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SYNOPSIS: 

Distal radius fractures are among the most common fractures treated by orthopaedists, and 

result in significant morbidity and cost across all age groups of the population. In other 

anatomic locations such as the cervical spine, the pathomechanics of fracture development 

are well-described, as result of in vivo and in vitro laboratory experiments and finite 

element modeling. The purpose of this study is to investigate the failure sequence of the 

distal radius during a simulated fall onto an outstretched hand, utilizing cadaver forearms 

and high-speed x-ray and video systems. This apparatus will record the beginning and 

propagation of bony failure, ultimately resulting in distal radius or forearm fracture. The 

effects of three different wrist guard designs will also be investigated using this system.  

Serving as a proof of concept analysis, this study supports this imaging technique to be 

utilized in larger studies of orthopaedic trauma and protective devices, and specifically for 

distal radius fractures. 
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KEY CONCEPTS: 

(1) Distal radius fractures are common injuries, especially in the pediatric and elderly 

populations, that account for significant morbidity and mortality  

(2) The combination of high-speed x-ray and video imaging has been utilized in other areas 

of medicine to investigate physiologic movement, joint kinematics, and fracture 

propagation. This type of recording system has not been utilized in the study of distal 

radius fracture pathomechanics. 

(3) This imaging technique proved feasible with a drop tower apparatus consisting of a 

potted cadaver forearm, weights dropped to simulate a fall onto an outstretched hand, two 

identical video recorders, an x-ray source, and an image intensifier. 

(4) In the presented pilot study, when impacted, the distal radius was found to shift in a 

volar direction with respect to the proximal carpal row, with the carpus also 

hyperextending. In elderly wrists, failure of the distal radius began as compressive failure 

on the dorsal cortex followed by tensile failure of the volar cortex.  In younger wrists, both 

cortices tended to fail simultaneously. 

(5) As a proof of concept, this study confirms that future studies with larger cadaveric 

samples can be analyzed with high-speed xray and video to better understand distal radius 

fracture pathomechanics. 
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INTRODUCTION 

Distal radius fractures are among the most common injuries treated by  

orthopaedists.1 and the most frequently-diagnosed fracture in women.2 In fact, healthy 

females 60 years of age have a 17% chance of sustaining a fracture of the distal radius.3 The 

incidence of this injury has increased significantly over the last several decades, a trend 

noted both domestically and internationally. 4 , 5 , 6  Distal radius fractures result in 

considerable pain and loss of productivity, often require surgical treatment, and are an 

indicator of increased risk of other fractures.7 A 2011 report estimated that $170 million 

were paid by Medicare in 2007 towards treatment of distal radius fractures, and the future 

burden to Medicare will approach $240 million if trends in utilization of internal fixation 

continue as anticipated.8 These fractures are also a common injury in the pediatric 

population,9 accounting for 25% of all fractures in this age group10. The estimated cost 

associated with treating pediatric distal radius fractures is upwards of $2 billion per year in 

the US.11 Given the high incidence of distal radius fractures in young and old alike, and the 

significance as both a personal injury and a public health concern, further understanding of 

the biomechanical mechanism of this fracture is essential. Moreover, improving our 

understanding of failure mechanisms of the distal radius might enable us to develop both 

improved treatments and preventative or protective devices.   

The failure sequence of the distal radius during a typical fall on an outstretched 

hand is not well-described in the literature. Ulrich et al (1999) utilized high-resolution 

images captured by a micro-CT scanner and micro-finite element analysis techniques to 

calculate stress and strain on areas of the distal radius at the tissue-level, and quantify load 

transfer through the trabecular network.12 However, this in vivo study did not simulate an 
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actual fracture to the distal radius; only sub-failure loads were applied to the bone, through 

the scaphoid or lunate.  In other anatomic locations, the bony sequence of injury is better 

understood.  In the cervical spine, for example, axial loading has long been considered to be 

the force behind the mechanism of vertebral burst fracture.  Both in vivo and in vitro 

laboratory experimental studies as well as finite element modeling can subsequently 

predict areas of the veterbral body where failure is likely to begin and propagate when 

exposed to a given load.13 No study exists that investigates the failure mechanism of the 

distal radius to this extent. 

There are several published research studies that have evaluated the effectiveness 

of wrist guards in protecting against distal radius fractures.14 They employ a variety of test 

setups to simulate an impact across the wrist by using force-measuring platforms and 

strain gauges to calculate the force applied to the distal radius. These studies were 

conducted both with the wrist bare and while wearing a protective guard. Investigations 

using both cadavers and human subjects suggest that various forms of wrist guards can be 

helpful in reducing momentum and allowing for a higher impulse to be applied to the 

wrist/brace construct before distal radius failure,.15,16,17,18 While these biomechanical data 

points can provide valuable support for wrist guard utilization, they do not provide direct 

information regarding the biomechanics of force transmission across the wrist and forearm 

during a fall.  

In order to better understand the sequence of events, specifically the relative 

motion and failure sequence that occurs during a distal radius fracture, the authors believe 

that high-speed imaging techniques, combined X-ray and video imaging,  offer promise.  

These techniques have been utilized in other fields, although the literature is scarce 
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regarding their use in orthopaedic trauma, especially in investigating distal radius 

fractures. For example, in veterinary medicine, a high-speed x-ray system was described by 

Snelderwaard et al to analyze the rapid projection of a small animal’s tongue to capture 

prey during a feeding experiment.19 Techniques of imaging fluid movement20 and the 

motion of artificial heart valves21 have also been described by using high-speed modern 

video systems.  

In the fields of orthopaedic sports medicine and arthroplasty, dynamic fluoroscopy 

has been investigated to elucidate joint kinematics in vivo in attempt to understand the 

weightbearing forces, shear stresses, and relative motion of the joint.22,23  To the best of our 

knowledge, combined high speed X-ray and video has not been used to investigate fracture 

pathomechanics.  The objective of the current report is to serve as a proof of concept 

demonstration, evaluating the feasibility of combined high speed X-ray and video imaging 

techniques applied to a fracture model.  Specifically, we sought to investigate the fracture 

mechanism of the distal radius from a typical fall on outstretched hand and the 

effectiveness of various wrist guard designs.  

 

EXPERIMENTAL DESIGN 

 Eight fresh-frozen cadaveric arms were thawed at room temperature for 24 hours. 

The elbow was disarticulated and all soft tissues were removed from the proximal forearm.  

The proximal radius and ulna were potted using R1 FastCast Urethane casting resin.  The 

forearms were positioned vertically in an impact testing apparatus with wrist preloaded in 

extension [Figure 1].  Impact force, provided by a 45 kg drop weight, was transferred to the 

arm via a load transfer plate assembly that restricted motion to the vertical direction using 
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guide shafts.  A rigid weight stopper prevented excessive compression of the arm.  Weight 

was dropped on bare cadaver wrists, as well as those protected by one of three wrist guard 

designs. 

 The drop test was photographed with high-speed video and x-ray using a 

mechanical trigger on the drop test apparatus [Figure 2].  The x-ray equipment consisted of 

a source radiating in the medial-lateral direction (150 kVP, Varian Medical Systems, Palo 

Alto, CA)and a 550mm image intensifier  (VJ Technologies, Inc., Bohemia, NY) which 

captured dynamic lateral x-ray images of the distal forearm and hand during impact 

loading.  This machine captured images at 1000 frames per second (fps).  Two high-speed 

video acquisition systems (Memrecam GX-1, nac Image Technology, Simi Valley, CA) were 

positioned adjacent to the radiation source to record a video of the wrist set-up viewed 

from the lateral direction, as well as the dynamic lateral x-ray images.  Images were also 

recorded at 1000 fps.  All image data was stored in a hard drive and later analyzed with 

Quicktime 7 video player using the zoom feature and image processing functions to best 

visualize the region of interest.  Images were analyzed on a frame by frame basis to 

characterize the fracture sequence.  

Impact force was measured using 2 load cells.  Displacement and acceleration of the 

load transfer plate was measured with a string potentiometer and accelerometer, 

respectively.  Strain in the distal radius and ulna were measured using strain gage rosettes.  

These measurement devices allowed for more traditional biomechanical data to be 

captured, consistent with those data described by previous studies, although these are not 

the focus of this report. 
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Three types of wrist guards were used including a prototype created by the 

researchers. The two commercially-available wrist guards were the Seirus Jam Master II 

(Seirus, San Diego, CA), incorporating both volar and dorsal protective plates meant to be 

worn above a ski/snowboard glove, and the Dakine volar wrist guard (Dakine, Hood River, 

OR), which is lower-profile and consists of an aluminum volar plate. The prototype design 

included a viscoelastic foam core and thin rigid shell on the volar side of a neoprene sleeve. 

[Figure 3] The appropriate size guard was secured to the cadaver hand for impact tests.   

The high-speed x-ray images and videos were studied for patterns of relative motion and 

location/sequence of fracture development.  Each forearm was first tested with non-

destructive loads at approximately 30% of the anticipated failure load with and without the 

wrist guards.  Destructive tests were then performed alternating between wrist guard type 

and no guard. 

Tags: distal radius fracture simulation, wrist guard, drop tower apparatus, high-speed 

video x-ray  

 

EARLY RESULTS AND FUTURE DIRECTION 

 A better understanding of the pathomechanics of distal radius fractures can be 

gleaned by studying the videos of dynamic wrist motion when exposed to axial load, 

resulting eventually in fracture of the distal radius. In our study of eight cadaver forearms, 

in both protected and unprotected wrists the common failure mechanism occurred through 

axial compression of the extended carpus, causing the radius to shift slightly in a volar 

direction relative to the proximal carpal row, and the proximal carpal row to hyperextend. 

[Figures 4 and 5] We measured the radiocapitate angle using a goniometer to quantify the 
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proximal carpal row hyperextension.  From preload to failure the capitate extended from 

42 to 55 degrees on average.  In several videos, the capitate appeared to abut the dorsal 

radial rim and possibly transfer load directly to the dorsal cortex of the radius.  

Being a proof of concept analysis, our study lacked power to make definitive 

conclusions on sequence of failure during fracture; however, it appeared that in older 

cadavers, failure occurred first in the dorsal cortex followed by tension failure of the volar 

cortex, while in younger cadavers both cortices failed simultaneously. When studying the 

wrist braces, it was noted that the volar brace tended to slide proximally down the wrist, 

affording less impact absorbance against axial load as compared to the prototype brace, 

which did not migrate from its intended position. We also noted that the volar splint 

appeared to function by transferring a portion of the wrist extension load through the rigid 

support to the forearm straps, bypassing the wrist.  Transferring the impact force 

proximally to protect the distal radius did potentially risk development of a proximal 

fracture, which occurred in the mid-radial shaft and at the bone-potting cement interface in 

two specimens.  Also, analyzing the high speed video data provided other insight helpful in 

optimizing the guard design.  For example, it was noted that the viscoelastic cushion which 

was designed to fully compress to absorb the maximal force, only compressed a fraction of 

its thickness.  Video analysis could be used to evaluate the compressibility and 

effectiveness of other types and thicknesses of material, including layered composites, 

which otherwise might be challenging to estimate their material properties.      

Qualitative observations made from studying the high-speed video and x-rays 

combined with quantitative analysis of strain gauge and load cell data, can offer valuable 

insight into the distinct biomechanical failure sequence that occurs in distal radius 
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fractures. By understanding this to a greater extent, personal protective devices can be 

enhanced to optimize effectiveness. It is the authors’ belief that this pilot study offers sound 

proof of concept and support for this imaging technique to be utilized in larger studies of 

orthopaedic trauma, and specifically for distal radius fractures, in the future. 

Tags: pathomechanics of distal radius fracture, fracture propagation, effect of wrist guard, 

high-speed video x-ray  
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Figure Legend 
Figure 1: Schematic representation of drop tower assembly, using potted cadaver forearm 
 
Figure 2: Schematic representation of recording system assembled around drop tower 
assembly, including xray source, image intensifier, video camera for xray images, and video 
camera for visible light images 
 
Figure 3: Photographs of three wrist guard designs. From left:  Seirus Jam Master II (3a and 
3b), Dakine wrist guard (3c), and prototype design (3d) 
 
Figure 4:  Sequential frames of high-speed video xray of impact onto potted cadaver wrist, 
protected with Dakine volar wrist guard 
 
Figure 5: Sequential frames of high-speed video impact onto potted cadaver wrist, 
protected with Dakine volar wrist guard 
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