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Abstract 

The basic goal of this research is to determine the best combination of light 

wavelengths for use as a lighting countermeasure for circadian and sleep disruption 

during space exploration, as well as for individuals living on Earth. Action spectra 

employing monochromatic light and selected monochromatic wavelength comparisons 

have shown that short wavelength visible light in the blue-appearing portion of the 

spectrum is most potent for neuroendocrine, circadian, and neurobehavioral regulation. 

The studies presented here tested the hypothesis that broad spectrum, polychromatic  

fluorescent light enriched in the short wavelength portion of the visible spectrum is more 

potent for pineal melatonin suppression in healthy men and women.  A total of 24 

subjects were tested across three separate experiments.  Each experiment used a 

within-subjects study design that tested eight volunteers to establish the full-range 

fluence-response relationship between corneal light irradiance and nocturnal plasma 

melatonin suppression. Each experiment tested one of three types of fluorescent lamps 

that differed in their relative emission of light in the short wavelength end of the visible 

spectrum between 400 and 500 nm. A hazard analysis, based on national and 

international eye safety criteria, determined that all light exposures used in this study 

were safe. Each fluence-response curve demonstrated that increasing corneal 

irradiances of light evoked progressively increasing suppression of nocturnal melatonin. 

Comparison of these fluence-response curves supports the hypothesis that 

polychromatic fluorescent light is more potent for melatonin regulation when enriched in 

the short wavelength spectrum.  

 

 

 



 

 

 

 

 

 

 

 

Introduction  

Light is a powerful stimulus for regulating human circadian, neuroendocrine and 

neurobehavioral responses [1-3].   Light also has the capacity to restore human health 

in clinical applications such as treating winter depression and selected sleep disorders.  

In addition, light therapy has been evaluated for healthy individuals who experience 

problems associated with intercontinental jet travel, shift work and space flight [1-6]. 

 

Neural signals conveying information about environmental light are transmitted from the 

retina through the retinohypothalamic tract to the hypothalamic suprachiasmatic nuclei 

(SCN) [7]. In turn, the SCN transmit information about lighting and circadian time to the 

pineal gland where the hormone melatonin is synthesized [8]. As a result, daily patterns 

of light exposure entrain the circadian secretion of melatonin. In most vertebrate species 

studied, this pattern results in higher levels of melatonin during the dark, nighttime 

hours. In addition, exposure to light of sufficient intensity, wavelength and duration can 

acutely suppress high nocturnal melatonin secretion from the pineal gland [9-11]. Once 

released into the blood vascular system, melatonin is known to be a pluripotent 

hormone that modulates the circadian system at the level of the SCN as well as 

numerous peripheral tissues [8,12].  Since melatonin is lipophilic, it readily transfers into 

all other body fluids [8]. Recent evidence from sheep has supported the theory that an 

important route of the delivery of the melatonin signal to brain tissue is directly from the 

pineal gland into the cerebrospinal fluid of the third ventricle [13,14].  

 



 

In the past 15 years, there have been fundamental advances in the understanding of 

photoreceptive input to the circadian and neuroendocrine systems of humans and other 

mammals. In 2001, two human analytic action spectra  identified 446-477 nm as the 

most potent wavelength region for melatonin suppression [10,11].  Those data indicated 

that a novel ocular photosensory system, distinct from the visual rods and cones, is 

primarily responsible for regulating melatonin in humans. Based on selected 

monochromatic wavelength comparisons, further human studies indicated that circadian 

phase-shifting, and autonomic stimulation, as well as the acute effects of light on 

alertness and vigilance are shifted towards the shorter wavelength, or blue-appearing, 

part of the spectrum [15-22].  

 

Seminal discoveries have elucidated the basic anatomy and physiology of the 

photosensory system that supplies input to the circadian and neuroendocrine systems. 

It is clear that a small population of widely dispersed retinal ganglion cells is directly 

responsive to light and projects to the suprachiasmatic nuclei as well as regulatory 

nuclei in the central nervous system [23,24].  These intrinsically photosensitive retinal 

ganglion cells (ipRGCs) have an expansive arbor of dendrites that form a 

"photoreceptive net" for circadian phototransduction [25]. The ipRGCs contain 

melanopsin, a vitamin A photopigment that mediates phototransduction in these cells 

[26].  Although light detection for circadian, neuroendocrine and neurobehavioral 

responses is mediated principally by the ipRGCs, studies on genetically manipulated 

rodents [27-30], normal monkeys [31], and humans [15,20,32], clearly demonstrate that 

the visual rod and cone photoreceptors also have a role in modulating this physiology.   

 

The goal of the research presented here is to determine the best combination of light 

wavelengths for use as a lighting countermeasure for circadian and sleep disruption 

during space exploration, as well as for individuals living on Earth. The specific 

hypothesis tested in the following studies is that broad spectrum fluorescent light 

enriched in the short wavelength portion of the visible spectrum will be more potent for 

the regulation of pineal melatonin secretion in healthy men and women.  The data 



demonstrate a fluence-response relationship between melatonin suppression and 

corneal light irradiances for each of three types of fluorescent light. Comparison of these 

fluence-response curves supports the hypothesis that polychromatic fluorescent light is 

more potent for melatonin regulation when enriched in the short wavelength spectrum.  

 

Materials and Methods  
 

Hazard Analysis 

Since exposure to ultraviolet radiation or intense visible light within the range of 400 nm 

to 550 nm can induce damage the eye, an assessment of the three lighting systems 

used in this research was necessary [33,34]. An independent hazard analysis based on 

guidelines set by the American Conference of Governmental Industrial Hygienists 

(ACGIH) and the International Commission on Non-Ionizing Radiation Protection 

(ICNIRP) was performed to ensure that subjects were not at risk for photochemical 

retinal injury. All measurements of the experimental light panels were taken at 30 cm, 

the typical viewing distance of the panels in the study. The primary analysis was 

completed using three instruments: 1) a Fieldspec Hand-held Spectroradiometer 

manufactured by Analytical Spectral Device (Boulder, CO), Model #FSHH 325-1075, for 

all spectroradiometer measurements; 2) a radiometer/photometer (Model 1400BL, 

International Light Technologies, Inc., Newburyport, MA) with a silicon-diode detector 

head (Model #SEL033), a wide angle output optic (W#11437) and a filter (Y#27475) to 

provide photopic illuminance response; and 3) a Minolta Luminance Meter (nt-1), Model 

LS-100 (Japan), to measure the panel luminance as a cross-check of the 

spectroradiometric radiance measurements at 30-70 cm.  Measurements of each panel 

also were made with an ultraviolet detector head using an International Light Model 

1400 A Radiometer with Model SEL240 (#3682) and Model SEL033 (#3805) detector 

(with input Optic W#6874 and Filter UVA #28246) to assure that no hazardous UV 

radiation was emitted from the surface of the light panel. 

 

Study design 

In each of three studies, eight subjects completed a within-subjects fluence-response 

experiment that tested nine light irradiances of polychromatic lamplight and one dark 



exposure control night for nocturnal melatonin suppression. The three test lamplights 

were standard white light 4,000 K fluorescent, prototype blue-enriched white 17,000 K 

fluorescent, and prototype strongly enriched blue (SEB) fluorescent.  

 

Subjects 

The healthy females (N=12) and males (N=12) in these studies had a mean ± SEM age 

of 24.3 ± 0.4, had a mean wake up time of 07:49h +/- 8 min, and signed an approved 

IRB consent document before participating. All subjects demonstrated normal color 

vision by both the Ishihara and Farnsworth Munsell D-100 color vision tests (mean ± 

SEM score of 83.8 ± 67.2). All subjects were in good ocular and physical health as 

assessed by a neurophthalmologist, good mental health as assessed by a clinical 

psychologist, and free of signs of substance abuse as determined by urinary 

toxicological screens.  Ten days prior to entry into the protocol, subjects were confirmed 

for sleep-wake stability with routine bedtime starting at midnight (±30 minutes) as 

ascertained by actigraphy (Octagonal Sleepwatch, AMI, Ardsley, NY), filling out daily 

sleep-wake logs and confirming wake and bed times by calling into a voice mailbox.  

 

Light exposure protocol 

Subject pre-experimental adaptation began in the laboratory at 18:00h. During this 

period, subjects stayed upright in chairs engaging in reading, studying, or conversation 

and were not permitted to sleep. Light levels did not exceed 10 lux at eye level in any 

direction of gaze. As described elsewhere, each experiment began at midnight when 

subjects were blindfolded and remained awake and sitting upright in darkness for 120 

min [10].  While blindfolded, a blood sample was taken just prior to 02:00h and subjects 

were then exposed to a 90 min light stimulus from 02:00h to 03:30h. Before 

experimental light exposures, blindfolds were removed. Subjects’ pupils were not dilated 

in this study. During light exposure, each subject sat quietly with their eyes open and 

facing a 119 x 120 cm flat panel of fluorescent lights with their eyes 30 cm from the 

central portion of the light-emitting surface.  The light was patternless and provided full 

retinal field exposure. At 03:30h, a second blood sample was taken.  Each subject was 



exposed to complete darkness from 02:00h to 03:30h on their control night and was 

tested with at least 6 days between each nighttime exposure.   

 

Light production and measurement   

Polychromatic light stimuli were produced by equipment donated by Philips Lighting 

(Netherlands). Test lamps were white 4,000 K fluorescent lamps (TL5 HO 54W/830), 

prototype blue-enriched white 17,000 K fluorescent lamps, and prototype SEB 

fluorescent lamps housed in Strato Luminaires (Model TPH 710) containing high-speed 

electronic ballasts. Each luminaire was electronically dimmable down to 40 µW/cm2.  An 

additional neutral density filter panels were used to further adjust the intensity of the 

light levels below 40 uW/cm2: 0.3 ND (0.3 optical density; 50% transmittance), 0.6 ND 

(0.6 OD; 25% transmittance) and 0.9 ND (0.9 OD; 12.5% transmittance) (Rosco 

Laboratories, Stamford, CT). Spectroradiometric and photon flux assessments of the 

wavelengths at the level of subjects' corneas were done with a portable 

spectroradiometer with a fiber optic sensor (ASD, Boulder, CO, FieldSpec Model #FShh 

325-1075P). The spectral power distributions of the lamplights are shown in Figure 1.  

Routine measurement of the light irradiance (µW/cm2) was done with International Light 

Radiometer/Photometer 1400A (Newport, MA) with an SEL033 #6857 detector head 

with an F #23102 filter and cosine correction.  All spectroradiometric and radiometric 

equipment was calibrated annually with a standard lamp traceable to NIST.  Light 

irradiances and illuminances were measured at volunteers' eye level immediately before 

and after the 90 min exposure. Additional spot measures were taken with a 1˚ 

luminance meter (Minolta Camera Co. LTD., Japan, #301749) each half hour of the 

exposure to ensure stimulus stability.  For each fluence-response study, intensities 

ranged over a four log unit photon flux range of 1010 to 1014 photons/cm2.  

 



    

Fig. 1. These graphs show the SPD of the polychromatic light sources. The top SPD is from a standard 

white fluorescent lamp (4000 K CCT). The middle SPD graph is from a prototype white appearing, blue-

enriched lamp (17,000 K CCT). The bottom SPD is from aprototype SEB lamp. CCT, correlated color 

temperature; SEB, strongly enriched blue; SPD, spectral power distribution. 

 

Melatonin assay 

As detailed elsewhere, radioimmunoassy (RIA) was used to assay plasma for melatonin 

[10,35]. Duplicate 200 l aliquots of each unknown and control sample were extracted 

into chloroform. Then chloroform was removed by centrifugation, samples were 

resuspended in assay buffer, washed twice with petroleum ether and evaporated to 

dryness. Samples then were resuspended with deionized water, incubated for 48 hr with 



radiolabeld ligand and R1055 antiserum, precipitated by centrifugation and radioactivity 

was quantified [10,35]. This RIA had a minimum detection limit of 0.5 - 2.0 pg/mL. 

 

 

Calculation of effective rod, cone and melanopsin photoreceptor illuminances  

To calculate human rod, cone and melanopsin photoreceptor illuminances, the lamp 

SPDs  entered into a toolbox worksheet that is a software model for human 

photoreception freely available online [36].  The SPDs for the experiments shown here 

were imported into the worksheet in 1 nm increments between 378 and 782 nm.  Per 

toolbox instructions, all raw negative SPD values were changed to zero.  

 

Statistics   

Two-tailed, Students' t-tests were used to assess significance of raw melatonin change 

from 02:00h to 03:30h.  Raw melatonin data were then converted to % melatonin 

change scores and % control-adjusted change scores as described elsewhere [10].  

Sets of pre-exposure melatonin values and % control-adjusted melatonin change scores 

were analyzed with one-way, repeated measures ANOVA.  Significant differences 

between groups were assessed with post-hoc Fisher PLSD test with alpha of 0.05.  The 

fluence-response curve for light exposures were calculated and fit using Origin 8.0 

(OriginLab Corp., Northhampton, MA).  The curves were fit to an unconstrained 

parametric model with the melatonin response (Y) to the corneal irradiance (X) is 

predicted by: a theoretical initial Y-response for the curve (A1); the theoretical final Y-

response (“infinite” dose) for the curve (A2); the dose producing a response halfway 

between A1 and A2 (X50); and the slope estimator for the curve between A1 and A2 (p). 

These compose the equation: 

Y =  
A1 - A2

1+ X X50( )
p

+ A2
 

The curve was tested for fit of the data by coefficient of correlation (R2).   

 

 

 



Results  

Based on national and international safety criteria, the hazard analysis determined that 

all intended study exposures used in this study were safe [33,34].  The radiance 

measurements did not exceed the long-term limit of 10 mW/(cm2·sr). Spectral weighting 

of the 4,000 K, 17,000 K and SEB  spectral power distributions with the blue-light 

hazard or B(λ) function provided a maximum effective blue-light radiance value of 

0.0094, 0,061, and 0.41, mW/(cm2·sr), respectively. Thus, the SEB panel, the most 

blue-enriched of the three fluorescent panels, was less than 5% of the ACGIH and 

ICNIRP limits [33,34].  

 

Selected light stimuli characteristics (corneal irradiances, photon fluxes and 

illuminances) are provided in Table 1 along with measured mean pupil sizes and 

calculated mean retinal irradiances.  

 

  

Table 1. Selected target corneal irradiances, measured corneal illuminances, corneal photons (380-

760nm), measured pupil sizes and calculated retinal irradiances of light stimuli. 

Fluorescent 
Stimulus 

Corneal 
Irradiance 
(µW/cm2) 

Corneal 
Illuminance 

(lux) 

Photon Flux 
(photons/cm2/s) 

Mean 
Pupil 

Diameter 
 (mm) 

Calculated Retinal 
Irradiance 
(µW/cm2) 

4,000 K  734 2,874 2.03 x 1015 2.72 4.24 

4,000 K  40 135 1.14 x 1014 4.19 0.54 

4,000 K  11 23 2.64 x 1013 4.72 0.19 

17,000 K  800 2,511 1.84 x 1015 3.02 5.90 

17,000 K  25 71 4.45 x 1013 4.33 0.37 

17,000 K  10 27 1.78 x 1013 4.83 0.18 

Strong Blue  1500 2,397 3.28 x 1015 2.28 6.38 

Strong Blue  58 91 6.71 x 1014 3.39 0.52 

Strong Blue  10 13 1.16 x 1013 4.74 0.18 

 

 



 

ANOVA demonstrated a significant effect of light on pupil diameter for the 4,000 K 

exposures (F=118.3, df=8, p<0.0001), the 17,000 K exposures (F=102.4, df=8, 

p<0.0001), and the SEB exposures (F=104.0, df=8, p<0.0001). The Fisher PLSD test 

showed that pupil diameters were significantly larger when exposed to the lowest (1 

through 18 μW/cm2)  versus higher (40 through 734 μW/cm2)  4,000 K irradiances.  For 

the 17,000 K exposures, pupil diameters were significantly larger with the lowest (1, 5, 

and 10 μW/cm2)  versus higher irradiances (20 through 800 μW/cm2). Finally, for the 

SEB exposures, pupil diameters were significantly larger with the lowest (0.8 and 4 

μW/cm2) versus higher irradiances (6 through 1500 μW/cm2).   

 

The top graph in Figure 2 compares mean (+ SEM) pre- and post-plasma melatonin 

values for each study night from the 4,000 K light exposures.  All irradiances at or above 

1 µW/cm2 significantly suppressed melatonin (p<0.05 to p<0.005).  Percent control-

adjusted melatonin change scores presented in the bottom graph of Figure 2 showed a 

significant effect of light irradiance on melatonin suppression (F=13.24, df=8, p<0.0001).  

Increasing irradiances of 4,000 K light exposure evoked progressively larger melatonin 

suppressions. The Fisher PLSD test showed that higher irradiances of 4,000 K light 

(734 and 274 μW/cm2) elicited significantly stronger melatonin suppression than 

irradiances at or below 80 μW/cm2.  The 80 μW/cm2 irradiance of 4,000 K light elicited a 

significantly stronger melatonin suppression than lower irradiances (8.34, 3.81, and 1 

μW/cm2), while 39.5 and 18 μW/cm2 elicited significantly stronger melatonin 

suppression than the lowest irradiance of 0.8 μW/cm2.   

 



 

Fig. 2. The top graph compares the mean (+ S.E.M.) pre- and postplasma melatonin values for the 4000 

K light exposures. Percent control-adjusted melatonin change scores from these data are presented in 

the bottom graph. 

 

 



For the 17,000 K light exposures, comparison of the mean pre- and post-plasma 

melatonin values shows that all corneal irradiances at or above 15 µW/cm2 significantly 

suppressed melatonin (p<0.05 to p<0.005). For the 17,000 K light exposures, percent 

control-adjusted melatonin change score  showed that there was a significant effect of 

light irradiance on melatonin suppression (F=12.48, df=8, p<0.0001). Increasing 

irradiances of 17,000 K light evoked progressively larger melatonin suppressions.  

Fisher PLSD tests showed that the 800 μW/cm2 corneal irradiance elicited significantly 

stronger melatonin suppression than irradiances at or below 50 μW/cm2, while the 300 

μW/cm2 irradiance produced a significantly stronger melatonin suppression than 

irradiances at or below 15 μW/cm2. The intermediate 17,000 K light irradiances of 50 

and 25 μW/cm2 evoked significantly stronger melatonin suppressions than irradiances at 

or below 25 μW/cm2, and irradiances at or below 10 μW/cm2, respectively.  Lastly, 20 

μW/cm2 elicited a stronger melatonin suppression than 10 and 1 μW/cm2; while 15 and 

5 μW/cm2 produced significantly stronger suppressions than 1 μW/cm2.  

 

Comparison of the mean pre- and post-plasma melatonin values of the SEB light 

exposures shows that all irradiances at or above 17.4 µW/cm2 significantly suppressed 

melatonin (p<0.05 to p<0.005). For the SEB percent control-adjusted melatonin change 

scores, there was a significant effect of light irradiance on melatonin suppression 

(F=9.43, df=9, p<0.0001). Increasing irradiances of SEB light exposure evoked 

progressively larger melatonin suppressions. Fisher PLSD tests showed that the higher 

irradiances of SEB light (1500 and 323 μW/cm2) elicited significantly stronger melatonin 

suppression than irradiances at or below 22 μW/cm2.  The corneal irradiance 58.4 

μW/cm2 elicited significantly stronger melatonin suppression than lower irradiances at or 

below 10 μW/cm2, while 22 μW/cm2 elicited significantly stronger melatonin suppression 

than irradiances at or below 6 μW/cm2.  Finally, 17.4 μW/cm2 elicited significantly 

stronger melatonin suppression than irradiances of 6 and 4 μW/cm2.  

 

Figure 3 shows the mean (+/- SEM) percent change control-adjusted melatonin data 

from the three studies presented above were plotted on a log scale of corneal irradiance 

along with the best-fit, sigmoidal curve.  No mathematical constraints were placed on 



this family of curves.  The coefficients of correlation for the 4,000 K, 17,000 K, and SEB 

curves were 0.96, 0.85 and 0.95, respectively.   

 

 

Fig. 3. Each fluence–response curve represents data collected from separate cohorts of eight healthy 

subjects after exposure to different types of polychromatic fluorescent light. The curve fit parameters and 

coefficient of correlation (R2) are included in the upper left portion of each graph. 



 

The curves illustrated in Figure 3 show that there is a progressive steepening of the 

slopes (p value) of the curves with greater enrichment with blue light.  Further, the 

pseudo-linear portions of both the 17,000 K, and SEB curves are shifted to the left in 

comparison to the 4,000 K curve. That shift is quantified by comparison of the curve’s 

X50 parameters (4,000 K = 95.81, 17,000 K = 16.40, and SEB = 21.00).  Hence, 

approximately six times as much light is needed to evoke a half-saturation response 

from the 4,000 K light versus the 17,000 K light.   Similarly, approximately five times as 

much light is needed to evoke a half-saturation response from the 4,000 K light versus 

the SEB light.  

 

The fluence-response curves in Figure 3 were not mathematically constrained.  In 

action spectroscopy, it is not unusual to constrain one or more of the elements (A1, A2, 

p) of the parametric model described above. Including the unconstrained curve fits in 

Figure 3, seven different parametric models for curve fitting the melatonin data were 

tested.  For example, one constrained model that was tested set A1 = 0.  The logic of 

that constraint is that darkness (a corneal irradiance of 0) would elicit 0% melatonin 

suppression.  The curve fits of all models all had relatively high coefficients of 

correlation (r2 ranged from 0.80 to 0.97).   The resulting X50 parameters resulting from 

application of the different models also varied in their ranges (4,000 K = 65.8 to 95.81, 

17,000 K = 9.57 to 25.40, and SEB = 17.80 to 22.70).    In every case, when a single 

parametric model was applied across all sets of fluence-response data, the blue-

enriched 17,000 K and SEB light elicited smaller half-saturation responses compared to 

the 4,000 K light.  Across these different parametric models, a range of approximately 

three to seven times as much irradiance is needed to evoke a half-saturation response 

from the 4,000 K light versus the 17,000 K light.   Similarly, approximately three to five 

times as much light is needed to evoke a half-saturation response from the 4,000 K 

lamp versus the SEB light. 

 

The effective rod, cone and melanopsin photoreceptor irradiances and the total 

irradiances and photopic illuminances were calculated as described above [36]. The 



values in Table 2 were derived from the SPDs shown in Figure 1 with photon fluxes of 

9.18 or 9.19 x 1014 photons/cm2/sec.   

 

 

Table 2.  Calculated irradiances, photopic illuminances v(λ),, and human  photopigment illuminances 

relative to three broad spectrum lights (32). 
 

 

 

 

 

Discussion  

This study tested three types of broad spectrum fluorescent lamps that differed in their 

relative emission of light in the short wavelength end of the visible spectrum between 

400 and 500 nm. A hazard analysis based on national and international eye safety 

criteria, determined that all light exposures used in this study were safe [33,34]. The 

melatonin data comprise three full fluence-response relationships between graded 

exposures from the different types of fluorescent light and melatonin suppression in 

healthy humans. Comparison of the three fluence-response curves support the 

hypothesis that polychromatic fluorescent light is more potent for melatonin regulation 

when enriched in the short wavelength portion of the visible spectrum.  

 

 
Radiometric and Photometric Values 

(380 -780 nm inclusive) 

Retinal Photopigment Weighted 
Illuminances 
(α-opic lux) 

 
Photon Flux 

(photons/cm²/s) 
Irradiance 
(µW/cm2) 

Photopic 
Illuminance 

(lux) 

S 
Cone 

Melanopsin 
ipRGC 

Rod 
M 

Cone 
L 

Cone 

4,000 K 
Light 

9.18E+14 329 1,141 688 711 833 1,011 1,107 

17,000 
K Light 

9.19E+14 357 884 1,713 1,212 1,119 982 889 

SEB 
Light 

9.18E+14 379 581 2,682 1,613 1,298 872 647 



Action spectroscopy is a powerful tool for revealing the underlying physiology of 

phototransduction. The development of fluence-response curves using monochromatic 

light (<15 nm half-peak bandwidths) is fundamental for creating action spectra [37-39].  

That approach has been used extensively for clarifying the sensitivity of neuroendocrine 

and circadian responses to light [20,23,31,39,40]. Similar to the fluence-response 

curves developed with monochromatic light for melatonin suppression in humans, the 

polychromatic fluence-reponse curves presented here have strong fits to four parameter 

parabolic curves [10,11]. There is, however, a major methodological difference between 

the experiments reported here versus the earlier human melatonin action spectra. 

Specifically, the volunteers’ eyes were not pharmacologically dilated in the current 

studies.  As shown in Table 1, the mean pupillary size varied across different 

irradiances and lamp types. Pupil size, in part, modifies retinal irradiance. Lighting 

countermeasures for circadian and sleep disruption during space exploration, as well as 

for individuals living on Earth, will be used when individuals have freely reactive pupils. 

 

It is useful to compare the results reported here to two other full-range human melatonin 

suppression fluence-response curves in subjects with freely-reactive pupils [41,42]. In 

one study, the light stimuli were produced by narrow bandwidth blue solid-state light 

emitting diodes (LEDs, 469 nm peak, 26 nm half-peak bandwidth) with an exposure 

system identical to the one described here [41].   The calculated irradiance for a half-

saturation response (X50) from the blue LEDs was 14 µW/cm2 - similar to the X50s of 16 

and 21 µW/cm2 for the 17,000 K and SEB fluorescent lamps, respectively.  In contrast, 

the 4,000 K lamps had a much higher X50 of 96 µW/cm2.  Together, these results 

indicate that blue-enriched polychromatic light elicits stronger melatonin suppression 

compared to equivalent intensities of light with lower emissions in the blue-appearing 

portion of the visible spectrum.  Importantly, the data indicate that there may be limits to 

blue-enriching a light source for evoking stronger melatonin regulation; the half-

saturation responses from the SEB and 17,000 K exposures are roughly similar even 

though the SEB lamps emitted higher concentrations of energy in the blue portion of the 

spectrum compared to the 17,000 K lamps. 

 



Another study reported fluence-response curves for both phase-shifting the melatonin 

rhythm and suppressing nocturnal melatonin relative to cool white fluorescent light 

exposures [42].  The study conditions and light exposure techniques were very different 

from the fluence-response results discussed above.  Notably, light exposures were 

significantly longer (390 min versus 90 min).  Further, subjects were adapted to an 

ambient illuminance of <10 lux for 50 hours, had an 8 hour sleep opportunity in 

darkness, and then a 5 hour period in <10 lux before the experimental light exposures.  

The resultant melatonin phase-shift and suppression fluence-response curves yielded 

X50 values of 36 and 32 µW/cm2, respectively.  It is likely the exposure duration and 

lengthy dim light/darkness adaptation contributed greatly to the differences between the 

X50 value of 96 µW/cm2 relative to the 4,000 K data reported here.  It has been shown 

that increasing light exposure duration from 30 to 120 min increases the melatonin 

suppression in human subjects [43]. Similarly, prior dim light exposure has been shown 

to increase the sensitivity to light in melanopsin ganglion cells in rats as well as for 

melatonin suppression in humans [32,44-46].  

 

A variety of behavioral and physiological changes relative to correlated color 

temperature (CCT) of broad spectrum fluorescent lights have been measured [47, for 

review].  Generally, higher color temperature lamps emit more energy in the blue part of 

the visible spectrum than lower color temperature lamps [48].  Lamps with higher CCT 

were found to evoke a stronger melatonin suppression compared to lamps with lower 

CCT in healthy humans [49-51]. Additionally, compared to low CCT light, higher CCT 

light was observed to have a more potent effect on reducing the nocturnal fall of core 

temperature, decreasing body temperature change to cold challenge, and increasing 

the morning rise in core temperature [50,52,53]. Furthermore, EEG frequency has been 

shown to increase under high CCT as compared to lower CCT illumination [54]. Finally, 

a study on the effects of illumination prior to sleep showed that deep sleep was reduced 

under high CCT compared to low CCT during the first half of sleep [55].  This composite 

literature consistently demonstrates that higher CCT light induces stronger acute 

neuroendocrine and neurobehavioral effects than lower CCT light in healthy subjects.  

Those findings are generally consistent with the analytical action spectra that 



demonstrate the blue-appearing portion of the visible spectrum is more potent for 

circadian, neuroendocrine and neurobehavioral regulation.   

 

Only three studies have compared cool white fluorescent light versus blue-enriched 

fluorescent light (17,000 K) for phase-shifting the circadian system in humans. Two 

studies compared equal photon fluxes of 4,100 K versus 17,000 K light for phase-

delaying or phase-advancing dim light melatonin onset (DLMO) [56,57].   Both studies 

showed that each type of light elicited strong DLMO phase-shifts with no significant 

difference between groups.  Those studies used relatively high, potentially saturating, 

light levels that are commonly used for evoking phase-shifts (4.2 x 1015 

photons/cm2/sec, or 5,000 – 4,000 lux).  A third study compared equal photon doses of 

lower light levels (1 x 1014 photons/cm2/s or 134 – 129 lux) of 4,000 K versus 17,000 K 

light for eliciting a DLMO phase-delay in healthy subjects [58]. Although the 17,000 K 

light caused a greater mean phase-delay shift of 2.1 hours compared to 4,000 K light 

that elicited a 1.7 delay, the difference was not statistically significant.  These studies 

indicate that blue-enriched fluorescent light has greater potency for eliciting acute 

biological and behavioral responses but longer term effects like circadian phase-shifting 

does not reflect that same sensitivity. Further research is needed to clarify such 

differences between short and long term effects of polychromatic light. 

 
 
Measured radiometric and photometric values for the studies’ lighting stimuli are 

provided in Figure 1 and Table 1. Currently, there is not a standardized, single 

measurement unit available for quantifying light that regulates the circadian, 

neuroendocrine and neurobehavioral effects of light.  A recent consensus position was 

developed across many of the laboratories that have studied wavelength regulation of 

the biological and behavioral effects of light in humans and other species for best 

practices for measuring and reporting light stimuli [36]. With that consensus, a freely 

available web-based toolbox was provided that permits calculation of the effective 

irradiance for each of the human ipRGC, cone and rod photoreceptors that are capable 

of driving physiological effects [36]. Table 2 provides the computed effective 

photoreceptor illuminances of the three polychromatic lights used in this study. Such 



data are intended for making comparisons of polychromatic lights of different spectral 

quality significantly more traceable [36]. 

 

Examining the calculated photoreceptor illuminances, it is clear that lamplight that is 

progressively enriched with short wavelengths is predicted to have increasingly higher S 

cone, melanopsin ipRGC, and rod weighted illuminances.  Conversely, those same 

lamplights have progressively lower M cone and L cone weighted illuminances. Given 

that the ED50 for melatonin suppression of both 17,000 K and SEB lamplight were five 

times smaller than that of the 4,000 K lamplight, the empirical melatonin suppression 

data support the hypothesis that polychromatic light with increased emissions of short 

wavelengths has increased potency for acute regulation of the pineal gland.  The 

melatonin data, however, suggest that there are limits to increasing potency of light with 

short wavelengths as the SEB light did not have an ED50 lower than the 17,000 K light.   

 

Although it would be desirable to use a single unit for quantifying light that elicits 

circadian, neuroendocrine, and neurobehavioral responses ,this is not currently feasible. 

Abundant evidence shows that the melanopsin ipRGCs are anatomically and 

functionally interconnected with the rods and cones that support vision [20,27-

32,36,40,59,60]. Light-induced physiological responses reflect input from all of the 

retinal photoreceptor classes, with the relative importance of each being highly labile 

within and between response types. Consequently, the spectral sensitivity of this 

photoreceptive system is fundamentally context-dependent [15,17,20,29-

32,36,40,59,60]. 

 

The lack of a consistent and adequate method of quantifying light makes it challenging 

to replicate experimental conditions or to compare across studies. For this nascent field 

of research to mature, different groups of investigators need to use commonly accepted 

metrics for reporting spectral response functions to be able to pool results such as those 

shown in Table 2. As published data using this measurement system accumulate, it will 

then be possible to generate testable hypotheses that predict the spectral 

characteristics for a targeted physiological or behavioral response to light. 



   
 

There are limitations to the data presented here.  First, each study employed young 

adults. Results from studies with older adults would differ significantly due to age-

related differences such as ocular media transmission [61,62]. Second, although each 

fluence-response curve was developed with a complete within-subjects study design, 

three separate cohorts of subjects were studied.  An ideal comparison of the potency 

across three lamplights would have employed the same subjects for all three curves. 

That is logistically challenging, however, due to subject compliance and drop out.  No 

published human neuroendocrine studies yet have provided three full-range fluence-

response curves within a single subject cohort. Finally, the light exposure technique 

involved constant 90 min full retinal field exposures.  Such exposures are optimum for 

comparing the potency of the three types of lamplight.  When used in daily applications 

such as the home, workplace or spaceflight environments, exposure conditions rarely 

would be full retinal field or continuous. Studies in a variety of architecturally illuminated 

spaces are needed to define the optimum illuminances and irradiances that support 

vision as well as the biological and behavioral efficacy of built-in lighting. 

 

Risks for the health and safety of astronauts and ground control workers include 

disturbed circadian rhythms and sleep loss. Such problems may cause impaired 

alertness, loss of concentration, and diminished performance [5,6,63,64]. The broader 

research goal was to determine the best combination of wavelengths for a lighting 

countermeasure for circadian and sleep disruption during space exploration, and 

individuals on Earth. The data presented here provide a first step towards that aim. 

NASA has used high illuminances of white fluorescent light as a pre-launch 

countermeasure for circadian disruption in astronauts [5]. Solid-state lighting now 

provides the potential to provide astronauts light therapy during spaceflight. The retrofit 

of the International Space Station (ISS) fluorescent lighting system to solid-state lighting 

is scheduled to begin in 2016 [65].  A recent study on the Mars Phoenix Lander ground 

crew  demonstrated that a blend of countermeasures including exposure to blue solid-

state light effectively improved alertness and circadian entrainment [6]. Initial tests of 

have probed the ISS lighting system’s capacity for supporting astronaut vision and 



regulating melatonin [66].  Lighting countermeasures are promising for general domestic 

use in architectural applications or clinically, such as treating specific circadian 

disorders. Results from two field studies testing 17,000 K fluorescent lamps in the work 

places indicate that this lamplight improved employee alertness and well being [67,68]. 

Now the door is open to future lighting designs of building interiors that address the 

traditional lighting values along with fostering benefits to human health and well being. 
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Figure Legends 

 

1.  These graphs show the spectral power distribution (SPD) of the polychromatic light 

sources.  The top SPD is from a standard white fluorescent lamp (4,000 K CCT). The 

middle SPD graph is from a prototype white-appearing, blue-enriched lamp  (17,000 K 

CCT). The bottom SPD is from a prototype strongly enriched blue (SEB) lamp.  

 
 
2.  The top graph compares the mean (+ SEM) pre- and post-plasma melatonin values 

for the 4,000 K light exposures.  Percent control-adjusted melatonin change scores from 

these data are presented in the bottom graph.  

 



3.  Each fluence-reponse curve represents data collected from separate cohorts of 8 

healthy subjects after exposure to different types of polychromatic fluorescent light. The 

curve fit parameters and coefficient of correlation (R2) are included in the upper left 

portion of each graph.  
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