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Abstract: Cellular protein homeostasis in the lungs is constantly disrupted by recurrent exposure to
various external and internal stressors, which may cause considerable protein secretion pressure on
the endoplasmic reticulum (ER), resulting in the survival and differentiation of these cell types to meet
the increased functional demands. Cells are able to induce a highly conserved adaptive mechanism,
known as the unfolded protein response (UPR), to manage such stresses. UPR dysregulation and
ER stress are involved in numerous human illnesses, such as metabolic syndrome, fibrotic diseases,
and neurodegeneration, and cancer. Therefore, effective and specific compounds targeting the UPR
pathway are being considered as potential therapies. This review focuses on the impact of both exter-
nal and internal stressors on the ER in idiopathic pulmonary fibrosis (IPF) and chronic obstructive
pulmonary disease (COPD) and discusses the role of the UPR signaling pathway activation in the
control of cellular damage and specifically highlights the potential involvement of non-coding RNAs
in COPD. Summaries of pathogenic mechanisms associated with the ER stress/UPR axis contributing
to IPF and COPD, and promising pharmacological intervention strategies, are also presented.
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1. Introduction

The endoplasmic reticulum (ER) is derived from the outer membrane of the nucleus
and represents one of the most active intracellular organelles. In cells that have devel-
oped an ER, including those residing in the lungs, the balance between synthesis and
protein secretion sometimes fails, or proteins cannot be properly degraded or reduced by
proteases. A disturbance in the synthesis, secretion, or destruction of proteins may lead
to the accumulation of non-folded or mis-folded proteins within the ER, disrupting its
normal function [1,2]. Such an impairment of ER homeostasis is referred to as ER stress,
which plays a significant role in cellular survival and function [3].

The unfolded protein response (UPR) signaling pathway in ER stress was first identi-
fied in Saccharomyces, in which ER stress is exclusively controlled by the serine/threonine-
protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1). This is in contrast to
vertebrates, where three main signaling arms regulate UPR: IRE1, activating transcription
factor (ATF) -6β, and protein kinase R like ER kinase (PERK) (Figure 1). These pathways
transfer information on the protein folding status in the ER to the cytosol and nucleus to
restore protein-folding capacity. Binding of the ER chaperone-binding immunoglobulin
protein (BiP), also known as GRP-78 or heat shock 70 kDa protein 5 (HSPA5), to IRE1α
causes its deactivation [4,5]. Under ER stress, BiP preferentially binds to mis-folded pro-
teins and subsequently is released from PERK and IRE1, which initiates these proteins’
dimerization [6]. Recent studies demonstrated a role for ER stress in fibrosis in multiple
organs, including the lungs [1,7]. For example, recent reports highlight the importance of
ER stress and UPR in chronic obstructive pulmonary disease (COPD) [8–10], and the rela-
tion between ER stress and familial idiopathic pulmonary fibrosis (IPF) [7,11]. This review
will focus on our current understanding of the role of ER stress and UPR in COPD and IPF.
First, we will briefly review details of the UPR and the pathogeneses of COPD and IPF,
after which we will discuss the potential link between the UPR and the onset, progression,
and severity of these diseases.
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Figure 1. Schematic representation of the unfolded protein response (UPR) pathway. Idopathic pulmonary fibrosis (IPF) 
and chronic obstructive pulmonary disease (COPD)-involved mechanisms are generally involved in UPR induction. In-
correctly folded proteins bind to (UPR) sensor proteins in the endoplasmic reticulum (ER) lumen, resulting in activation 
of the UPR. Protein kinase R-like ER kinase (PERK), activating transcription factor 6 (ATF6), and serine/threonine-protein 
kinase/endoribonuclease inositol-requiring enzyme (IRE)-1 activate a series of reactions and signaling pathways, which 
eventually leads to transcription initiation and translation regulation of the effector genes. These genes include C/EBP-
homologous protein (CHOP) and components of the ER-associated degradation (ERAD) system and regulated IRE1-de-
pendent decay (RIDD), which regulate apoptosis/autophagy, ER expansion, and protein folding. Abbreviations: eIF2α 
(eukaryotic initiation factor 2 alpha), ATF4 (activating transcription factor 4), XBP-1 (X-box binding protein-1), ER chap-
erone-binding immunoglobulin protein (BiP). 

2. Unfolded Protein Response 
The UPR aims to reestablish ER homeostasis to ultimately facilitate cell adaptation to 

ER stress. Two main models for UPR activation have been discussed most frequently. The 
first model is similar to that of the heat shock response pathway and relies on the availa-
bility and regulated binding of the chaperone BiP [2,3,12,13]. BiP homeostatically binds to 
UPR sensor proteins to prevent their oligomerization, which is interrupted during ER 
stress. This action leads to the oligomerization of the monomers, resulting in the activation 
of UPR [14,15]. There is experimental evidence of the interaction between BiP and IRE1, 
ATF6, and PERK in unstressed cells with subsequent dissociation during ER stress [16–
20]. “Filamentation induced by c-AMP” (FIC) domains are conserved domains from bac-
teria to eukaryotes including in humans and are involved in stress responses and infec-
tions [21,22]. They catalyze the transfer and covalent binding of adenosine monophos-
phate (AMP) (AMPylation/adenylation) to hydroxyl side chains of several proteins, such 
as Rho GTPases, which induces actin cytoskeleton collapse by inhibiting the interaction 
of Rho proteins with their downstream effectors. The AMPylation of BiP offers an addi-
tional regulatory mechanism affecting ER homeostasis. BiP activity serves as a quality 
control process for ER protein homeostasis to regulate the UPR [21,23]. FIC domains are 
not restricted to promoting the aforementioned post-translational modifications of 
GTPases, as they can reverse AMPylation and also catalyze deAMPylation of the BiP 
chaperone [21,22]. Both FIC and BiP are transcriptionally activated upon ER stress induc-
tion [23], confirming the role of FIC-mediated AMPylation of BiP in UPR [23]. Regulation 

Figure 1. Schematic representation of the unfolded protein response (UPR) pathway. Idopathic pulmonary fibrosis (IPF) and
chronic obstructive pulmonary disease (COPD)-involved mechanisms are generally involved in UPR induction. Incorrectly
folded proteins bind to (UPR) sensor proteins in the endoplasmic reticulum (ER) lumen, resulting in activation of the
UPR. Protein kinase R-like ER kinase (PERK), activating transcription factor 6 (ATF6), and serine/threonine-protein
kinase/endoribonuclease inositol-requiring enzyme (IRE)-1 activate a series of reactions and signaling pathways, which
eventually leads to transcription initiation and translation regulation of the effector genes. These genes include C/EBP-
homologous protein (CHOP) and components of the ER-associated degradation (ERAD) system and regulated IRE1-
dependent decay (RIDD), which regulate apoptosis/autophagy, ER expansion, and protein folding. Abbreviations: eIF2α
(eukaryotic initiation factor 2 alpha), ATF4 (activating transcription factor 4), XBP-1 (X-box binding protein-1), ER chaperone-
binding immunoglobulin protein (BiP).

2. Unfolded Protein Response

The UPR aims to reestablish ER homeostasis to ultimately facilitate cell adaptation
to ER stress. Two main models for UPR activation have been discussed most frequently.
The first model is similar to that of the heat shock response pathway and relies on the
availability and regulated binding of the chaperone BiP [2,3,12,13]. BiP homeostatically
binds to UPR sensor proteins to prevent their oligomerization, which is interrupted dur-
ing ER stress. This action leads to the oligomerization of the monomers, resulting in the
activation of UPR [14,15]. There is experimental evidence of the interaction between BiP
and IRE1, ATF6, and PERK in unstressed cells with subsequent dissociation during ER
stress [16–20]. “Filamentation induced by c-AMP” (FIC) domains are conserved domains
from bacteria to eukaryotes including in humans and are involved in stress responses and
infections [21,22]. They catalyze the transfer and covalent binding of adenosine monophos-
phate (AMP) (AMPylation/adenylation) to hydroxyl side chains of several proteins, such
as Rho GTPases, which induces actin cytoskeleton collapse by inhibiting the interaction of
Rho proteins with their downstream effectors. The AMPylation of BiP offers an additional
regulatory mechanism affecting ER homeostasis. BiP activity serves as a quality control
process for ER protein homeostasis to regulate the UPR [21,23]. FIC domains are not
restricted to promoting the aforementioned post-translational modifications of GTPases, as
they can reverse AMPylation and also catalyze deAMPylation of the BiP chaperone [21,22].
Both FIC and BiP are transcriptionally activated upon ER stress induction [23], confirm-
ing the role of FIC-mediated AMPylation of BiP in UPR [23]. Regulation of the UPR by
FIC-mediated BiP AMPylation also protects photoreceptors in the Drosophila visual system
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in response to constant 72-hour light stress. It is required for the photoreceptor neurons
to adapt to transient stress demands in order to maintain proper vision [24]. The human
FIC-domain protein HYPE (or FICD) is also involved in AMPylation and deAMPylation of
BiP [21,22,25]. A single Fic protein, called HYPE (Huntingtin yeast interacting protein), was
shown to contain a tetratricopeptide repeat (TPR) that can be used as a cellular targeting
sequence [22]. It uses the same active site on BiP (threonine 518) to affect both AMPylation
and deAMPylation in a time- and concentration-dependent manner [26]. When AMPy-
lation activity of FICD is inhibited, the default activity is deAMPylation [22,25]. It has
been proposed that the dimerization of FIC inhibits its AMPylation without affecting the
deAMPylation activity [26]. This process requires a functional switch in FICD to change
the unfolded protein load; yet its molecular basis remains unclear.

Dysregulation of BiP is associated with numerous diseases, including neurological
disorders and cancers [23]. BiP AMPylation is increased in a stable situation, when unfolded
proteins are reduced, but decreased during ER stress. AMPylation locks BiP into a state
resembling the ATP-bound conformation with high “substrate off” rates, thereby inhibiting
its chaperone function [24]. BiP in its ATP-bound conformation is the favored substrate
for AMPylation [25]. BIP AMPylation regulates UPR by chaperone inhibition to match the
concentration of active chaperone to the amount of unfolded proteins [25]. A disturbance
of the BiP AMPylation/deAMPylation cycle not only affects the ability of BiP to respond to
misfolded protein aggregates but also interferes with its regulation of UPR activation [24].

The currently accepted model identifies that misfolded or unfolded proteins bind
directly to UPR sensor proteins (including PERK and IRE1), which drives their oligomeriza-
tion and subsequent activation of UPR [27–29]. One study suggests that activation via this
model requires two steps: the separation of BiP from IRE1, resulting in cluster formation,
followed by a direct interaction of unfolded proteins with the core stress-sensing region of
the dimerized IRE1 cluster, rendering highly oligomerized and active IRE1 [27,30].

It is debatable which of these models is most accurate as the basal cellular abundance
of UPR sensor proteins is relatively low and the measurement of formed complexes during
ER stress is challenging [31]. Emerging evidence supports the second model for UPR
activation as emerging new data seem to indicate that preformed UPR sensor complexes
are activated upon the direct binding of misfolded proteins [32]. Under conditions of stress
caused by the accumulation of misfolded or aggregated proteins, UPR is regulated and
activated by IRE1 via non-conventional splicing; translationally by PERK through phospho-
rylation of eukaryotic translation initiation factor 2A (eIF2a); and by ATF6 via regulated
proteolysis [14]. BiP is also recruited to the ER lumen to increase its folding capacity as the
load of accumulated misfolded protein becomes greater and the dissociation of BiP from
the three UPR sensors further increases their activation [33]. Activated ATF6 plays a role
in this process. Upon the accumulation of misfolded proteins, ATF6 is translocated to the
Golgi apparatus and processed by the proteases Site 1 Protease (S1P) and Site 2 Protease
(S2P); this produces a cleaved cytosolic ATF6 fragment that acts as a pivotal transcriptional
factor to induce genes encoding BiP and several other chaperone proteins that mediate ER
expansion and increase ER folding capacity [1,33].

2.1. Integral UPR Pathway Proteins

The three UPR sensors are not activated simultaneously. Activation of ATF6 and
IRE1 is immediate and gradually attenuates, whereas PERK activation occurs later and
can persist with chronic ER stress [34,35]. The activation of both ATF6 and IRE1 induces
several transcriptional pathways dedicated to developing ER protein folding capacity and
promoting selective protein degradation [1] (Figure 1).

2.1.1. IRE1

Two human isoforms of IRE1, IRE1α and IRE1β, have thus far been identified encoded
by ERN1 and ERN2, respectively. IRE1α is expressed ubiquitously, while IRE1β is predomi-
nantly expressed in goblet cells of the intestinal epithelium and the lungs [36]. Interestingly,
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IRE1α−/− mice are embryonically lethal, whereas IRE1β−/− mice are viable [37,38].
Furthermore, IRE1β−/− mice display a gross accumulation of Mucin 2 (MUC2) and in-
tense ER stress, revealing that (in goblet cells) IRE1β negatively affects MUC2 expression
and that an unsupported stockpile of MUC2 in the ER produces ER stress [38]. IRE1α
has been the focus of major research as it was initially identified as having a vital role in
the determination of cell fate, but we now know it is also intricately linked to ER stress
and UPR signaling [39,40]. IRE1α is a type 1 ER transmembrane protein possessing both
intrinsic kinase and endoribonuclease activity [19,29,36]. IRE1α can initiate UPR signaling
through its endoribonuclease activity and subsequent unconventional selective splicing of
a segment of XBP1 mRNA, which is localized to the ER, allowing the translation of active
XBP1 [41–45] (Figure 1). The transcription factor XBP1 then enters the nucleus and upregu-
lates several UPR genes encoding ER chaperones and activates the UPR element (UPRE),
which is critical for the regulation of the ER-associated degradation (ERAD) system [46].
The genes regulated by the interaction between IRE1α and XBP1 ultimately enhance protein
transport and folding in the ER and also promote relevant degradation pathways [47]. At
least four molecules make up IRE1α oligomers. These oligomers dissociate with chronic ER
stress, resulting in a reduction in IRE1 endoribonuclease activity and dephosphorylation of
the kinase [48]. Autophosphorylation of IRE1α at the ser724 residue has been observed
during the initiation of the UPR signaling cascade [49]. In addition, IRE1α can induce
UPR signaling through post-transcriptional modifications, such as ERAD of RNAs via
Regulated IRE1-Dependent Decay (RIDD), to reduce the ER load [50,51].

IRE1α is most active in the early stages of ER stress; following its autophosphorylation,
IRE1α kinase and ribonuclease activities are initiated. The latter cleaves XBP1u mRNA to
produce a mRNA expressing an active transcription factor called spliced XBP1 (XBP1s).
The XBP1s protein controls the transcription of genes involved in ERAD, protein folding,
and phospholipid synthesis [52,53]. The endoribonuclease also degrades specific mRNAs,
identified as the RIDD process, and IRE1α kinase activity generates stress alert pathways by
binding to TNF receptor-associated factor 2 (TRAF2) adapter proteins, resulting in nuclear
factor-kappa B (NF-kB)- and Jun NH2-terminal kinase (JNK)-mediated signaling [54].

Inactivating oligomerization and AMPylation decreases BiP expression [22,25].
For years, this process has proven relevant for the recovery of BiP from the complex
with IRE1 under ER stress conditions [16,17,55]. A recent study demonstrated an ATP- and
co-chaperone-dependent system by which BiP stimulates the formation of a monomeric,
inactive state of IRE1’s stress-sensing luminal domain (IRE1LD), which further supports
the existence of a competitive suppression model in which the potential of BIP to affect
key conversions in IRE1 activity is modified [56]. Amin-Wetzel et al. (2019) reported
that compelled loading of the endogenous BiP onto endogenous IRE1α suppressed UPR
signaling in CHO cells. Deletions in the IRE1α locus that de-suppressed the UPR encrypted
flexible regions of IRE1LD mediate BiP-induced monomerization in vitro [56].

2.1.2. ATF6

ATF6 is a type 2 transmembrane receptor and ER stress-regulated transcription factor.
ATF6 activates the transcription and expression of an array of components important in
boosting protein folding, regulating protein degradation, and ER expansion [57]. As dis-
cussed earlier, the bond between BiP and ATF6 is relieved during ER stress, allowing the
translocation of these proteins to the Golgi apparatus [58], where the cytosolic domain
of ATF6 is cleaved by S1P and S2P to produce an active transcription factor [15,59,60].
The transcriptional upregulation of XBP1 mRNA, which is non-canonically spliced by
IRE1α, is also mediated by activated ATF6, further allowing the translation and activation
of XBP1 [57]. In addition, ATF6 can regulate ER stress by binding to and inducing tran-
scription through ER stress response element (ERSE) and via the activation of multiple ER
chaperone proteins [46,61,62] (Figure 1).
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2.1.3. PERK

PERK is a type 1 ER transmembrane protein (like IRE1), encoded by EIF2AK3, and has
intrinsic kinase activity. PERK was initially identified as an integral protein in the UPR
pathway and has been recognized as a key player in insulin biogenesis. PERK deficiency
has been demonstrated to cause Wolcott Rallison syndrome (WRS), leading to permanent
neonatal diabetes and the onset of growth retardation later in life [63,64]. In the ER lumen,
PERK is kept inactive through binding to BiP; however, the cytoplasmic domain of PERK
harbors Ser/Thr kinase activity, and PERK activation is followed by autophosphorylation of
its kinase domain, providing PERK with full catalytic activity [36]. Upon the accumulation
of misfolded proteins and initiation of ER stress, BiP bound to PERK is released, allowing for
dimerization, autophosphorylation, and activation. PERK then selectively phosphorylates
the α-subunit of eIF2α, leading to the translational attenuation of several mRNAs, reducing
the load on the ER and inhibiting the translation of a multitude of proteins involved in cell
growth [65–67].

On the other hand, phosphorylation of elF2α also favors the translation of ATF4
mRNA along with other selective mRNAs during the activation of stress-responsive tran-
scription factors [66,68]. In addition, PERK induces phosphorylation of the transcription
factor nuclear factor erythroid 2-related factor 2 (NRF2), promoting its translocation to
the nucleus [69]. Activated NRF2 is required for free radical scavenging and controlling
redox homeostasis [70]. In response to ER stress, NRF2 works synergistically with ATF4
to activate genes associated with the modulation of redox homeostasis [71–73]. PERK sig-
naling also controls pathways that regulate the status of mitochondria during ER stress
by preventing the accumulation of proteins that may affect mitochondrial function [74].
Furthermore, PERK-dependent regulation of stress-induced mitochondrial hyperfusion
(SIMH), a survival mechanism in which protective elongation of mitochondria occurs along
with increased production of ATP [75–77], serves as a mitochondrial protective mechanism
during ER stress and constitutes another facet of the UPR pathway. A schematic summary
highlighting the main signaling arms of the UPR as a communication mechanism between
the ER and nucleus is shown in Figure 1.

In summary, misfolded proteins bind directly to UPR sensor proteins at the same
time as BiP dissociates; this drives sensor oligomerization and results in the activation of
UPR [14,78,79]. Activated proteins of the UPR pathway play key roles in the regulation
of protein folding, ER expansion, and pro-survival responses. Conversely, UPR-mediated
signaling is also importantly involved in other cellular processes, such as apoptosis, au-
tophagy, and pro-death responses [67,78,80].

2.2. Signaling Pathways Activated by UPR

Under conditions where the UPR is hindered and the load of unfolded
proteins becomes higher, the UPR can initiate apoptosis [81], autophagy [2,36,82,83], or cell
death [33,44,45]. Although the ER is quite robust and resilient, often, cells are operating
at the limits of their capacity [84]. With continued stress, when the cell fails to restore ER
homeostasis and appropriate protein folding, the UPR adopts alternate signaling termed
“terminal UPR”, which pushes the cell towards apoptosis [85].

IRE1α is required for ER stress-induced activation of apoptosis, whereas PERK and
ATF6 can also be involved but are not essential [39]. IRE1α has been linked to a regulatory
role in ER stress-induced apoptosis as it forms a complex with apoptosis signal-regulating
kinase 1 (ASK1) and activates its downstream target c-Jun NH2-terminal kinase (JNK)
via binding to TNF receptor-associated factor 2 (TRAF2) [86–89]. Excessive activation of
PERK results in the upregulation of the growth arrest and DNA damage-inducible gene 153
C/EBP homologous protein (CHOP or GADD153), a transcription factor that inhibits the
encoding of the anti-apoptotic B-cell lymphoma (BCL) 2 gene and promotes the expression
of related pro-apoptotic proteins [90]. Furthermore, PERK is a critical part of mitochon-
drial associated membranes (MAMs), which are important in sustaining the structural
and functional integrity of mitochondria, maintaining calcium dynamics, and regulating



Life 2021, 11, 1 7 of 27

metabolism as a communication mechanism between the ER and mitochondria [77,91].
The absence of PERK disrupts MAM-associated mechanisms, resulting in ER fragmentation
and a reduction in apoptosis induced by reactive oxygen species (ROS) and mediated by
ER stress with perturbed Ca2+ signaling [77]. Hence, PERK acts as an interface between
ER and mitochondria, regulating ROS-induced apoptosis, and the lack of PERK protects
mitochondria from ROS.

Autophagy is another homeostatic process that is increasingly activated upon changes
in the cell, such as starvation, hypoxia, or ER stress [80,92–95]. Autophagy is a recycling
mechanism that degrades aggregated proteins and toxic components, relieving cellular
stress and maintaining homeostasis [94,96–99]. Autophagy flux is increased with per-
sistent ER stress to promote cell survival. ATF4 and CHOP (both activated by PERK)
are mostly associated with cellular death pathways upon overexpression; however, au-
tophagy is transcriptionally regulated by both ATF4 and CHOP and can oppose terminal
UPR [33,100]. These two proteins have also been identified in the regulation of numerous
autophagy-related genes (ATG) [101]. ER stress also activates JNK via the interaction
between IRE1α and TRAF2, which ultimately phosphorylates Bcl2 and leads to dissocia-
tion of Bcl2 and Beclin1 proteins, enabling the activation of the phosphoinositide-3-kinase
(PI3K) complex and initiation of autophagy [102]. Following continued cellular stress,
JNK-mediated autophagy can occur independently of IRE1 [103]. Autophagy deficiency
and inhibition renders UPR-dependent inflammation in intestinal epithelial cells, highlight-
ing another functional association between UPR and autophagy with pathophysiological
implications [104].

An additional route of ER stress-induced apoptosis is via a caspase-dependent path-
way. Caspase-12 belongs to the group 1 family or IL-1β-converting enzyme (ICE)-like
caspases and is activated following ER stress, mediating apoptosis independently of mito-
chondria [105–107]. ER stress leads to the translocation of Bim, a BH-3 (Bcl-2 homology
domain-3)-only protein, to the ER, resulting in caspase-12 activation [108]. Under condi-
tions of ER stress, caspase-12 directly activates caspase-9, and it has been proposed that
caspase-3 is activated downstream in this cascade, triggering apoptosis [109,110]. Selective
activation of caspase-12 has been demonstrated in the motor neurons of rabbits following
spinal cord trauma [111]. In addition, caspase-12 has been reported to be activated as a
result of treatment with two chemotherapy drugs [105,112].

CHOP also plays an important role downstream in the pro-death response [45,113].
Whilst ATF4 can activate CHOP, IRE1α can lead to the phosphorylation and activation of
CHOP through binding and activation of p38 MAPK [57]. CHOP downregulates Bcl-2 and
upregulates the transcription of Bim, ultimately resulting in the downstream initiation of
an apoptotic cascade [114–116]. Interestingly, reduced levels of apoptosis in response to ER
stress have been observed in CHOP knockout mice [117].

3. Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death
and fifth most prevalent disease worldwide [118,119]. COPD is a chronic and progressive
lung disease characterized by irreversible airway obstruction due to obliteration of the
small airways and loss of alveoli, which leads to emphysema. Some COPD patients can
also manifest airway hyperreactivity associated with smoking and/or concurrent allergic
disease. Symptoms include chronic cough, sputum production, dyspnea, intermittent
wheezing, chronic airflow obstruction, and reduced to poor quality of life [120,121]. Al-
though the underlying mechanisms of COPD are not completely understood, the disease is
also associated with chronic corticosteroid-resistant inflammation, which contributes to the
limited therapeutic options that are currently available.

3.1. COPD Pathophysiology

COPD is defined by chronic airway inflammation and enlargement of mucous glands
in the central airways. This leads to mucus hypersecretion and airway mucus plugging,



Life 2021, 11, 1 8 of 27

epithelial injury, airway fibrosis, and peripheral airway damage, including emphysema
(i.e., alveolar destruction and airspace enlargement) that begins in the respiratory bronchi-
oles and ends in the lung parenchyma [122]. The Global Initiative for Chronic Obstructive
Lung Disease (GOLD) classifies and stages COPD according to the severity of airflow
obstruction based on spirometric measures (GOLD 1–4). In addition to COPD severity
stage based on lung function, patients are also classified according to their symptoms,
functional limitations, and number and severity of acute exacerbations which places them
in one of four Groups: A-D (COPD pathology is summarized in Figure 2).
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Figure 2. Schematic summary of COPD pathogenesis. Cigarette smoking is the most common risk factor triggering the
development of chronic obstructive pulmonary disease (COPD). In response to irritant exposure, alveolar macrophage
activation generates excessive reactive oxygen (ROS) and nitrogen (RNS) species, leading to T cell and neutrophil infiltration,
cytokine/chemokine release, inflammation, and endoplasmic reticulum (ER) stress. Smoking damages resident epithelial
cells in the lung, which promotes further release of pro-inflammatory factors, transforming growth factor-β (TGF-β), and
matrix metalloproteinase-9 (MMP-9). All these factors trigger inflammation, alveolar epithelial cell (AEC) I and II apoptosis,
fibrosis, and mucus hypersecretion, contributing to the development of airflow obstruction and emphysema. Abbreviations:
FGF (fibroblast growth factor), HDAC2 (histone deacetylase 2), EGF (epidermal growth factor), INF-γ (interferon gamma).

3.2. Onset and Progression of COPD: The Role of Cigarette Smoke

While various environmental and genetic risk factors have been identified in COPD,
most cases of COPD are due to long-term cigarette smoke (CS) exposure. Yet, only about
15% of all smokers develop COPD in their lifetime [123]. Exposure to CS induces oxidative
stress, which in turn triggers alveolar macrophages to generate ROS or reactive nitrogen
species (RNS). These reactive compounds cause cytokine and chemokine release, leading to
the infiltration of lymphocytes and neutrophils into airways and lung tissue. Interferon-γ
(IFN-γ) is released by both helper and cytotoxic lymphocytes, while innate neutrophils
produce neutrophil elastase that causes mucus hypersecretion and local tissue damage.
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CS also induces NF-κB by inhibiting histone deacetylase 2 (HDAC2), thereby promot-
ing lung inflammation [124,125]. In addition, oxidative stress activates the PI3K pathway,
which phosphorylates and inactivates HDAC2, leading to ubiquitinated proteasomal degra-
dation and a subsequent increase in the expression of pro-inflammatory genes, ultimately
resulting in impaired corticosteroid responsiveness [126].

Epithelial cells and macrophages release proteases, such as matrix metalloproteinase-9
(MMP-9), which contributes to elastin degradation and the development of emphysema.
These cells also release transforming growth factor-β (TGF-β) and fibroblast growth factor
(FGF), which stimulate fibroblast proliferation and are importantly involved in the pro-
fibrotic response. In addition, epithelial growth factor (EGF) and TGF-α stimulate mucus
hypersecretion [127], which is further exacerbated by inflammation.

3.3. COPD and UPR: Cellular Crosstalk Mechanisms
3.3.1. Oxidative Stress in COPD

Airway cell damage in COPD is largely attributed to oxidative and carbonyl stress [128,129].
Oxidative stress occurs when free radical exposure is able to suppress antioxidant defenses.
Ubiquitous free radicals (e.g. ROS) primarily arise during mitochondrial respiration and/or
pathogen restriction responses. ROS species, such as hydroxyl radical (·OH) and superoxide
anion (O2·−), contain unpaired electrons which they rapidly transfer to other molecules through
oxidation, resulting in damage to proteins, lipids, and/or DNA and potentially leading to the
generation of novel ROS [130] (Figure 2). Since the protein transport and folding processes
are ATP (energy)-demanding and generate ROS, UPR induces the transcription of genes that
modulate energy synthesis and ROS quenching [131]. Of note, many basic cellular functions,
including cell cycle regulation, apoptosis, energy metabolism, inflammation, and acute phase
reactions that depend on an adequate supply of fully functional ER membranes and secreted
proteins, are also regulated by the UPR [34,132]. As stated earlier, UPR is controlled by three ER-
transmembrane stress sensors (IRE1α, PERK, and ATF6) [133–135]. Under normal physiological
circumstances, activation of these sensors is inhibited by the binding of their luminal domains to
the main and most represented ER-resident chaperone BiP. However, following CS exposure
and resultant ROS production, the UPR pathway becomes activated.

3.3.2. CS-Induced UPR Signaling in COPD

Apart from nicotine, heavy metals, and over 4000 chemicals, tobacco smoke exposes
airway tissue to high concentrations of oxidants and free radicals. For instance, a sin-
gle puff of CS contains an excess of 1 × 1015 oxidant molecules that could impact lung
health [136,137]. Oxidants, including ROS and RNS, mediate oxidative stress responses
that overwhelm the protective antioxidant defenses. In addition to potentiating inflam-
matory processes, smoking-associated damage of lung resident macromolecules can also
sustain tissue injury and cell death through modification of amino acids and proteins and
peroxidation of lipids [138–140].

In both human COPD lungs and those of CS-exposed mice, there is evidence of in-
creased levels of insoluble, poly-ubiquitinated, high-molecular-weight proteins [141,142].
Murine studies have shown that CS exposure increases the levels of misfolded proteins,
including functionally impaired protein disulfide isomerase (PDI), a critical foldase that
modulates ER function [143,144]. In humans, CS-induced oxidative stress causes irre-
versible damage to lung protein structures in both airway and alveolar epithelial cells,
which leads to degradation by the ubiquitin–proteasome system or via autophagic vac-
uoles [144–146]. Concomitantly, CS exposure alters the activity of proteasome constituent
trypsin, chymotrypsin, and caspases, thereby affecting the elimination of misfolded pro-
teins [145,147] (Figure 2).

Although the implied role of UPR in COPD is largely accepted, the precise downstream
interactions are ambiguous and perceived to be biologically diverse. Numerous major
proteins of the UPR pathway have been implicated and have the potential to be involved
in inflammation [148,149]. This has fueled research into the correlations between portions
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or entire arms of the UPR pathway and COPD pathogenesis. ER proteins with significant
roles in UPR, such as BiP, may be upregulated in bronchoalveolar lavage (BAL) fluid and
lung samples taken from smokers [150,151]. While expression levels of phospho-eIF2α
and CHOP correlate with the severity of airway obstruction, such increments are largely
independent of smoking and associated with stress-induced increases in caspase-3 and -7
in COPD lungs [152]. Independent of smoking history, diminished miR199a-5p expression
within peripheral blood monocytes (PBMCs) derived from COPD patients correlates with
an increase in UPR markers, such as BIP, ATF6, and sXBP1 [153]. The increased presence of
such ER stress/UPR markers in COPD patients could be correlated with adverse airway
remodeling; importantly, these proteins could prove to be useful biomarkers and represent
potential therapeutic targets [154]. These findings contradict observations made in alveolar
type II epithelial cells derived from COPD lungs, where only modest expression of BiP,
sXBP1, CHOP, and ATF6 was detected as compared to IPF [155].

3.3.3. UPR and Autophagy Signaling in COPD

Autophagy is widely recognized as a key regulator of innate and adaptive immune
mechanisms that profoundly impacts disease pathogenesis [156–160]. Important processes
affected by autophagy include inflammation, antigen presentation, viral infection, and
bacterial clearance [157].

COPD patients show a significant elevation in autophagic proteins, with increased lev-
els of LC3B-II, a marker of autophagosome formation. This is accompanied by a significant
increase in other autophagy-associated proteins, such as ATG4, ATG5–ATG12, and ATG7,
in COPD as compared to normal lungs [161]. While CS is known to further enhance the
levels of autophagic markers in vitro and in vivo, increased autophagy has also been ob-
served in a genetic variant of emphysema, α1-anti-trypsin (A1AT) deficiency, in which the
etiology can be viewed as independent of smoke or noxious particle inhalation [162,163].

Under nutrient-rich conditions, autophagy is regulated by class I PI3K and mammalian
target of rapamycin (mTOR) and is susceptible to activation by UPR [164]. While the UPR
and mTOR complex 1 (mTORC1) mediate autophagy bidirectionally, activation of the
PERK-eIF2α axis is critical for autophagy activity that is associated with ER stress [100,101].
PERK also stimulates autophagy by inhibiting Akt- and ATF4-mediated induction of
autophagy-associated genes [165].

3.3.4. UPR-Associated Diagnostic Markers in COPD

Controversies exist regarding the role of UPR in COPD. Increased UPR activity has
been postulated to contribute to lung cell apoptosis. Conversely, diminished UPR activity
has been proposed to explain increased levels of misfolded protein aggregates and impaired
antioxidant defenses [141,152]. These functional contradictions could be due to genetic
propensity or phenotypic diversity as UPR gene expression considerably varies among
individuals and is modulated by specific stimuli [166]. Additional research is needed in
this area.

3.3.5. Non-Coding RNAs and UPR in COPD

Non-coding RNAs (ncRNAs) are a category of RNA molecules that do not contribute
to protein synthesis [167]. More than 90% of RNAs made from the human genome are
ncRNAs and a high number of ncRNAs have been recognized in recent years [168–170].
Notably, ncRNAs have been shown to participate in physiological and pathological events.
Physiological processes, such as apoptosis, proliferation, differentiation, migration, and
autophagy, are under close surveillance by ncRNAs. In addition, ncRNAs play a key role
in the development of several pathological conditions, including cancer, diabetes, cardio-
vascular diseases, and other disorders [171]. ncRNAs can be used as reliable biomarkers
for disease diagnosis, as some ncRNAs can be measured depending on their stability
in the bloodstream [172,173]. Furthermore, it is worth mentioning that ncRNAs can be
therapeutically targeted by pharmacological or genetic interventions [174]. Considering
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these features, ncRNAs represent potential diagnostic, prognostic, and therapeutic options
in disease [175].

Recent studies have highlighted the involvement of ncRNAs in COPD development
and the regulation of disease-associated molecular mechanisms. For instance, expression
of microRNA (miRNA)-155 is increased in smokers and COPD patients compared to never-
smokers [176]. In addition, miR155-deficient mice show an attenuation of the CS-induced
increase in inflammation-related genes, and intranasal instillation of a specific inhibitor of
miRNA-155 inhibited CS-induced inflammation in wild-type mice [176]. Similarly, miRNA-
29b appears to regulate pathogenesis in a rat model of COPD [177].

In addition to in vitro and in vivo experiments, clinical studies have also shown
a role of miRNAs in COPD. Female COPD patients smoking tobacco were compared
to female COPD patients who never smoked but were exposed to biomass smoke (BS).
miRNA-22-3p were lower in the BS compared to the tobacco smoking group, thus these
findings would suggest a pro-inflammatory role for miR02203p [178]. Other kinds of
ncRNAs, including long non-coding (lncRNAs) and circular (circRNAs) RNAs, have also
been implicated in COPD pathogenesis [169,179–181]. Interestingly, we now know that
ncRNAs can also affect the UPR [182,183]. To date, just one study has evaluated the
role of ncRNAs in the regulation of UPR in COPD, by assessing and analyzing miRNA
expression profiles in peripheral blood monocytes collected from patients. During ER
stress, expression of miRNA-199a-5p is increased. Results demonstrated that there was
an association between miRNA-199a-5p and miRNA-199a-2; miRNA-199a-2 promoter
hypermethylation prevented miRNA-199a-5p expression. In addition, BiP and ATF6 were
subject to regulation by miRNA-199a-5p in COPD monocytes. MiRNA-199a-5p binds to
the 3/-untranslated region (3/-UTR) of BiP and ATF6 to reduce their expression. The
other arms of the UPR, IRE1 and PERK, were also downregulated by miRNA-199a-5p
in COPD [153]. Epigenetic regulation of this miRNA is important in modulating the
expression of the UPR arms. Moreover, the findings of this study provide insight into novel
therapeutic strategies for COPD. However, more studies are needed to further identify
specific regulatory roles of ncRNAs, including miRNAs, circRNAs, and lncRNAs, in the
UPR in COPD patients.

4. Idiopathic Pulmonary Fibrosis (IPF)

IPF is a chronic, progressive parenchymal lung disease that is pathologically identified
as usual interstitial pneumonia (UIP) with unknown etiology, occurring primarily in adults
(usually >50 years old) [184–186]. Familial pulmonary fibrosis (FPF) or familial interstitial
pneumonia (FIP) is defined as two or more members within the same family having IPF or
any other form of idiopathic interstitial pneumonia (IIP). Approximately 0.5–3.7% of IPF
cases are familial in origin [187–193].

Interestingly, 2–20% of IPF patients have a first-degree relative with interstitial lung
disease (ILD). The estimated incidence range is higher in Europe and North America and
lower in East Asia and South America. Men are affected more than women by a ratio of
nearly 2:1, which progressively increases with age [194]. The median life expectancy in
IPF ranges from 2 to 5 years after initial diagnosis, which is comparable to that of many
cancers (e.g., breast, ovarian, and colorectal cancer) [195–198]. Therefore, IPF has been
recognized as a major life-threatening pulmonary disease and is usually progressive and
lethal [199,200].

The clinical symptoms of IPF include unexplained chronic exertional dyspnea along
with a frequent non-productive cough, fine bibasilar inspiratory crackles that are often
“high pitched” or “velcro-like” in character, and finger nail clubbing [201–204]. Poten-
tial risk factors include cigarette smoking, environmental and occupational exposures
(i.e., metal dust, wood dust, sand, stone, silica, farming, and livestock), microbial agents,
gastroesophageal reflux, diabetes mellitus, and various genetic factors (both familial and
sporadic polymorphisms) [184,205–209].
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4.1. IPF Pathophysiology

IPF is also known as cryptogenic fibrosing alveolitis, a name less-commonly used, and
differs from other classes of pulmonary fibrosis, such as desquamative interstitial pneumo-
nia (DIP), acute interstitial pneumonia (AIP), nonspecific interstitial pneumonia (NSIP),
and cryptogenic organizing pneumonia (COP). IPF usually demonstrates a histopathologic
UIP pattern diagnosed by lung biopsy [195,210]. The key histopathological features of
UIP/IPF on lung biopsy include a combination of (1) irregularly distributed fibrosis along
with scarring (consists of dense acellular collagen deposition), (2) heterogeneous patchy
interstitial infiltrates of lymphocytes and plasma cells with subpleural and para-septal
lung parenchymal mild inflammation and hyperplasia, (3) temporal heterogeneity of fi-
brosis characterized by scattered fibroblast foci (convex subepithelial foci of proliferating
fibroblasts and myofibroblasts), and (4) honeycomb change (consisting of cystic fibrotic
airspaces) [211–217].

Although surgical biopsy remains the gold standard tool for diagnosing the UIP pat-
tern, high-resolution computed tomography (HRCT) serves as an essential component for
demonstrating radiological images that correlate with UIP in patients with IPF [218,219].
The typical HRCT findings that correlate with a histopathological pattern of UIP include the
presence of reticular opacities (often associated with traction bronchiectasis), honeycomb
change (manifested as clustered cystic airspaces of 3–10 mm diameter), and a patchy basal
and peripheral distribution of fibrosis [220–224]. An international evidence-based consen-
sus established jointly by the American Thoracic Society (ATS), the European Respiratory
Society (ERS), the Japanese Respiratory Society (JRS), and the Latin American Thoracic
Association (ALAT) defines IPF diagnostic criteria as follows: the presence of UIP pattern
on HRCT in patients without lung biopsy, UIP pattern noted on combined HRCT and
lung biopsy, and the exclusion of other known causes of ILD (e.g., domestic and occupa-
tional environmental exposures, connective tissue disease, and drug toxicity) [184,225,226]
(Figure 3).

4.2. Onset and Progression of IPF

The cause of IPF is unknown; however, many clinical and environmental exposure
associations exist. Prior to the last decade, the pathogenesis of IPF was very poorly under-
stood, but over recent years, two different hypotheses for the pathogenesis of IPF have
been proposed. The traditional “inflammation/alveolitis” hypothesis states that IPF is due
to chronic inflammation, occurring in response to an unknown stimulus (or stimuli). If this
inflammation is left untreated, it will lead to progressive lung injuries and fibrosis [211,227].
However, anti-inflammatory and immunosuppressive therapies (i.e., oral corticosteroids
and cytotoxic agents) have failed to significantly improve disease progression or its progno-
sis. Indeed, some animal models demonstrate pulmonary fibrosis in the absence of inflam-
mation [228,229]. An alternative hypothesis emphasizes non-inflammatory mechanisms,
such as epithelial-mesenchymal transition (EMT), and states that repeated, unidentified,
exogenous, and/or endogenous stimuli trigger the development of IPF. These stimuli lead
to sequential microscopic lung injuries, with noticeable disruption in the integrity of the
alveolar epithelium, that induce an abnormal wound healing process characterized by an
uncontrolled proliferation of myofibroblasts. The disorganized proliferation of myofibrob-
lasts results in the gradual distortion of the epithelial lining. This leads to the formation
of fibroblast-myofibroblast foci and, consequently, lung fibrosis, a histological hallmark
of IPF [227,230–232]. Thus, in this “epithelial/mesenchymal” hypothesis, pulmonary fi-
brosis is the final pathological outcome of aberrant wound healing that is activated in
response to unknown persistent or recurrent lung injury. Accordingly, abnormal lung
wound repair has gained significant interest regarding the pathogenesis of IPF. This process
comprises complex and multistage physiologic mechanisms that include collagen produc-
tion, angiogenesis, cell migration, and cellular proliferation triggered by unknown tissue
injuries [233].
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fibrotic signaling in the lung. The key histopathological feature of IPF is usually interstitial pneumonia (UIP). Endoplasmic
reticulum (ER) stress in IPF triggers apoptosis through UPR system activation, inflammation via nuclear factor kappa-light-
chain-enhancer of activated B cells (NFκB) activation, and epithelial–mesenchymal transition (EMT) through transforming
growth factor-β (TGF-β) activation. Affected cells include alveolar epithelial cell (AEC) I and II, resident macrophages,
and fibroblasts in the alveoli. Alveolar changes lead to exaggerated fibrosis, lymphocyte infiltration, and honeycomb
change. Abbreviations: CHOP (C/EBP-homologous protein), IRE1 (serine/threonine-protein kinase/endoribonuclease
inositol-requiring enzyme 1), RIDD (regulated IRE1-dependent decay), NLRP3 (NOD-, LRR-, and pyrin domain-containing
protein 3).

In IPF, type I alveolar epithelial cells (AECs-I) are typically damaged and shed off
the alveolar lining layer, possibly due to enhanced apoptosis, aging/shortening of telom-
eres, and activation of stress response pathways. Moreover, deficiencies in the normal
re-epithelialization process force restoration of the epithelial surface by type II alveolar
epithelial cells (AECs-II). This abnormal restoration attempt results in epithelial hyperplasia
and triggers the secretion of several profibrotic factors, such as tissue factor plasminogen
activator inhibitor (PAI)-1 and -2, by injured/activated AECs. These pro-fibrotic factors
create a procoagulant/anti-fibrinolytic intra-alveolar environment that facilitates increased
fibrotic responses [234–236]. Subsequently, this stimulates the secretion of multiple cy-
tokines and growth factors, including TGF-β, TNF-α, and PDGF. Such cytokines promote
the disruption of the epithelial basement membrane and increase the migration, prolifer-
ation, and accumulation of alveolar fibroblasts and myofibroblasts, which are relatively
resistant to apoptosis. Accumulation of these cells increases the extracellular matrix (ECM)
that results in the formation of fibroblast foci, a typical characteristic of the UIP pattern and
morphological feature in IPF. Fibroblasts and myofibroblasts secrete fibrillar collagens, fi-
bronectin, elastic fibers, and prostaglandins (PGs), further contributing to ECM deposition,
and play a major role in lung parenchymal ECM remodeling, which represents another
hallmark of aberrant tissue remodeling in IPF [237,238]. ECM remodeling, dysregulation
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of lung architecture, and the amount of fibroblast/myofibroblasts foci are considered major
prognostic factors in IPF patients [201].

Squamous cell carcinoma antigen (SCCA), which is a marker for epithelial instability
and/or EMT, is overexpressed in IPF [239–241]. EMT is the process by which epithelial
cells lose their typical characteristics (such as cuboidal shape, apical-basal polarization,
cell–cell contacts, epithelial gene repertoire, and downregulation of epithelial marker E-
cadherin) and acquire mesenchymal cell-like features (e.g., spindle morphology, loss of cell
contacts, mesenchymal gene expression, and upregulation of mesenchymal markers, such
as N-cadherin and vimentin). Transcription factors that are upregulated in the EMT process
include Twist, SNAI1 (snail), and SNAI2 (Slug) [242,243]. Lung tissue samples obtained
from IPF patients demonstrate an increase in the expression of Twist and Snail, suggesting
that EMT-associated signaling pathways are activated [244,245]. The balance between
TGF-β and bone morphogenetic proteins (BMPs) is also important in the development
of the mesodermal/epithelial compartment and in regulation of EMT. TGF-β is a potent
inducer of EMT, whereas BMP antagonizes TGF-β-dependent signaling. Expression of
Gremlin, an antagonist of BMP signaling, is upregulated in IPF lungs, indicating that the
balance between TGF-β and BMP signaling is dysregulated [205,231,246,247].

4.3. IPF and UPR: Cellular Mechanisms
4.3.1. UPR Signaling in IPF

Emerging evidence implicates ER stress in the pathogenesis of IPF. Lung samples
from both FIP and sporadic IPF patients have shown the presence of ER stress [93,155,248].
Strong positive staining for BiP, ERAD-enhancing α-mannosidase-like proteins (EDEM),
and XBP1 in epithelial cells from IPF lungs, expression of misfolded precursor protein
for surfactant protein-C (pro-SP-C), mutant protein aggregates in A549 type II alveolar
epithelial cells, and expression of p50ATF6 (i.e., a processed form of ATF6), ATF4, and
CHOP in sporadic IPF lung samples support a correlation between ER stress and IPF.
Importantly, mutations in surfactant protein C (SFTP) C and A2 (SFTPA2) infer a role for
ER stress in FIP [249,250]. Moreover, several cellular in vitro and animal in vivo studies
suggest that increased ER stress is a key component of IPF pathogenesis [155,251–259].
A schematic summary of IPF pathology and the role of ER stress is shown in Figure 3.

4.3.2. Exogenous Stimuli Contributing to ER Stress in IPF
Smoke

Multiple in vitro and in vivo studies have confirmed that CS and other inhalational
pollutants can trigger ER stress and the UPR through the active phosphorylation of eIF2α
by PERK followed by the induction of ATF4, GADD34, and UPR markers, such as BiP,
XBP1, and GRP94. Another mechanism through which cigarette smoking induces ER stress
is by altering cellular redox status. CS contains many oxidizing agents that can impair the
function of ER by affecting disulfide bond formation in PDI, a redox sensitive chaperone.
Acrolein, hydroxyquinones, and peroxynitrite, which emanate from smoke, lead to PDI
nitrosylation of cysteine and tyrosine residues and a reduction in disulfide bonds, resulting
in the formation of misfolded proteins [260].

Viruses

Airborne viruses may be involved in the onset and progression of IPF. Implicated
viruses include human herpes viruses (HHVs), a large family of ubiquitous DNA viruses,
such as the common pathogen herpes simplex virus type 1 (HSV-1)), cytomegalovirus
(CMV), Epstein–Barr virus (EBV), HHV-7, and HHV-8. HHV infection induces all three
branches of UPR signaling (i.e. PERK, ATF6, and IRE-1) to favor its own replication.
However, convincing evidence confirming that UPR activation by viruses leads to IPF is
currently lacking. Another mechanism through which HHV may induce fibrosis is by
causing a cytokine imbalance favoring IL-4, IL-1β, and TGF-β1 [261–265]. Coronaviruses
might be also involved in the pathogenesis of IPF. Previous investigations showed res-
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piratory coronavirus infections such as Severe Acute Respiratory Syndrome (SARS) and
Middle East Respiratory Syndrome (MERS) have severe fibrotic consequences in the lung
and increase the risk of developing fibrotic lung diseases including IPF [266]. These obser-
vations could be potentially true for Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) infection which is responsible for the Coronavirus Disease 2019 (COVID-19)
pandemic. A recent study showed that COVID-19 is associated with increased mortality in
IPF patients [267].

UPR-Associated Diagnostic Markers in IPF

To date, no ER stress-induced UPR-specific diagnostic marker for IPF has been iden-
tified. However, the existence of key mediators of the three UPR arms in lung samples
obtained from patients provides a predictable impression of IPF features induced by ER
stress. Expression levels of BiP, EDEM, XBP1 (34–60), p50ATF6, ATF6, ATF4, CHOP, and
misfolded pro-SP-C mutant protein aggregates in AECs-II can serve as potential diagnostic
markers of ER stress in IPF [155,248,251,252]. Further research is needed in this area before
reliable diagnostic markers can be developed.

5. Conclusions and Future Directions

ER stress can be triggered by several common pathogenic mechanisms affecting the
lungs. In recent years, the effects of ER stress and activated UPR have attracted enormous
interest both as a cause and consequence in inflammation and fibrosis in several lung
diseases including COPD, asthma, cystic fibrosis (CF), and IPF, respectively [265,268–270].
Continuous exposure of pulmonary cells to diverse environmental stimulants can activate
UPR pathways specifically in the lung. In COPD, there is an increased expression of UPR
transcription factors, such as p-eIF2α, CHOP, and several proteins involved in the ERAD
pathway. Although the ATF6 and IRE1 UPR arms are not affected, expression of these
UPR transcription factors has a positive correlation with the degree and severity of airflow
obstruction [268,269,271]. In IPF, increased expression of BiP, XBP1, IRE1, ATF6, and CHOP
in AECs-II, as well as the induction of ATF4, CHOP, and BAX, is evident [231,272,273].
Thus, both ER stress and UPR appear to be critically involved in several chronic and
debilitating respiratory disorders.

CS induces alterations in protein metabolism and the UPR cascade via oxidative stress,
which irreversibly damages a variety of lung proteins. Acute exposure to CS causes an
increase in the expression of BiP, calnexin, calreticulin, ATF4, PERK, p-eIF2α, and CHOP.
In general, smoking not only increases the loading of proteins in the ER but also reduces
the ability of ER capacity [265,274]. Overall, while several in vivo and in vitro studies have
shown the profibrotic effects of ER stress, our understanding of the exact role of UPR in the
pathogenesis of lung diseases remains limited.

Targeting ER stress and UPR components may have therapeutic benefits in the treat-
ment of lung diseases. For instance, in mouse models of lung fibrosis, the chemical
chaperones 4-phenyl butyric acid (4-PBA) and taurohyodeoxycholic acid (TUDCA) showed
beneficial effects [265,268,275]. In addition, the use of specific inhibitors of IRE1 could
represent a potential therapeutic approach in IPF [93].

In recent years, there have been advancements in our understanding of the source
of fibroblasts. It was previously thought that resident fibroblasts were the only source
of these cells in different organs. However, fibrocytes have been identified as one of the
sources for fibroblasts [276]. The detection of circulation fibrocytes could serve as an
indicator and potential biomarker for IPF and COPD [277–279]. Fibrocytes are produced
in the bone marrow stroma, and they transmigrate from the blood to sites of lung injury
via different chemokine gradients [279]. They later change their phenotype to resident
fibroblasts and participate in the organs’ response to stress. Therefore, targeting such
fibrocyte pathways and their subsequent phenoconversion could be targeted for future
therapeutic development in the treatment of IPF and COPD. Given that UPR is involved in
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the regulation of phenotype conversion [93] and cellular secretome [78], targeting these
pathways in fibrocytes could be a new therapeutic strategy for both COPD and IPF.

In this review, we have discussed the emerging role of ER stress and UPR activation
in COPD and IPF. Research on the ER stress–UPR axis is in its infancy; therefore, future in-
depth research efforts are warranted to further investigate this complex pathway and its
impact on the onset and progression of chronic lung diseases, with the ultimate goal of
developing novel therapies. Of note, UPR signaling pathways are common and required
for the maintenance of physiological balance as well. Therefore, comprehensive in vitro
and in vivo research approaches are required for the identification and development of
specific and safe ER/UPR-modulating therapies.

Epigenetic regulation of ER stress is also of importance when considering disease
therapy. An accumulating body of evidence demonstrates the regulation of ER stress
by ncRNAs mediators such as miRNAs, lncRNAs, and circRNAs [280–283]. Various
interactions between ncRNAs and ER stress mediators have already been identified in
different types of cancers [284,285]. Future research endeavors are needed to elucidate the
relationships between ncRNAs and the UPR in IPF and COPD. Such studies may reveal
that targeted strategies to modulate aberrant ER stress and UPR signaling have promising
therapeutic potential in the treatment of chronic lung diseases.
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