are ongoing. Given the use of other prognostic 

assays that assess biopsy specimens (such as Oncotype DX and Prolaris) largely in patients 
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considering AS, application of Decipher in this setting will enable assessment of the impact 

of m-ERG, m-ETS, mSPINK1/TripleNeg subtypes on prognosis in this setting without the 

need for additional IHC/FISH/RISH based subtyping.

Likewise, incorporating ERG status into prognostic tests may have utility in evaluating 

multifocality/clonality. PCa is commonly multifocal, where a single prostate may harbor 

multiple genetically distinct tumor foci (as has been demonstrated through ERG status) that 

may be indistinguishable by routine histology. For example, patients on AS who have 

consecutive biopsies with discordant microarray subtypes would indicate that different 

tumor clones were sampled, as has been shown by IHC based ERG assessment in a patient 

who developed an aggressive interval cancer while on active surveillance [20]. Of critical 

importance, our approach can now be used to profile multiple foci at RP (or multiple 

involved prostate biopsy cores) and directly assess the impact of true multifocality (as 

indicated by discordant subtypes) on the Decipher prognostic score and other derived 

prognostic signatures. Although other prognostic assays have reported robustness to 

multifocality [10], molecular subtyping was not incorporating and hence it is unclear if 

separate areas of the same tumor focus or truly genetically independent tumors (as would be 

indicated by discordant subtypes) were profiled. Given the need for prognostic assays to be 

reflective of the most aggressive tumor focus, even if not sampled in the assessed biopsy 

specimen, our approach can be used to directly assess the robustness of prognostic assays to 

true multifocality.

Lastly, the ability to robustly detect molecular subtypes allows for pre-specified molecular 

subgroup analyses or enrichment of patient populations for clinical trials [20], which 

although common in precision medicine approaches in other cancers, are not routinely used 

in PCa. Importantly, ETS rearrangements are nearly always early, clonal alterations, 

suggesting that subtypes identified in diagnostic biopsy or RP samples will be maintained 

through advanced disease [1–3]. As an example of the potential predictive utility of PCa 

molecular subtypes, Galletti et al. demonstrated that in a pilot cohort of 34 men with 

metastatic castration resistant PCa (CRPC) treated by docetaxel chemotherapy, men with 

ERG+ primary tumors (by IHC) were nearly twice as likely to show resistance (by lack of 

PSA response) than men with ERG− tumors [43]. Likewise, pre-clinical data supports 

targeting of specific subtype defining alterations (e.g. targeting PARP in ERG+ or ETS+ and 

targeting EGFR in SPINK1+ PCa)[44,45], culminating in ongoing clinical trials are ongoing 

that require ERG and ETV1 status evaluation (NCT01576172). Importantly, several 

molecularly defined subtypes in other cancers, (i.e. KRAS/ALK/EGFR mutant lung cancer) 

show little to no association with prognosis but have distinct clincopathological features and 

became predictive and clinically useful only after the development of targeted therapies 

[46,47].

CONCLUSIONS

Several lines of evidence support PCa molecular subtypes, defined largely by mutually 

exclusive genomic/transcriptomic events. The most commons subtype defining lesion—

ERG rearrangement—has been evaluated clinically by FISH and IHC. Herein, we validate 

the use of extra data from a clinically available gene expression based prognostic assay 
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(Decipher) for assessing ERG rearrangement status. Additionally, although 

clinicopathological and molecular associations for m-ERG+ vs. m-ERG− PCa are well 

described, little is known about less frequent subtypes. Hence, we also developed classifiers 

for subtypes defined by rearrangements of other ETS genes or SPINK1 over-expression and 

explored associations in over 1,500 PCa. Importantly, gene expression profiles and 

clinicopathological associations support three general molecular subtypes (m-ERG+, m-

ETS+, and m-SPINK1+/TripleNeg), providing the most comprehensive support for 

distinguishing ERG+ and ETS+ PCa. Of note, although IHC/FISH/RISH assays have been 

developed to assess these molecular subtypes, our microarray based classifiers are derived 

from “extra” data generated as part of the Decipher assay, a prognostic assay performed in a 

CLIA certified laboratory; hence a potential advantage of this assay compared to other 

assays is the inclusion of molecular subtyping information without the need for additional 

testing, delay or cost. Taken together, we demonstrate the validity of PCa molecular 

subtyping using extra data from a gene expression based prognostic assay and identify novel 

clinicopathological and molecular correlates to these subtypes. Although we demonstrate 

that molecular subtypes are not prognostic in the post-prostatectomy setting (nor impact the 

performance of currently available prognostic signatures), we anticipate that molecular 

subtyping will complement purely prognostic based tests in several areas of PCa 

management including non-RP cohorts.
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PATIENT SUMMARY

Prostate cancer molecular subtyping can be achieved using “extra” data generated from a 

clinical-grade genome wide expression profiling prognostic assay (Decipher). 

Transcriptomic and clinical analysis support three distinct molecular subtypes: 1) m-

ERG+ 2) m-ETS+, and 3) m-SPINK1+/Triple Negative (m-ERG−/m-ETS−/m-SPINK1−). 

Incorporation of subtyping into a clinically available assay may enable additional 

applications beyond routine prognosis.

Tomlins et al. Page 16

Eur Urol. Author manuscript; available in PMC 2016 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Development and validation of microarray based prostate cancer (PCa) molecular 
subtyping using genome wide expression profiling data from the Decipher assay
A. Development of a microarray based ERG rearrangement classifier (m-ERG) from 

genome wide expression profiling data from the Decipher assay. Unsupervised clustering of 

the training subset (n=252 samples) from the discovery cohort (Mayo Clinic I) was 

performed using gene expression from ERG exon (orange) and intron (green) probe sets (5′ 

on bottom). Expression of five summarized features was used to train a random forest (RF) 

classifier based on known fluorescence in situ hybridization (FISH) assessment of ERG 

rearrangement status (F-ERG) . m-ERG and F-ERG status for each profiled sample are 

indicated in the header according to the legend. B. m-ERG scores in the validation subset 

(n=155) of the discovery cohort are plotted with stratification by F-ERG status. The 

predefined m-ERG+/ERG− score cutoff is indicated by the black dashed line. Classification 

results are shown in the contingency table. C. Development of microarray based classifiers 

for other ETS gene rearrangements and SPINK1 over-expression using outlier analysis. 

Beeswarm plots show core-level expression of ETV1, ETV4, ETV5, FLI1 and SPINK1 in the 

discovery (n=580 samples, left panels) and evaluation cohorts (n=997 samples, right panels). 

Outlier analysis was used to define indicated cut-off scores for m-ETV1, m-ETV4, m-ETV5, 

m-FLI1, and m-SPINK1 classifiers in the discovery cohort and then applied to the 

evaluation cohort.
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Figure 2. Distribution of molecular PCa subtypes across assessed cohorts
In each cohort (total samples assessed given), the percentage of samples in each microarray 

defined subypte (m-ERG+, m-ETS1+, m-SPINK1+ and m-ERG−/m-ETS−/m-SPINK1− 

[TripleNeg]) are shown according to the legend. Cohorts are ordered based on frequency of 

Adverse Pathology Findings (APF%, bottom panel). Mayo Clinic I (bolded) was used as the 

discovery cohort, while the remaining cohorts were used as the evaluation cohort.
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Figure 3. Gene expression profiling support high similarity of m-SPINK1+ and TripleNeg 
subtypes, unlike m-ETS+ and m-ERG+ PCa
A. m-ERG+ and TripleNeg expression centroids were generated by identifying all probesets 

(n=360) with AUC>0.7 for discriminating m-ERG+ and TripleNeg samples across all 

cohorts (n=1,531 samples). To assess the relationship of m-SPINK1+ and m-ETS+ PCa to 

m-ERG+ and TripleNeg, the relative closeness of each m-SPINK1+ or m-ETS+ sample to 

the m-ERG+/TripleNeg centroids is plotted (larger value indicates more similarity). B. 
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Clustering of subtype defining gene expression demonstrates overlap of m-SPINK1+ and 

TripleNeg PCa and unique profiles of m-ETS+ PCa. Expression of the most predictive genes 

for each subtype (AUC>0.70 for discrimination from all other subtypes, n=360) were used 

for clustering all profiled samples (n=1531). Benign specimens (yellow) from the DKFZ 

cohort clustered separately from all PCa samples.
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Figure 4. Performance of a multigene PCa prognostic predictor (Decipher) is similar across 
molecular subtypes
The Decipher score (greater score predicts increased aggressiveness) for each profiled 

sample in the pooled cohorts (n= 997, excluding Mayo Clinic I as it was used for Decipher 

discovery) is plotted, stratified by assigned molecular subtypes. Patients who developed 

metastasis or not are indicated by blue and red points, respectively, and median scores per 

subtype are indicated by bars. The AUC for Decipher score prediction of metastasis 

development in each subtype (along with 95% CI) is given. AUCs in each subtype were 

significantly greater than expected by chance (p<0.0001 for all subtypes).
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Figure 5. Kaplan Meier analysis demonstrates similar PCa outcome measures across molecular 
subtypes
Kaplan Meier analysis was performed for all Mayo Clinic II cohort samples (case cohort, 

n=235 samples) stratified by assigned molecular subtype for A) biochemical recurrence 

(BCR), B) metastasis (MET) and C) prostate cancer specific mortality (PCSM) free 

survival. Log Rank p values are given, along with the percentage of each subtype 

experiencing each outcome.
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