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Tumor Necrosis Factor Inhibitors in Psoriatic Arthritis 

ABSTRACT 

Introduction:  Psoriatic arthritis (PsA) is a chronic inflammatory disease that can result in 

significant disability.  With the emergence of tumor necrosis factor inhibitors (TNFi), therapeutic 

outcomes in PsA have improved substantially.  The clinical efficacy and the inhibition of 

radiographic progression demonstrated by TNFi have transformed the management of PsA.  

However, there is still an unmet need for a subset of patients who do not respond adequately to 

TNFi.   

Areas Covered:  This review provides an overview of the pharmacokinetics of TNFi, the efficacy 

of TNFi in PsA, and the role of immunogenicity of TNFi in the treatment of PsA. In addition, we 

address the use of TNFi in the setting of other medications utilized in the treatment of PsA and 

the potential future role of biosimilars. 

Expert Commentary:  Monoclonal antibodies exhibit complex and widely variable 

pharmacokinetics.  The study of factors that can affect the pharmacokinetics, such as 

immunogenicity, is valuable to further define and understand the use of TNFi in PsA, especially 

in the subset of patients who do not respond adequately to these agents or lose effectiveness over 

time. 

   

 

 

 

  



1. Introduction 

Psoriatic arthritis (PsA) is a chronic inflammatory disease that affects the joints, periarticular 

structures, skin, and nails.  The disease can result in permanent joint damage and disability. The 

prevalence of PsA ranges from 0.06% to 0.25% in developed countries such as the US, UK, and 

Western Europe.  It is common among patients with psoriasis with a prevalence ranging from 6-

41% [1]. Treatment of PsA has evolved substantially since the 1990s with introduction of the 

tumor necrosis factor inhibitors (TNFi).  This review will focus on the pharmacology and clinical 

efficacy of the TNFi in PsA.   

2. Psoriatic Arthritis 

2.1 Clinical Manifestations 

PsA is a heterogeneous condition encompassing a wide range of clinical manifestations that 

include the key domains of peripheral and axial arthritis, inflammation at tendon/ligament 

insertion sites (enthesitis), diffuse swelling of an entire finger or toe (dactylitis), nail disease, and 

psoriasis [2].  The incidence and prevalence of cardiovascular disease and diabetes is increased 

in PsA [3].  Inflammatory bowel disease and ophthalmic disease, particularly uveitis, are 

considered extra-articular manifestations of the disease [3-4].  

2.2 Risk Factors 

Although PsA can occur prior to developing psoriasis, psoriasis usually precedes PsA in the vast 

majority of patients by approximately 10 years [5-6].  Obesity has been associated with an 

increased risk of developing PsA not only in patients with psoriasis, but also among patients in 

the general population [7-8].  Nail disease has been suggested as a potential risk factor for PsA 

but may also be just an early feature of the disease [1].  Intergluteal/perianal psoriasis, and scalp 

lesions in psoriasis patients may be associated with a greater likelihood of developing PsA [9].  



Other potential associations include a family history of PsA and severe psoriatic dermatoses [10-

11]. 

2.3. Importance of Early Diagnosis 

Early diagnosis of PsA is crucial for prevention of disease progression [12] and may also 

influence development of comorbidities.  Early PsA has been defined as within one to two years 

of the onset of symptoms [13].  Erosions and worse long term physical outcomes have been 

demonstrated with even a six-month delay in diagnosis [14-17].  Unlike conventional synthetic 

disease modifying antirheumatic drugs (csDMARDs), TNFi have been demonstrated to prevent 

or slow radiographic progression of PsA.  Early institution of therapy within 6 months of disease 

initiation results in improved response to therapy and improved long term outcomes [12, 18].      

2.4. Treatment 

The most widely used consensus treatment recommendations are The Group for Research and 

Assessment of Psoriasis and Psoriatic Arthritis (GRAPPA) and the European League Against 

Rheumatism (EULAR) recommendations (Figure 1 & 2).  Overarching principles of therapy are 

similar, and include shared decision making with the patient, controlling symptoms and 

preventing damage, improving quality of life, minimizing or avoiding complications, and 

assessing comorbidities.  A central feature in the treatment of PsA is considering all the domains 

involved when deciding on a treatment regimen.  The GRAPPA and EULAR recommendations 

favor a “step-up” approach for the treatment of PsA [4,19].  NSAIDS and intra-articular 

corticosteroids may be effective in reducing pain from inflammation.  Traditional oral therapies 

such as methotrexate (MTX), leflunomide (LEF), and sulfasalazine (SSZ) can decrease 

inflammation and improve symptoms.  Both NSAIDS and csDMARDs are commonly used in 

PsA, but neither treat all domains of the disease. Other than the TICOPA study, a treat to target 



study in PsA [20], there is little data confirming the efficacy of MTX in PsA [21-23].  However, 

csDMARDS, particularly MTX, continue to be a mainstay of treatment even though they have 

not been shown to clearly inhibit radiographic progression and there is a paucity of efficacy data. 

MTX remains the most commonly used therapy for PsA and has good retention rates (e.g, 2-year 

retention rates of 65%, Lie et al. in 2010 [24]).  The GRAPPA recommendations do not 

specifically delineate MTX as the csDMARD of choice or TNFi as the first biologic DMARD 

(bDMARD) of choice [4].  TNFi are the first line bDMARD of choice in the EULAR 

recommendations on the basis of clinical data and evidence of efficacy and long-term safety data 

that is available compared to other biologic agents, such as the IL-17A inhibitor, secukinumab, 

and the IL-12/23 inhibitor, ustekinumab [19].  Furthermore, the TNFi have been shown to inhibit 

progressive joint destruction and are an effective treatment for all domains of the disease [25].  

As there is a paucity of data on axial disease in PsA, recommendations are derived from data for 

axial spondyloarthritis [26-30].  Both organizations recommend bDMARDs after NSAID failure 

for axial disease and enthesitis as csDMARDs are not efficacious in these two disease domains 

[4,19].  A distinction between the two sets of recommendations is that GRAPPA 

recommendations allow for an “expedited therapeutic route” in which csDMARDs are bypassed 

and a bDMARD may be initiated early.  This recommendation is based on a) the efficacy of 

bDMARDS and relatively little data for traditional oral agents for long term prevention of 

progression and b) the relative lack of efficacy of oral agents for enthesitis, both particularly in 

the patient with poor prognostic factors (e.g., elevated C-reactive protein or high joint counts) 

[4].   

2.4.1 Defining Treatment Response 

The primary outcome used in PsA randomized controlled trials (RCTs) is the American College 



of Rheumatology (ACR)-20% improvement criteria.  Patients must achieve at least a 20% 

improvement in the tender and swollen joint counts and at least three of the five remaining 

outcome measures: Health Assessment Questionnaire-Disability Index, Patient pain assessment, 

Patient global assessment, Physician global assessment, C-reactive protein.  Psoriasis severity is 

measured in RCTs using the Psoriasis Area and Severity Index (PASI) score.  The PASI75 is an 

improvement of at least 75% in the PASI score [31].  PASI75 (or even PASI90) is generally a 

secondary outcome in RCTs examining therapies for PsA. While ACR20 and PASI are the most 

commonly used outcome measures in trials, these measures are not often used in clinical 

practice.  Instead a variety of outcome measures are used including joint counts, enthesitis 

measures, dactylitis assessment, psoriasis severity, and patient reported outcomes [6, 32].   

3. Tumor Necrosis Factor  

In 1975, TNF was recognized as an endotoxin-induced glycoprotein that caused hemorrhagic 

necrosis of transplanted sarcomas in mice [33].  Since then, it has been associated with a wide 

range of biologic conditions and has been identified as an important pro-inflammatory cytokine 

[34].  Overexpression of TNF has been implicated in the pathogenesis of a wide variety of 

diseases, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, and PsA [35-36].  

TNF is a pleotropic cytokine that is produced by cells such as activated macrophages, T 

lymphocytes, monocytes, neutrophils, mast cells, endothelial cells, fibroblasts, and osteoclasts.  

It is a key driver of many inflammatory activities in the body and also contributes to cell 

proliferation, apoptosis, and angiogenesis [35, 37].  Transmembrane TNF (tmTNF), a 26 kDa 

protein, is cleaved by a metalloproteinase, TNF-alpha-converting enzyme (TACE), and is 

ultimately released as a soluble cytokine, sTNF (17kDa) [34, 38-40].  sTNF and tmTNF can then 

bind to TNF receptor 1 (TNFR1, p55) or TNF receptor 2 (TNFR2, p75) and exert biological 



effects on various cell types [34, 38].  TNFR1 and TNFR2 use different signaling mechanisms; 

they have differing affinities to ligands and distinct cellular expression profiles [38].  These 

differences may contribute to varied biological responses [34, 41].   

4. Role of TNF in the Pathogenesis of PsA (Figure 3) 

While genetic and environmental factors may play a role in the development of PsA, the immune 

response to such triggers is what sustains the disease. Inflammation in PsA is thought to be 

driven both by the Th1 and Th17 pathways. In both pathways, TNF superfamily proteins 

are important for sustaining inflammation [42].  When the inciting antigen is presented to the 

initial T-cell, unregulated IL-12 causes differentiation and propagation of Th1 cells and 

contributes to the release of pro-inflammatory cytokines, including TNF [43].  Conversely, IL-23 

is thought to play a key role in the pathogenesis of PsA by triggering Th17 cell differentiation 

[44].  This leads to production of IL-22 and IL-17.  IL-17 leads to upregulation of TNF [45].  

TNF, along with several other cytokines, induces expression of receptor activator of nuclear 

factor-κB ligand (RANK-L), a member of the TNF superfamily, promoting 

osteoclastogenesis and eventually erosion formation [46]. TNF also induces expression of 

Dickkopf-related protein 1 (Dkk-1) by synovial fibroblasts, inhibiting osteoblastogenesis, further 

promoting erosions [46].   

5. TNF Inhibitors 

Etanercept, infliximab, adalimumab, certolizumab pegol, and golimumab are the TNFi that have 

been approved for PsA in the US and UK.  Etanercept was the first FDA approved TNFi for the 

treatment of PsA in January 2002.   

5.1 Structure and Mechanism of Action of TNFi  

TNFi are monoclonal antibody therapeutics directed at TNF.  IgG monoclonal antibodies are 



large proteins that possess hydrophilic properties [48].  They consist of two unique heavy chains 

and two unique light chains each of which has constant and variable domains [48].  The heavy 

and light chains are linked by disulfide bonds and connected by disulfide bonds at the hinge 

region to a fragment crystallizable (Fc) region [49].  The fragment antigen-binding region (Fab) 

is the antigen-binding portion and the Fc region is the portion which takes part in Fc mediated 

actions, such as complement-dependent cytotoxicity and antibody-dependent cell mediated 

cytotoxicity [50].   The Fc portion also binds to the neonatal Fc receptor (FcRn), which is 

integral in protecting the antibody from intracellular catabolism [49, 51].  The hypervariable 

region at the top of the variable domain is where binding to the target antigen occurs [48-49].   

 

With the exception of certolizumab and etanercept, the remaining three TNFi are full-length 

bivalent monoclonal antibodies (mAB) [38] (Figure 4).  Certolizumab is a humanized (exogenic 

hypervariable regions) IgG1 monoclonal antibody with a Fab1 fragment [38, 48]. The hinge 

region is modified and is linked to polyethylene glycol allowing for better solubility, half-life, 

bioavailability, and decreased immunogenicity.  It has an affinity for both sTNF and tmTNF 

[52].  Unlike the other TNFi, certolizumab does not have an Fc portion and therefore does not 

take part in Fc mediated actions [50].  In contrast to the other TNFi, etanercept is a genetically 

engineered soluble fusion protein that is composed of two extracellular portions of the p75 TNF 

receptor linked to the Fc portion of human IgG1 [38].  It binds to both sTNF and tmTNF at the 

receptor binding site, preventing the binding of TNF with the p75 receptor [38, 53].  The short 

half-life of entanercept may in part be due to a difference in the conformation of the Fc region 

[38].  In addition, etanercept is the only TNFi of the five that also binds members of the 

lymphotoxin (LT) family (also members of the TNF superfamily), specifically LTα3 and 



LTα2β1 [38].  Infliximab is unique in that it is a chimeric IgG1k mouse and human monoclonal 

antibody that consists of human constant regions of IgG1k and murine variable regions [38, 54].  

It binds to both sTNF and tmTNF with high affinity via the E-F loop, blocking the ability of TNF 

to bind to its receptors [55].  Adalimumab is a recombinant human IgG1 antibody.  It occupies 

the TNF receptor-binding site of both sTNF and tmTNF with high affinity, preventing the 

binding of TNF to its receptors [54-55].  Like adalimumab, golimumab is a human 

immunoglobulin IgG1 monoclonal antibody that binds to both sTNF and tmTNF [38, 56].   

(Table 1) 

5.2 General Pharmacokinetic Properties of TNFi 

5.2.1 Absorption 

As large protein molecules with poor membrane permeability, TNFi are administered 

parenterally.  The oral bioavailability is very low as they are denatured in the acidic environment 

of the stomach or they undergo a rapid proteolytic cleavage in the GI tract [49, 57].  It is 

hypothesized that monoclonal antibodies are absorbed via the lymphatic system by convection 

and diffusion across blood vessels [49, 51].  Absorption can take anywhere from about one to 

eight days [58].  Most of the TNFi are administered subcutaneously (infliximab is intravenous 

only and golimumab can be given IV or subcutaneously), which can cause variability among 

patients in regards to the amount of drug absorbed [59].   

5.2.2 Distribution 

Given their large weight and hydrophilic nature, monoclonal antibodies usually have a small 

volume of distribution [49].  The molecules usually reside in the vascular and interstitial spaces 

and are distributed via paracellular movement by convection and via transcellular movement by 

endocytosis (phagocytosis, receptor-mediated endocytosis, or fluid-phase pinocytosis) [49, 51].  



Convective transport is driven by the blood-tissue hydrostatic pressure gradient.  Osmotic 

pressure gradients and the characteristics of the paracellular pores also affect convective 

transport [58].  

5.2.3 Metabolism and Excretion 

Since monoclonal antibodies are large molecules, they are not predominantly renally excreted.  

The PEG portion of certolizumab decreases its renal excretion secondary to increasing the size of 

the molecule [52].  Very little is also excreted in bile [49, 51].  These molecules undergo 

catabolic metabolism via Fc-receptor mediated elimination and target mediated elimination 

(clearance following binding to target) [49].  The Fc portion is also thought to contribute to the 

long half-life of most of these monoclonal antibodies since it interacts with the FcRn, which has 

a mechanism that protects these molecules from systemic elimination [60]. (Table 2) 

5.3 Pharmacokinetics of TNFi 

TNFi differ in their pharmacokinetic (PK) properties. Underlying disease type or severity, body 

weight, immunogenicity, and the concomitant use of other medications such as MTX can impact 

PK parameters. Elimination of TNFi for the treatment of PsA generally follows linear kinetics 

and volume of distribution is that of the central compartment (~6 L). [48, 61-66].  Table 3 

outlines the pharmacokinetics of monoclonal antibodies utilized in rheumatic diseases with an 

emphasis, when available, on population pharmacokinetic parameters in PsA. 

5.3.1 Obesity 

Obesity impacts the pharmacokinetics of TNFi.  Higher disease activity is seen in obese PsA 

patients and disease registries suggest obesity is associated with a decreased response to TNFi 

[78].  PsA patients on TNFi that lost >5% from their baseline weight were found to be 

significantly more likely to achieve minimal disease activity (MDA) than patients who did not 



lose weight [79].  Obesity may affect the pharmacokinetics of TNFi secondary to insufficient 

dosing, changes in volume of distribution, and increased drug elimination. [48, 78]. 

5.3.2 Immunogenicity 

Immunogenicity, the ability of a substance to cause an immune response [49], can play a role in 

the varying pharmacokinetics of monoclonal antibodies.  The underlying disease, duration of 

treatment, route of administration, concomitant medications, dose frequency, genetic 

predisposition, assay methodology, and the type of antibody can all affect the immunogenicity of 

TNFi [80-82].  Humanization of monoclonal antibodies may help to decrease immunogenicity 

[48, 51].  Thus, the chimeric structure of infliximab can account for its high immunogenicity 

potential.  A meta-analysis of TNFi immunogenicity in RA, inflammatory bowel disease, and 

spondyloarthritis (PsA and ankylosing spondylitis) among patients using one of the five TNFi 

demonstrated infliximab was the most and etanercept the least immunogenic [83].  There is 

sparse data regarding the extent of immunogenicity of golimumab and certolizumab in PsA. 

The elimination rate of TNFi is impacted by immunogenicity.  Anti-drug antibodies will increase 

the elimination rate of TNFi [48, 67, 75, 80].  They may form immune complexes with the drug 

accelerating its clearance [84].  Small studies have demonstrated a correlation between anti-

adalimumab antibodies and decreased serum concentration and thus decreased clinical response 

[85-86].  Another small study demonstrated elevated levels of anti-drug antibodies to 

adalimumab and infliximab, but not etanercept in PsA patients, which correlated with low 

therapeutic drug levels and thus decreased drug efficacy [87].  

5.3.3 Concomitant use of MTX and Immunogenicity 

There is an association between MTX, a widely used therapy in PsA, and the development of 

anti-drug antibodies.  A meta-analysis by Thomas et al showed that MTX can attenuate the 



formation of antibodies by 74% overall and antibodies decreased clinical response by 18% 

overall in SpA (based on 4 studies looking at infliximab, adalimumab, and etanercept [83].  In 

RCTs of infliximab and golimumab, a greater proportion of patients on TNFi monotherapy were 

positive for antibodies compared to those taking concomitant MTX [88-89].  However, efficacy 

of TNFi is not generally impacted by MTX use [88-94].  Interestingly, a post-hoc analysis 

determined that patients who were taking combination MTX and golimumab had a ten percent 

greater improvement in nail, dactylitis, and enthesitis scores compared to those not taking MTX 

[89]. In an observational cohort study of 375 patients with RA or PsA treated with adalimumab, 

trough concentrations were higher in patients concomitantly taking MTX and lower in patients 

on adalimumab monotherapy [95].  

6. Key Clinical Trials of TNFi in PsA 

TNFi in PsA were found to be efficacious with tolerable safety profiles in pivotal phase III trials 

(Table 4).  The most common adverse events include injection site reactions, infusion reactions 

in infliximab, and infections [6].  All five TNFi demonstrated an inhibition in radiographic 

progression.  In the GO-REVEAL 5-year study, concomitant MTX appeared to reduce 

radiographic progression [91].  Only the certolizumab trials included patients who were exposed 

to TNFi previously (19.8% of patients).  Interestingly, improvements in ACR 20 response rates 

at 12, 24, and 96 weeks were observed for both doses regardless of prior TNFi exposure [93, 96].  

7. Other Treatment Options for PsA 

A number of patients do not respond to TNFi and many more have a loss of response over time.  

Thus, recognition of the IL-23/IL-17 pathway in the pathogenesis of PsA and molecules that are 

targeting other cytokines in the pathway have been integral to the development of further 

medications to treat PsA.  



7.1 Apremilast 

Apremilast is an oral phosphodiesterase 4 inhibitor (PDE-4i) that is approved for the treatment of 

PsA.  PDE4 mediates the breakdown of cAMP, which regulates inflammatory responses. Thus, 

PDE4 inhibitors demonstrate anti-inflammatory effects [103]. The clinical efficacy of apremilast 

in PsA patients who have already been treated with csDMARDS and/or bDMARDS or are on 

csDMARDS was studied extensively with several pivotal randomized placebo-controlled trials 

(Table 5).  In the Psoriatic Arthritis Long-term Assessment of Clinical Efficacy (PALACE) 

phase III trials, in PALACE 1, 2, and 3, the primary endpoint, an ACR20 response at week 16, 

was achieved by significantly more patients taking apremilast 20 mg or 30 mg bid as compared 

to placebo regardless of prior treatment.  bDMARD-naïve patients had higher ACR20 response 

rates [104-106].  Sustained improvements were seen through week 52 in PALACE 1, 2, and 3. In 

PALACE 4, patients who were DMARD-naïve were studied over a 52-week period.  The 

primary end point was met for both doses at weeks 16 and 52 [107]. Studies suggested a lack of 

efficacy of apremilast in axial disease [108-109].  The most common adverse events were 

diarrhea and nausea [104-107].   

7.2 Secukinumab 

Secukinumab is a human IgG1 monoclonal antibody that binds to and neutralizes IL-17A.  

FUTURE 1 and 2 are key phase III, randomized, double-blind, placebo-controlled trials that have 

demonstrated the efficacy of secukinumab in the key domains of PsA (Table 5) [110-111].  

MEASURE 1 and 2 are key phase III, randomized, double-blind, placebo-controlled trials that 

have demonstrated the efficacy of secukinumab in ankylosing spondylitis and thus should be 

effective for axial disease in PsA [112].  Additionally, secukinumab has been shown to decrease 

radiographic progression [110].  Efficacy was noted regardless of concomitant MTX use and 



among patients with prior TNF exposure, though the response was lower.  Generally, 

numerically higher ACR responses were noted in the anti-TNF naïve populations.  Efficacy was 

sustained through week 52.  Candida infections were more common in secukinumab versus 

placebo, which may be because IL-17 plays a role in host defense again fungal infections [110-

111].   

7.3 Ustekinumab 

Ustekinumab inhibits IL-12 and IL-23 by binding to the p40 subunit of IL-12 and IL-23.  

PSUMMIT 1 and PSUMMIT 2 are pivotal phase III, double-blind, placebo-controlled trials that 

studied ustekinumab in PsA patients and found that there was a significant improvement in joint 

and skin disease and less radiographic progression compared to placebo (Table 5).  In 

PSUMMIT-1, ACR20 response rates were maintained at week 52 and efficacy was noted 

regardless of MTX use [113].  In contrast to PSUMMIT-1, in PSUMMIT-2, 58% of patients had 

been on TNFi previously. Clinical improvement was noted regardless of prior TNF exposure but 

was again lower (as has been seen in other studies of TNF inadequate responders).  Anti-TNF-

naive patients appeared to have a higher clinical response than anti-TNF-experienced patients 

[114].  Phase III, randomized, double-blind, placebo-controlled trials are underway to evaluate 

the efficacy and safety of ustekinumab in ankylosing spondylitis [117-118].  Ustekinumab has a 

tolerable safety profile with a low incidence of serious infections and sustained clinical 

improvement through week 100 [115]. 

8. Expert Commentary 

PsA is a heterogeneous, often debilitating disease that is associated with several comorbidities.  

Early intervention is vital to prevent disease progression.  Although csDMARDS show variable 

efficacy in PsA [19,22], they have remained key medications in treatment largely in part due to 



cost considerations.  With the emergence of TNFi, treatment options have vastly expanded for 

PsA patients.  TNFi inhibit radiographic progression and are effective in treating all the domains 

of PsA [25].  However, some patients do not respond to TNFi or response may wane over time.  

Thus, the emergence of IL-17A inhibitors, IL-12/23 inhibitors, and small molecule treatments 

such as apremilast have provided a wider range of therapeutic options for PsA.  Although 

apremilast has the advantage of being an oral medication with a relatively benign side effect 

profile, its effect on radiographic progression has not been examined.  The TNFi agents 

etanercept, infliximab, adalimumab, and golimumab appear to have ACR20 advantage over 

newer non-TNFi biologics such as apremilast and ustekinumab, when compared using indirect 

methods [119].  There are no direct comparative efficacy trials between non-TNFi biologics, 

however indirect comparisons suggest similar efficacy and safety among available agents [120].   

There are also several new medications that are currently being evaluated for the treatment of 

PsA (Table 6).   

Even though there is an emergence of many new therapies in PsA, there is a subset of patients 

that do not adequately respond to available treatments.  Thus, it would be of benefit to further 

study established therapies in PsA such as TNFi by assessing parameters that affect drug 

concentrations in this patient population.  Given that monoclonal antibodies exhibit complex and 

widely variable pharmacokinetics, further population PK studies in PsA would be helpful in 

identifying covariates, such as age, immunogenicity, weight, comorbidities, and concomitant 

medications, which can influence dose-concentration-effect relationships [80].  Outside of 

weight based dosing adjustment, individualization of dosing is currently not the standard for 

monoclonal antibodies in autoimmune disease. A model based approach that links monoclonal 

exposure with disease state may eventually allow for more individualized dosing based upon 



disease phenotype, endotype (biomarker driven) and potentially, though less likely, genotype. In 

addition to drug concentrations, anti-monoclonal drug antibody levels can play a role on the 

effect of treatment discontinuation and adverse events such as infusion reactions, which have 

occurred at a higher incidence in antibody positive patients [81, 88].  It can provide insight into 

whether or not switching to another TNFi or a medication with a different mechanism of action 

in patients with poor clinical outcomes would be of greater benefit.  Thus, having a better 

understanding of the factors associated with inter-individual variability and the extent of that 

variability may eventually contribute to potential dosing strategies that can improve clinical 

outcomes, especially in patients with TNFi failure. 

While combination treatment may be common in clinical practice, there is little data regarding its 

clinical efficacy [4, 19].  However, decreased immunogenicity of TNFi with concomitant MTX 

may play a role in improving drug survival rates of TNFi [121-122].  In addition, one study 

noted higher drug levels in a small group of 26 patients on adalimumab combination therapy 

(with csDMARDS such as LEF, SSZ, or HCQ) compared to patients using adalimumab 

monotherapy [95].  Prospective, randomized clinical trials of TNFi with various csDMARDs to 

assess trough antibody drug concentrations, anti-drug antibody levels, the measurement of a 

clinical response (ACR 20 response), and to further assess the potential long term side effects of 

combination therapy in PsA would be of value. 

9. Five-year View 

With further understanding of the pathogenesis of PsA, novel treatment options are emerging.  

Over the last several years, many effective therapeutic options have been introduced and more 

are yet to come.  Biosimilars, which are products similar to already approved drugs in regard to 

quality, safety, and efficacy [123], may help to alleviate the economic burden associated with 



TNFi.  Few studies have evaluated infliximab, etanercept, and adalimumab biosimilars for PsA.  

These agents have been approved in the United States for PsA based on similar efficacy to the 

reference product in psoriasis and/or RA [123-124].  Immunogenicity has been the same, and in 

some cases less than reference products [125]. Switching established patients in ankylosing 

spondylitis and rheumatoid arthritis from infliximab to the biosimilar product CP-P13 is not 

associated with a loss of control [126-127].  Extrapolation from other disease states is 

complicated if alternate dosing regimens are used. RCTs or pragmatic trials specific to PsA may 

provide beneficial information regarding the efficacy and safety of biosimilars, but with current 

evidence the use of biosimilars in established or de novo patients appears to reasonable.  Similar 

to their reference products, trials evaluating how the combination of a biosimilar with a 

csDMARD affects immunogenicity would be of interest.  Long-term pharmacoepidemiology 

studies assessing predictors of response to biosimilars and the effectiveness of switching from 

the reference product to a biosimilar and vice versa will provide valuable information. 

Key Issues 

• Psoriatic Arthritis is a chronic, debilitating disease associated with several comorbidities. 

• TNFi are a mainstay of treatment in PsA and inhibit radiographic progression. 

• Several factors affect the pharmacokinetic properties of TNFi, including underlying 

disease type or severity, body weight, immunogenicity, and the concomitant use of other 

medications such as MTX. 

• Identifying drug concentrations and anti-monoclonal drug antibody levels may help more 

quickly identify patients with TNFi failure and may provide insight regarding medication 

changes.  

• Assessing the effect of combination csDMARDS and TNFi on immunogenicity may 



contribute to future treatment recommendations.  

• While not tested specifically in PsA, biosimilars are expected to have similar efficacy and 

safety to reference products.  
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FIGURES 

 

Figure 1.  Simplified GRAPPA Treatment Recommendations [4] 

*combination csDMARDS and TNFi common in clinical practice 

**Conditional recommendations: At the time these recommendations were published, these drugs 

were not approved or recommendations were based on data from abstracts 

csDMARD, conventional synthetic DMARD; CSA, cyclosporin A; GRAPPA, Group for 

Research and Assessment of Psoriasis and Psoriatic Arthritis; IL-17i, interleukin-17 inhibitor; 

IL-12/23i, interleukin-12/23 inhibitor; LEF, leflunomide; MTX, methotrexate; NSAIDS, 

nonsteroidal anti-inflammatory drugs; PDE-4i, phosphodiesterase 4 inhibitor; SSZ, sulfasalazine; 

tsDMARD, targeted synthetic DMARD; TNFi, tumor necrosis factor inhibitor 

 

Figure 2. Simplified EULAR Treatment Recommendations [19]  



*bDMARD includes TNFi, IL-12/23i, IL-17i.  The preference initially is a TNFi, but if 

contraindicated, can consider one of the others or a PDE-4i. 

**no adverse prognostic factors: can try a second csDMARD or combination therapy 

bDMARD, biologic DMARD; csDMARD, conventional synthetic DMARD; CI, 

contraindicated; EULAR, European League Against Rheumatism; IL-17i, interleukin-17 

inhibitor; IL-12/23i, interleukin-12/23 inhibitor; LEF, leflunomide; MTX, methotrexate; 

NSAIDS, nonsteroidal anti-inflammatory drugs; PDE-4i, phosphodiesterase 4 inhibitor; SSZ, 

sulfasalazine; tsDMARD, targeted synthetic DMARD; TNFi, tumor necrosis factor inhibitor 

 

Figure 3. Pathogenesis of Psoriatic Arthritis 

The Th1 and Th17 pathways are important pathways involved in the pathogenesis of PsA.  TNF, 

a pro-inflammatory cytokine, is a key player in osteoclastogenesis via RANK-L and in inhibition 

of osteoblastogenesis via Dkk-1.  Both processes eventually lead to bone erosions [46].  In 

addition, IL-22 is involved in the pathologic formation of new bone (osteoproliferation) [47].   

APC, antigen presenting cell; Dkk-1, dickkopf-related protein 1; IFNγ, interferon gamma; IL-12,  

interleukin-12; IL-17, interleukin-17; IL-22, interleukin-22; IL-23, interleukin-23; RANK-L, 

receptor activator of nuclear factor-κB ligand; T cell, T lymphocyte; Th1, type 1 T helper cell; 

Th17, T helper 17 cell; TNF, tumor necrosis factor 



 

Figure 4. Simplified structures of TNFi  

Fab, fragment antigen-binding; Fc, fragment crystallizable region; IgG1, immunoglobulin G1; 

PEG, polyethylene glycol; TNF, tumor necrosis factor; TNFR2, tumor necrosis factor receptor 2 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables 

Table 1.  Basic Characteristics of TNFi  

TNFi Structure Protein Type Affinity Fc Portion? 

Infliximab 
Full length bivalent 

mAb 

Chimeric & 

Human 
sTNF & tmTNF Yes 

Etanercept 
Genetically engineered 

Fc-fusion protein 

Recombinant 

Human 

sTNF, tmTNF, 

LTα3, LTα2β1 
Yes 

Adalimumab 
Full length bivalent 

mAb 
Fully Human sTNF & tmTNF Yes 

Golimumab 
Full length bivalent 

mAb 
Fully Human sTNF & tmTNF Yes 

Certolizumab 

Pegol 

 

Monovalent Fab1 

antibody fragment 

 

Humanized 

 

sTNF & tmTNF 

 

No 

 

Fab, fragment antigen-binding; Fc, fragment crystallizable region; LTα3, lymphotoxin alpha 3; 

LTα2β1, lymphotoxin alpha 2 beta 1; mAb, monoclonal antibody; sTNF, soluble tumor necrosis 

factor; tmTNF, transmembrane tumor necrosis factor; TNFi, tumor necrosis factor inhibitor  

  

  



  Table 2.  General Pharmacokinetic Properties of Monoclonal Antibodies 

 

Absorption 

 

 

Lymphatic system via convection & 

diffusion 

 

 

Distribution 

 

 

Small volume of distribution, 

paracellular and transcellular movement 

 

 

Metabolism and Excretion 

 

 

Catabolic metabolism 

 

 

  



Table 3 Pharmacokinetics of TNFi in Rheumatologic Diseases  
 Infliximab Etanercept c Adalimumab Golimumab Certolizumab 

Administration IV SC SC SC SC 

Loading Dose 3-5 mg/kg at 0,2, 

and 6 wks 

- - - 400 mg at 0,2, 

and 4 wks  

Maintenance 

Dosages 

3-10 mg/kg every 4-

8 wks  

50 mg weekly 40 mg eow  50 mg once 

a month  

200 mg eow 

or 400 mg 

once a month  

Half-life (t1/2) 8-10 days a 3-5 days  14 days  14 days d 

 

14 days  

Clearance (L/d) 0.26b 

 

1.67  

 

0.269  

 

0.40d 0.408  

 

Bioavailability -  58%  64%  53%  80%  

Cmax μg/ml 192 ± 51b  2.4 ± 1.5  4.7 ± 1.6  2.5  

 

43-49 (after 

loading dose)  

References [38,64,67-70] [53,65,70,72-73] [65,70,75] [61,76] [65-66] 

a Population PK in PsA for infliximab:  The t1/2 life was 15.7 days [71]  
b based on 5 mg/kg IV in RA patients  
c PK of etanercept 50 mg once weekly is comparable to 25 mg twice a week SC [74]  
d Population pharmacokinetics in PsA were characterized using a 1-compartment 

model.  Clearance:  0.68 L/d, t1/2 life of golimumab was 12.5 days [77] 

eow, every other week; SC, subcutaneous; IV, intravenous; TNFi, tumor necrosis factor 

inhibitor; wk, week 

  



  Table 4. Pivotal Phase III Trials of TNFi in Psoriatic Arthritis 
 

 Reference Study 

Size 

(n) 

 

Doses (vs 

Placebo) 

% Achieving 

ACR20 Response  

(tx/placebo) 

(primary endpt wk) 

% Achieving 

PASI75 Response  

(tx/placebo)  

(primary endpt wk) 

 

 

Inhibition of 

Radiographic 

Progression 

 

Infliximab 
 

IMPACT [97-

98] 

 

104 5 mg/kg IV 

 

65.4/9.6 (16) 

 

68/0 (16) 

 

50 wks  

 

 

 

IMPACT 2 

[99-100] 

 

200 5 mg/kg IV 

 

58/11 (14) 64/2 (14) 

 

6 months and 1 yr  

Etanercept 12 wk study 

[101]  

 

60 25 mg SC 2x wk 

 

73/13 (12) 

 

26/0 (12) 

 

Not studied 

 24 wk study 

[94,102]  

205 25 mg SC 2x wk 59/15 (12) 

 

- 12 months & 2 yrs  

Adalimumab ADEPT [92]  

 

313 40 mg SC eow 

 

58/14 (12) 

 

- 24 wks 

 

Golimumab* GO-REVEAL 

[90-91]  

 

405 

 

50 mg/100 mg  51/45/9 (14) 

 

40/58/3 (14) 

 

24 wks & 256 wks  

 

 

Certolizumab** RAPID-PsA 

[93,96]  

 

409 200 mg/400 mg  58/51.9/24.3 (12) 

 

46.7/47.4/14 (12) 

 

96 wks  

 

ACR20, American College of Rheumatology 20% improvement criteria; endpt, endpoint; eow, every other week; IV, intravenous; 

PASI75,  75% improvement in Psoriasis Area and Severity Index; SC, subcutaneous; tx, treatment; TNFi, tumor necrosis factor 

inhibitor; wk, week; yrs, years 

  *SC dosing every 4 weeks 

  **200 mg SC every 2 weeks; 400 mg SC every 4 weeks 



Table 5. Pivotal Phase III Trials for Other Treatment Options in Psoriatic Arthritis  
 Reference Study 

Size 

(n) 

 

Doses (vs Placebo) % Achieving 

ACR20 Response 

(tx/placebo) (wk) 

% Achieving 

PASI75 Response 

(tx/placebo) (wk) 

 

Less Radiographic 

Progression 

Apremilast Palace 1 

[104] 

504 30 mg bid/20 mg bid 

 

38.1/30.4/19 (16) 

 

21/17.6/4.6(24) 

 

Not assessed 

 Palace 2 

[105] 

484 30 mg bid/20 mg bid 

 

32.1/37.4/18.9 (16) 

 

22.1/18.8/2.7 (16) 

 

Not assessed 

 Palace 3 

[106] 

505 30 mg bid/20 mg bid 

 

41/28/18 (16) 

 

21/20/8 (16) 

 

Not assessed 

 Palace 4 

[107] 

527 30 mg bid/20 mg bid 

 

32.3/29.2/16.9 (16) 

 

- Not assessed 

Secukinumab Future 1 

[110] 

606 75 mg1/150 mg 1 

 

50.5/50/17.3 (24) 

 

 

64.8/61.1/8.3 (24) 

 

wk 24 and wk 52 

 

 Future 2 

[111] 

397 300 mg2/150 mg2/75 mg2 

 

54/51/29/15 (24) 63/48/ 28 (not 

sig)/16 (24) 

 

Not assessed 

Ustekinumab3 PSummit-1 

[113,115] 

615 90mg/45mg 

 

49.5/42.4/22.8 (24) 

 

62.4/57.2/11 (24) wk 24 and 2 yrs  

 PSummit-2 

[114,116] 

312 90mg/45mg 

 

43.8/43.7/20.2 (24) 

 

55.6/51.3/5 (24) 

 

wk 24 and 1 yr 

 

1placebo or IV loading doses 10 mg/kg at baseline, week 2, and week 4 and then SC every 4 weeks 
2SC loading doses 300 mg, 150mg, 75 mg, or placebo once a week from baseline to week 4 and then SC every 4 weeks 
3placebo, 45 mg or 90 mg SC at baseline and 4 weeks and then every 12 weeks  

ACR20, American College of Rheumatology 20% improvement criteria; bid, twice a day; IV, intravenous; PASI75,  75% 

improvement in Psoriasis Area and Severity Index; SC, subcutaneous; tx, treatment; wk, week; yrs, years 

 

 



Table 6. Medications in Development for PsA 
Drug Mechanism of Action Current Phase in 

Clinical Trials 

Ixekizumab IL-17A inhibitor 

 

SPIRIT-P2 Phase III 

(NCT02349295) 

 

Abatacept 

 

CTLA4-Ig phase III 

(NCT01860976) 

 

Risankizumab 

 

IL-23 inhibitor 

 

phase II 

(NCT02986373) 

 

Guselkumab IL-23 inhibitor 

 

phase II 

(NCT02319759) 

 

Tofacitinib Oral JAK inhibitor 

 

phase III 

(NCT01976364) 

 

Tildrakizumab 

 

IL-23 inhibitor 

 

Unknown currently 

 

 
CTLA4-Ig, cytotoxic T lymphocyte associated antigen-4 immunoglobulin fusion protein 
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