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Pre-surgical evaluation of patients with temporal lobe epilepsy (TLE) relies on information obtained frommulti-
ple neuroimaging modalities. The relationship between modalities and their combined power in predicting the
seizure focus is currently unknown. We investigated asymmetries from three different modalities, PET (glucose
metabolism),MRI (cortical thickness), and diffusion tensor imaging (DTI; whitematter anisotropy) in 28 left and
30 right TLE patients (LTLE and RTLE). Stepwise logistic regression models were built from each modality sepa-
rately and from all three combined, while bootstrappedmethods and split-sample validation verified the robust-
ness of predictions. Among all multimodal asymmetries, three PET asymmetries formed the best predictive
model (100% success in full sample, N95% success in split-sample validation). The combinations of PET with
othermodalities did not performbetter than PET alone. Probabilistic classificationswere obtained for new clinical
cases, which showed correct lateralization for 7/7 new TLE patients (100%) and for 4/5 operated patients with
discordant or non-informative PET reports (80%). Metabolism showed closer relationship with white matter in
LTLE and closer relationship with gray matter in RTLE. Our data suggest that metabolism is a powerful modality
that can predict seizure laterality with high accuracy, and offers high value for automated predictive models. The
side of epileptogenic focus can affect the relationship ofmetabolismwith brain structure. The data and tools nec-
essary to obtain classifications for new TLE patients are made publicly available.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Epilepsy is a neurologic disorder that affects ~70 million people
worldwide (Ngugi et al., 2010). Typically, seizures originate in a focal
brain area, called the seizure onset zone (SOZ), and epilepsies are even-
tually classified based on the location of SOZ in the brain. Themost com-
mon type of epilepsy is temporal lobe epilepsy, accounting for about
65% of focal epilepsy cases (TLE; Engel, 2001; Tellez-Zenteno and
Hernandez-Ronquillo, 2012). About one third of TLE patients do not re-
spond to medication, and become candidates for surgical resection of
the epileptogenic tissue.

The success of surgery depends on the correct identification of the
SOZ in each patient. Besides EEG and neuropsychologic evaluation, a
repertoire of neuroimaging tools are frequently used to improve SOZ
detection, among which MRI, PET, and diffusion imaging (Bonilha and
Keller, 2015; Sperling et al., 1992; Winston, 2015). The various neuro-
imaging modalities are reviewed by expert radiologists who visually
inspect the images in search of pathology.When found, asymmetric pa-
thologies are a good indicator of the presence of the SOZ, providing a
good prognosis for improved seizure control once the pathologic area
is resected (Blum et al., 1998; Englot and Chang, 2014; Gok et al.,
2013; LoPinto-Khoury et al., 2012; Tonini et al., 2004). The most com-
mon pathologies observed in TLE are: an asymmetric reduction of glu-
cose metabolism (known as hypometabolism) in one of the temporal
lobes, an asymmetric atrophy of mesial temporal lobe structures
(known as mesial temporal, or hippocampal, sclerosis), or other local
morphologic anomalies such as dysplasias and heterotopias. Besides pa-
thologies related to gray matter (GM), white matter (WM) anomalies
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have also been reported in TLE, some of which are asymmetric and can
help localize the SOZ (Ahmadi et al., 2009; Concha et al., 2012; Thivard
et al., 2011).

The ability to identify pathologies from neuroimaging data requires
many years of training and additional dedicated time in routine clinical
practice. Even with the right training and expertise, the accuracy of
human experts may depend on other subjective factors, such as the
amount of clinical knowledge the expert has about the case (Thivard
et al., 2011). Recent developments in neuroimage analysis have
shown that automated quantification and prediction can be a powerful
and promising tool in medical practice (for a review, see Gabrieli et al.,
2015). When applied to epilepsy, early studies showed that automated
neuroimage analysis and patient classification can match or exceed the
accuracy of visual inspection of human experts (Ferrie et al., 1997; Lee
et al., 2000;Matheja et al., 1998).More recently, several research papers
have built predictivemodels that can distinguish among subtypes of ep-
ilepsy patients based on PET data (Didelot et al., 2010; Lee et al., 2000;
Muzik et al., 1998; Soma et al., 2012), MRI data (Duchesne et al., 2006;
Moser et al., 2000), or a combination of PET and MRI (Lopez-Acevedo
et al., 2012). The power of DTI has also been investigated for automated
classification either as a single modality (Ahmadi et al., 2009; Concha
et al., 2012) or in combination with PET and MRI (Thivard et al.,
2011). This knowledge, however, has not been readily translated into
tools of clinical utility. Moreover, the availability of many neuroimaging
protocols raises the question to whether the combination of multiple
imaging modalities into a single predictive model can improve accu-
racy rates above and beyond what is obtained from each modality
separately.

The aim of this study was to provide a comprehensive investigation
of data obtained from three imagingmodalities with the intent of creat-
ing an automated classification algorithmwith clinical applicability, ca-
pable of distinguishing left from right temporal lobe epilepsy (LTLE and
RTLE, respectively).We aimed at creating a predictive tool that does not
simply classify patients, but also provides a probabilistic index of the
classification. In addition, we investigated whether the relationship be-
tween GM,WM, andmetabolism, is the same in LTLE and RTLE patients.
We utilized asymmetry measures from all modalities for three main
reasons: (i) human experts frequently look at degrees of asymmetry
when inspecting neuroimaging data, (ii) asymmetries use each subject
as a control for itself, thus decreasing confounds coming from differ-
ences in scanner parameters, time of scan, metabolic factors, etc., and
(iii) asymmetries have been shown to be more sensitive to the pathol-
ogy than raw voxel values (Didelot et al., 2010; Soma et al., 2012; Van
Bogaert et al., 2000).

2. Material and methods

2.1. Subjects

A total of 58 patients with refractory, unilateral and focal temporal
lobe epilepsy were recruited from the Thomas Jefferson University
Comprehensive Epilepsy Center (28 left TLE; 30 right TLE). All patients
had solely unilateral temporal pathology, and all were evaluated for
surgical resection of the epileptogenic area as treatment for their intrac-
table temporal lobe epilepsy. Details of the Thomas Jefferson Compre-
hensive Epilepsy Center algorithm for surgical decision making are
described in Sperling et al. (1992). A combination of EEG (at least
96 h), video recording, MRI, PET, and neuropsychological testing, was
used to localize the seizure focus. Expert board-certified neuroradiolo-
gists, epileptologists, and neuropsychologists, by consensus decision,
classified patient neuropathology and seizure type. When the data
from the various testswas not sufficiently informative, intracranial elec-
trodes were implanted to determine the seizure focus through electro-
corticography (12 patients, 5 LTLE).

Participantswere excluded if theyweremissing data fromone of the
modalities (MRI, DTI, or PET). Other exclusion criteria consisted of

medical illnesswith central nervous system impact other than epilepsy;
prior or current alcohol or illicit drug abuse; extratemporal epilepsy;
present or past neoplasia; contraindications toMRI; psychiatric diagno-
sis other than an Axis-I Depressive Disorder; or hospitalization for any
Axis I disorder listed in the Diagnostic and Statistical Manual of Mental
Disorders, IV. Depressive Disorders were allowed in the patient sample,
given the high co-morbidity of depression and epilepsy (Tracy et al.,
2007). Patients with mental retardation (Full-Scale IQ b 70) who were
likely to be unable to cooperatewith theMRI examinationwere also ex-
cluded. Patients with bilateral mesial temporal sclerosis were also ex-
cluded. The study was approved by the Thomas Jefferson University
Institutional Review Board for Researchwith Human Subjects, and con-
sent was obtained from all patients. Table 1 displays the mean values
and frequencies for the relevant demographic and clinical characteris-
tics of our sample.

2.2. Neuroimaging protocols

2.2.1. MRI
Images were acquired in a Philips Achieva 3T scanner (Amsterdam,

The Netherlands) using an 8-channel SENSE head coil. The MP-RAGE
and the DTI sequence were acquired during the same scanning session.
No single group was scanned on a schedule or time different than the
other groups, thereby avoiding bias related to temporally dependent
scanner calibration. The MP-RAGE volume was collected in sagittal ori-
entationwith in-plane resolution of 256× 256 and 1mmslice thickness
(isotropic voxels of 1mm3; TR=650ms, TE=3.2ms, FOV256mm,flip
angle 8°, SENSE factor = 1).

The diffusion data were acquired using a single-shot spin-echo EPI
pulse sequence (TE = 90 ms, TR = 8609 ms, SENSE factor = 2.5,
5 min acquisition) with 32 diffusion weighted (b-factor = 850 s/mm2,
anterior–posterior fold-over direction) and three non-diffusion vol-
umes (b-factor = 0 s/mm2; averaged in scanner to a single B0 volume).
Each volume contained 66 slices (thickness = 2 mm, gap= 0 mm) ac-
quired in the axial plane, with a reconstructed matrix size of 128 × 128
and FOV 230 mm, resulting in voxel size 1.8 × 1.8 × 2mm. Fat suppres-
sion was achieved using a standard SPIR (spectral pre-saturation with
inversion recovery) technique. The sequence was repeated twice for
each subject and the datasets were averaged to increase signal to
noise ratio.

2.2.2. FDG-PET
All PET scans were performed during interictal periods using a stan-

dard protocol.
Pre-injection blood glucose level was below 150 mg/dl for all pa-

tients (range: 61–128 mg/dl). An intravenous catheter was inserted
under local anesthesia and a dose around 5.9mCi (STD 1.42) of radioac-
tive 100mg/l fludeoxyglucose (FDG) was injected. The scan was initiat-
ed about 42min (STD 14.8) after the injection. The eyes were open, the
earswere non-occluded, and ambient noise and lightwas kept to amin-
imum. Forty-seven patients (81% of patients; 24 LTLE, 23 RTLE) were
scanned on a Siemens Biograph 1080 camera (Siemens Medical Solu-
tions, Erlangen, Germany), with data consisting of 109 axial slices,
3 mm thick, and 1 × 1 mm in resolution (scan dates 2008–2013). The
remaining 11 subjects were scanned on two different cameras (scan
dates 2006–2008), a Siemens Biograph CPS 1080 with voxel size
1 × 1 mm (109 slices, 2 mm thick), and a Philips Allegro PET Body
(Philips Medical Systems, Best, The Netherlands) with voxel size
2 × 2mm(90 slices, 2mm thick). Note, we obtained asymmetry indices
that use the same subject as reference, therefore reducing potential
scanner specific bias. This procedure also avoids confounds related to
demographic factors, such as, age, medication history, epilepsy history,
etc. (Leiderman et al., 1991; Theodore, 1989). Nevertheless, a cross val-
idation of results between different scanners was performed (Results
section).
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2.3. Neuroimaging analyses

2.3.1. MRI — cortical thickness asymmetries
The rationale for considering cortical thickness as a potential predic-

tor of SOZ laterality followed the reports of several groups who found
more widespread atrophy in LTLE than in RTLE (Bonilha et al., 2007;
Keller and Roberts, 2008; Kemmotsu et al., 2011).

Two popular software were used to estimate cortical thickness in
order to cross-validate potential findings and to investigate differences
arising from estimation methods: Freesurfer v.5.3.0 (http://freesurfer.
net; Fischl and Dale, 2000) and Advanced Normalization Tools v.2.1.0
(ANTs, http://stnava.github.io/ANTs; Avants et al., 2011). In Freesurfer,
a fully automated thickness estimation was obtained from the MP-
RAGE volume using default parameters and the ‘recon-all’ command
with the Desikan atlas as a parcellation reference (Desikan et al.,
2006). Surface maps were visually inspected for major failures, and
nonewere found. Average thickness was then obtained from the lateral
temporal lobe (superior, middle, and inferior temporal gyri; parcels
1030/1015/1009 for left and 2030/2015/2009 for right) and the mesial
temporal lobe (parahippocampal gyrus and parahippocampal cortex;
parcels 1030/1015/1009 for left and 2030/2015/2009 for right). The
parcels were combined using a weighted mean depending on area
size; parcels with larger surface area contributed more to the average.
The hippocampal volume constituted a third measure of interest.
Asymmetries were computed with the formula (right − left) /
(right + left). The Freesurfer lateral thickness, mesial thickness, and
hippocampal volume were labeled “THICK-lat-Frees”, “THICK-mes-
Frees”, and “HIPPO-vol”.

In ANTs, thicknessmapswere obtained using an established pipeline
that included bias correction, multivariate segmentation, and thickness

estimation with the DIREcT algorithm (all incorporated in the script
antsCorticalThickness.sh provided with the software; Tustison et al.,
2014). Note that ANTs uses a voxel based method of thickness estima-
tion, while Freesurfer uses a surface based method (Avants et al.,
2011; Klein et al., 2010). After obtaining the thickness mapwith default
parameters, whichweighted segmentations priors atα=0.25, regional
parcellation was performed using a multi-atlas parcellation algorithm.
This procedure calculates the parcellation based on the similarity of
multiple atlases (NKI-TRT-20 dataset, http://mindboggle.info) with
the patient3s brain (‘antsMalfLabeling.sh’; Wang et al., 2012). Thickness
values for lateral andmedial temporal lobe were obtained in ANTs from
the same regions used in Freesurfer; only voxels that were classified as
gray matter during segmentation were included in the computation.
While hippocampal volume was not available in ANTs, we obtained an
additional measure of entire temporal lobe asymmetry by combining
mesial and lateral temporal regions. This measure matched a similar
PET measure obtained from the entire temporal lobe (see Section 2.3.3
PET—metabolism asymmetries). The final ANTs variables were labeled
“THICK-lat-Ants”, “THICK-mes-Ants”, and “THICK-entire-Ants”.

2.3.2. DTI — tract asymmetries
Prior to processing, diffusion data were visually inspected to identify

and potentially remove volumes with excessive motion; no such vol-
umes were found. Subject motion, eddy currents, and EPI distortions
were corrected in a single step using cubic spline interpolation in
ExploreDTI (Leemans et al., 2009). Tensor estimation was performed
with the non-linear RESTORE algorithm, a procedure that is robust to
outlier data points (Chang et al., 2005; Chang et al., 2012). Maps of frac-
tional anisotropy (FA) were exported for later computation of tract

Table 1
Values indicate average ± standard deviation. Abbreviations: MTS=mesial temporal sclerosis, MTL =mesial temporal lobe, CPS= complex partial seizures, GTCS= generalized tonic-
clonic seizures, SPS = simple partial seizures, w/2° GTCS = with secondary generalization, rare GTCS = ten or less GTCS episodes in lifetime.

LTLE RTLE

N 28 30
Age 42.4 ± 12.1 39.6 ± 14.9
Gender F/M 15/13 13/17
Intracranial volume (l) 1.39 ± 0.23 1.43 ± 0.25
Edinburgh handedness 84 ± 41.4 58 ± 65.1
Full Scale IQ 95.8 ± 14.4 95.1 ± 13.1
Age at epilepsy onset 22.3 ± 15.1 21.0 ± 12.0
Duration of epilepsy (yrs) 20.1 ± 15.3 18.6 ± 15.1
MTS/non-MTS
(no. of patients)

12/16 10/20

MRI-negative 9 (3 implanted) 14 (4 implanted)
Non-MTS
MRI pathology

1 — L cavernous hemangioma in fusiform g. (10 mm)
1 — L ant. TL cavernoma (15 mm)
1 — signal increase in L hippocampus, no atrophy (implanted)
1 — L TL dysplasia
1 — L TL dysplasia and low grade glioma (10 mm)
1 — hyperintensity in L MTL, mild amygdala atrophy
1 — meningoencephalocele in L middle cranial fossa

1 — enlarged R temporal horn
1 — subtle R hippo signal increase
1 — R posteromedial TL dysplasia
1 — R TL atrophy (implanted)
1 — R N L hippo atrophy, normal MRI signal
1 — R TL white matter FLAIR abnormality (implanted)

Seizure types
(no. of patients)

12 — CPS only
5 — CPS + GTCS
3 — CPS + rare GTCS
2 — SPS only
2 — CPS w/2° GTCS
3 — CPS + SPS
1 — CPS w/2° GTCS + SPS

13 — CPS only
3 — CPS + GTCS
2 — CPS + rare GTCS
1 — SPS only
5 — CPS w/2° GTCS
5 — CPS + SPS
1 — CPS w/2° GTCS + SPS

Medication
(no. of patients)

6 — Carbamazepine
5 — Depakote
5 — Lacosamide
5 — Lamotrigine
12 — Levetiracet
1 — Oxcarbazepine
1 — Phenobarbital
2 — Phenytoin
6 — Topiramate
0 — Zonisamide
2 — Other

3 — Carbamazepine
5 — Depakote
4 — Lacosamide
5 — Lamotrigine
8 — Levetiracet
5 — Oxcarbazepine
1 — Phenobarbital
2 — Phenytoin
7 — Topiramate
1 — Zonisamide
2 — Other
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asymmetries. Data preprocessed in ExploreDTI were imported in FSL for
tractography reconstruction (Diffusion Toolbox, www.fmrib.ox.ac.uk/
fsl; Behrens et al., 2007). AMonte Carlo sampling procedure initially es-
timated the diffusion properties in each voxel, accounting for two ten-
sors per voxel (‘bedpostx’ command). Afterward, a probabilistic
algorithm was used (‘probtrax2’ command) to initiate 5000 fiber sam-
ples per seed voxel with the default angular threshold of 78°. The first
author (DP)manually drew seed andwaypointmasks using anatomical
landmarks visible in the colorized FA map. After obtaining the
tractographymap, voxels with less than 10% of themaximum visitation
count were set to zero to remove spurious streamlines, and a visual in-
spection in 3D was performed in search of potential failures (see DTI
tractography examples in Supplementary Information; see also
Pustina et al., 2014b for another example of this pipeline).

In total, eight tracts were reconstructed for each subject, four in each
hemisphere: (i) the fornix, (ii) the parahippocampal fasciculus, (iii)
the uncinate fasciculus, and (iv) the temporo-occipital connections
consisting mostly of the inferior longitudinal fasciculus. For each tract,
the FA value was computed as a weighted average of the probability
mask, i.e. voxels with high visitation counts influenced the average
more than voxels with low visitation counts. Asymmetries were calcu-
lated with the formula (right − left) / (right + left). The final DTI
asymmetries were labeled “DTI-FA-fx”, “DTI-FA-phip”, “DTI-FA-unc”,
and “DTI-FA-ilf”.

2.3.3. PET — metabolism asymmetries
The PET volume was coregistered to the respective MP-RAGE vol-

ume of each subject using SPM8 (University College London, http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/). Four regional masks were
utilized to extract PET values for the lateral, mesial, and entire temporal
lobe, as well as the hippocampus. The masks were obtained from the
Freesurfer parcellation map and contained, respectively, (i) the gray
matter of the lateral temporal lobe (parcels 1030/1015/1009 for left
and 2030/2015/2009 for right), (ii) the gray matter of mesial temporal
lobe including amygdala and hippocampus (parcels 17/18/1006/1016
for left and 53/54/2006/2016 for right), (iii) only the hippocampus

(parcel 17 for left and 53 for right hemisphere), and (iv) the mesial
and lateral masks combined together. Note, the four regional masks
were partially overlapping in order to determine which combination
of lateral and mesial areas yielded the best discriminatory power. Dur-
ing the preliminary phase of the studywe noticed that the cortical man-
tel zigzagged around the PET blobs, and the PET values obtained with
such masks were unreliable. We resolved this issue by processing the
masks to reflect the smoothness of PET data (see example in Supple-
mentary Information: PET masking). To understand this procedure,
consider that the metabolic signal is emanated from glucose uptake oc-
curringmostly in graymatter, which is represented by the binarymasks
obtained from Freesurfer. This signal, however, is distorted due to limi-
tations of PET imaging (i.e., the finite size of detector crystals, detector
physics, travel distance before annihilation, Poisson count statistics,
and reconstruction methods). The final PET image can be theoretically
approximated by assuming that the true metabolic signal is smoothed
with a Gaussian smoothing kernel (the point spread function of the
scanner; Greve et al., 2014). We can apply a similar smoothing to the
cortical masks. Once smoothed, values will remain closer to 1 in areas
of densely packed GM, and will fade closer to 0 in areas of thin GM.
Themetabolic signal undergoes a similar distortion such that PET values
near densely packed GM are closer to the true metabolic signal, while
PET values of thinner GM are farer from the true metabolic signal.
Thus, we applied 8 mm FWHM smoothing to the binary masks, and
used the resulting continuous masks as weights to compute weighted
average of PET for each region. Note, the PET volume itself was not
smoothed, only the mask was smoothed. Voxels below 0.35 in the con-
tinuous mask were set to 0 tominimize the influence of non-GM signal.
The final asymmetry values were computed with the formula: (right−
left) / (right + left). The four PET asymmetries were labeled “PET-
hippo”, “PET-entire”, “PET-lateral”, and “PET-mesial”.

2.4. Extended dataset: variance, skewness and kurtosis

In epilepsy, the seizure focus may manifest as a small region with
low metabolism, abnormal GM thickness or volume, or abnormal WM

Fig. 1.Multimodal asymmetries of themean (A), variance (B), kurtosis (C), and skewness (D) in LTLE (red boxes) and RTLE (green boxes). Boxplots extend between 25th and 75th percentile of
the data, the central line indicates themedian value.Whiskers extend to themost extremenon-outlier data point (outliers values=1.5× interquartile range value). Themain dataset consists in
data from A, the extended dataset consists in data from A–B–C–D. Asterisks mark significant group differences (Wilcoxon tests) after multiple comparison correction.
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structure. This pattern may not be detected when averaging the signal
from large regional masks. Instead, local anomalies may manifest as in-
creased variance in the data, or skewed and abnormally distributed
data. We investigated the value of adding variables that describe the
shape of the data distribution by creating an extended dataset, where
each asymmetry involving a mean was complemented with additional
asymmetries of variance, skewness, and kurtosis (Fig. 1). For PET and
DTI, which had probability masks, a weighted variance algorithm was
applied (variance in regions of high probability counted more than
variance in regions of low probability). All the other extended
dataset asymmetries were computed from binarized masks. The
asymmetries of skewness and kurtosis were computed with a modified
formula to account for the presence of negative values: (right − left) /
abs(right) + abs(left).

2.5. Statistical analyses

Analyses were performed using SPSS (IBM SPSS Statistics for
Windows v.20, Armonk, NY), and R (R Foundation for Statistical
Computing, http://www.r-project.org). Demographic profiles (i.e., age,
IQ, scan intervals, etc.)were comparedbetween left and right TLE patients
with t-test or chi-square, as appropriate, and a correction for variance in-
homogeneity was applied when necessary.

Shapiro-Wilk tests on neuroimaging variables revealed non-normal
distribution on some asymmetries. Consequently, asymmetry dif-
ferences between groups were compared with the non-parametric
Wilcoxon test. The maxT procedure with 100 million permutations
was used to correct for multiple comparisons (‘multtest’ package
in R; Pollard et al., 2005). The maxT procedure extracts the depen-
dency structure of statistical tests by running permutations on raw
data rather than considering tests as independent and correcting
only p-values. In general, maxT is considered more conservative
than the false discovery rate and less conservative than Bonferroni
(Ge et al., 2003; Westfall and Young, 1993). Corrected p-values
were thresholded at α = 0.05.

Logistic regression was used to discriminate the left and right TLE
groups and predict group membership. In contrast with linear discrim-
inant analysis, logistic regression does not assume normal data distribu-
tion or equal variance between groups. A stepwise procedure was used
to select relevant variables that can distinguish LTLE from RTLE (“for-
ward conditional” option in SPSS with entry cutoff of p b 0.05). After
building the regression models, their reliability was tested with
bootstrapped and split-sample procedures. For bootstraps run on the
full sample, the group size was kept identical to the original dataset
(28 and 30, respectively), while 10,000 random samples were drawn
with replacement. For bootstraps run in split samples, the data were
randomly split into training and testing groups without replacement.
The size of the training group varied progressively from 97% to 52%, re-
ducing the size in steps of 3% (approximately removing one patient per
group in 16 steps). The process was repeated 10,000 times at each step
to provide a reliable estimate of the success rates of the model with un-
seen data. All bootstraps were performed with a penalized regression
algorithm, which avoids infinite beta values when complete separation
occurs (Firth, 1993). The ‘brglm’ package in R was used for this purpose
(Kosmidis, 2013). The output of logistic regression models is in the
range 0–1, with 0 representing LTLE and 1 representing RTLE. The
threshold for classifying patients was set to 0.5. Two variants of predic-
tivemodelswere attempted: using eachmodality separately or using all
three modalities. When combined modalities were utilized, the candi-
date predictors were either all the 14 available asymmetries of the
main dataset, or those that were significantly different between the
two groups after multiple comparison correction (to be referred to as
the unthresholded and thresholded models, respectively). A similar
procedure was applied with the extended dataset which had 47 avail-
able asymmetries.

Differences in average inter-modality correlations between groups
were investigated with independent t-tests. For this purpose, all corre-
lation coefficients between a modality pair (i.e., PET-DTI) obtained
from one group were compared with those of the other group (see
Pustina et al., 2015 for a previous application). In total, three t-tests
were run, one for each modality pair, with results thresholded at α =
0.05/3 = 0.0167 to correct for multiple comparisons. A qualitative in-
spection of the links between asymmetries was also performed using
dendrogram trees from bootstrapped hierarchical clustering (Suzuki
and Shimodaira, 2006).

3. Results

All 58 patients included in this studywere PET-positive (a pathology
was detected in PET by expert visual inspection), while 35 of themwere
also MRI-positive (a pathology was detected in MRI by expert visual in-
spection). The lack of PET-negative patients derived from the need for
data in all three modalities and the other exclusion criteria. The
most common pathology found in MRI was MTS (22 patients, 40%
of all patients, 63% of MRI-positive patients). The typical pathology
found in PET was hypometabolism in one of the temporal lobes,
none of the patients had hypermetabolism in the temporal lobe. Rel-
evant demographic and clinical information is shown in Table 1. The
female/male ratio was 15/13 in the LTLE group and 13/17 in the
RTLE group. The two TLE groups did not differ in age (t[55] =
.767, p = .446), gender (chi-square = .608, p = .436), handedness
(t[50] = 1.98, p = .070), age of epilepsy onset (t[56] = .903, p =
.717), epilepsy duration (t[56] = .903, p = .717), or intracranial vol-
ume (t[56] = −.554, p = .582).

3.1. Asymmetry differences among TLE groups

Fig. 1 displays the boxplots of each asymmetry variable in LTLE and
RTLE. After maxT correction for multiple comparisons across the 14
main dataset asymmetries (Fig. 1A), none of the DTI or MRI
asymmetries survived the correction, while all four PET asymmetries
were significantly different between LTLE and RTLE. The extended
dataset (including variance, skewness, and kurtosis) showed ten
asymmetries to be different between groups after maxT correction, all
of which were derived from PET: PET-mesial (W = −6.32, p-
adj b 0.001), PET-entire (W = −6.30, p-adj b0.001), PET-lateral
(W = −6.18, p-adj b 0.001), PET-hippo (W = −5.98, p-adj b 0.001),
PET-entire-variance (W= −4.01, p-adj = 0.001), PET-hippo-variance
(W = −3.97, p-adj = 0.002), PET-entire-skewness (W = 3.90, p-
adj = 0.002), PET-hippo-skewness (W = 3.69, p-adj = 0.006), PET-
lateral-skewness (W= 3.44, p-adj = 0.016), and PET-mesial-variance
(W= −3.28, p-adj = 0.028).

3.2. Logistic regression within each modality

The stepwise regression of PET asymmetries selected PET-mesial
and PET-lateral as significant predictors of group membership (accura-
cy=96.6%, chi-square=70.95, p b .001, NagelkerkeR2= .941, Hosmer
& Lemenshow p-value = 1).

The stepwise regression of MRI asymmetries selected only THICK-
entire-Ants as a significant predictor of groupmembership (accuracy=
67.2%, chi-square = 6.67, p = .01, Nagelkerke R2 = .145, Hosmer &
Lemenshow p-value = .698). In an attempt to match the variables ob-
tained from Freesurfer and ANTs, we also obtained the same THICK-
entire asymmetry from Freesurfer, but a t-test showed no difference be-
tween TLE groups (p N .1) and the Freesurfer variable did not enter the
predictive equation.

The stepwise regression of DTI symmetries selected only DTI-FA-ilf
as significant predictor of TLE group membership (accuracy = 70.7%,
chi-square = 6.84, p = .009, Nagelkerke R2 = .148, Hosmer &
Lemenshow p-value = .642).
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3.3. Logistic regression using all multimodal asymmetries

A stepwise regressionwith all 14multimodal asymmetries as candi-
date predictors selected two PET (PET-mesial and PET-lateral) and one
MRI (THICK-lateral-Ants) asymmetries as significant predictors (accu-
racy = 100%, chi-square = 80.34, p b .001, Nagelkerke R2= 1, Hosmer
& Lemenshow p-value = 1).

As mentioned, only PET asymmetries survived multiple comparison
adjustment in group comparisons. Therefore, there was no chance for
other modalities to enter the model created by thresholded data, and
the same model as with PET alone emerged (accuracy = 96.6%, chi-
square= 70.95, p b .001, Nagelkerke R2= .941, Hosmer & Lemenshow
p-value = 1).

3.4. Logistic regression on the extended dataset

Besides the existing asymmetries of mean, the extended dataset in-
cluded the asymmetries of variance, skewness and kurtosis, across all
three modalities. A stepwise regression with all 47 asymmetries select-
ed four significant predictors: PET-lateral, PET-mesial, DTI-FA-phip,
PET-entire-variance (accuracy = 100%, chi-square = 80.35, p b .001,
Nagelkerke R2 = 1, Hosmer & Lemenshow p-value = 1).

As mentioned, ten asymmetries survived multiple comparison ad-
justment from the extended dataset, all of which were PET related. A
stepwise regression with these asymmetries selected three variables
(PET-mesial, PET-hippo-variance, and PET-entire-variance) as the best
predictors of the TLE group (accuracy = 100%, chi-square = 80.34,
p b .001, Nagelkerke R2 = 1, Hosmer & Lemenshow p-value = 1).

3.5. Selection of the most appropriate prediction model

The above analyses showed that three models were the most suc-
cessful in predicting group membership, all reaching 100% accuracy.

The first was obtained from unthresholded data in the main dataset
and included two PET and one MRI variable (Model 1), the second
was obtained from the thresholded extended dataset and included
three PET variables (Model 2), the third was obtained from the
unthresholded extended dataset and included three PET and one DTI
variable (Model 3). In selecting the most appropriate model we consid-
ered three factors: (i) the amount of erroneous classifications from a
full-sample bootstrapped procedure, (ii) the accuracy rates obtained
from the split-sample validation procedure, and (iii) whether a bias
existed in predicting one group better than the other. Success rates
from the full-sample bootstrapping procedure were slightly lower for
the first model (95% CI [96% 100%]) compared to the other two ([98%
100%] and [100% 100%], respectively). We therefore excluded Model 1
and considered further Models 2 and 3. Their bootstrapped validations
are plotted in Fig. 2. With regard to the split-sample validation, both
models did surprisinglywell, with above 95% accuracy at all steps. How-
ever, the bootstrap on the full sample showed a largely unbalanced pre-
diction with the third model, in which LTLE patients carried more
certain posterior probability values than RTLE (lower right panel in
Fig. 2). On the contrary, posterior probabilities of the second model
were similar between LTLE and RTLE patients. Consequently, the second
model was deemed as thewinningmodel as it satisfied all three criteria.

3.6. Cross-validation of PET scanners

Given that the winning predictive model was derived from three
PET asymmetries, we tested whether data coming from different scan-
ners can be used to predict group membership. For this, we ran a
bootstrapped cross-validation with the patients scanned with the
main Siemens camera as training group (N = 47, resampling with re-
placement) and the remaining patients as test group (N= 11). The av-
erage success rate was 99.4% with 95% CI = [91% 100%], indicating a

Fig. 2.Bootstrappedvalidation ofmodel 2 (upperpanels) andmodel 3 (lower panels). Left panels: split-sample validation accuracy.Middlepanels: split-sample posterior probability. Right
panels: distribution of posterior probability from 10,000 full-sample bootstraps. Note, the posterior probability of LTLE was flipped for comparison with RTLE (i.e., 0.03 became 0.97).
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Table 2
The column labeled “PET prediction asymmetries” shows values used as input to the prediction, and correspond to asymmetries of PET-mesial, PET-hippo-var, and PET-entire-var, respectively. Surgeries for “New TLE”were performed during the past
12months. Abbreviations: L= left, R= right, TL= temporal lobe, MTS=mesial temporal sclerosis, ATL= anterior temporal lobectomy, CPS= complex partial seizures, GTCS= generalized tonic-clonic seizures, SPS= simple partial seizures, w/2°
GTCS = with secondary generalization, rare GTCS = ten or less GTCS episodes in lifetime.

ID Seizure
type

Ictal
EEG

MRI inspection PET
inspection

Clinical decision PET prediction
asymmetries

Probabilistic
classification

95% CI posterior
probability

Surgery + outcome

New TLE
1-LO CPS,

CPS w/2°
GTCS

L TL electrodes L MTS L anter. TL hypo. LTLE 0.01553
−0.00439
−0.02010

LTLE
99.72%

[0.027–0.339] ATL + Class I

2-FU CPS,
rareGTCS

L TL and frontal electrodes Unremarkable Bil. TL hypo, biased to left LTLE 0.04544
0.15939
−0.02126

LTLE
100%

[0–0.01] n.a.

3-RA CPS L frontal electrodes Unremarkable L later. TL hypo. LTLE 0.00434
−0.08219
0.07710

LTLE
99.64%

[0.04–0.36] Implants + ATL + Class I

4-NE CPS,
GTCS

L frontal electrodes L MTS L TL hypo. LTLE 0.03004
0.33749
0.08012

LTLE
100%

[0–0.05] Laser ablation + Class I

5-GM CPS,
rare GTCS

R Temporal electrodes R MTS R TL hypo. RTLE −0.05851
−0.20535
−0.16405

RTLE
100%

[0.99–1] Laser ablation + Class I

6-OL SPS,
CPS,
CPS w/2°
GTCS

R TL electrodes R MTS R TL hypo. RTLE −0.03744
0.05089
0.12806

RTLE
98.47%

[0.63–0.99] ATL + Class I

7-NL SPS,
CPS

R TL electrodes General atrophy, larger R amygdala Mild R mesial TL hypo. RTLE −0.02331
0.20569
0.05303

RTLE
96.33%

[0.44–0.99] ATL + Class I

Ambiguous cases
1-RD CPS,

rare GTCS
L TL electrodes Hyperintensity in R frontal, R

periventricular, L caudate, and mild
R hippocampal atrophy

Bilateral hypo, biased to left LTLE 0.00729
−0.04469
0.03298

LTLE
99.49%

[0.075–0.389] Implants + ATL + Class I

2-VO SPS,
CPS

L TL electrodes L MTS Bilateral hypo. LTLE 0.02933
0.05192
−0.04924

LTLE
99.97%

[0.001–0.157] Laser ablation + Class I

3-VD CPS L TL electrodes L MTS Bilateral hypo. LTLE 0.04426
0.17092
0.08998

LTLE
100%

[0–0.004] ATL + Class I

4-CS CPS,
CPS w/2°
GTCS

L TL electrodes Unremarkable Unremarkable LTLE 0.02901
0.12306
0.15600

LTLE
100%

[0–0.01] Implants + ATL + Class I

5-LN SPS,
CPS

L TL electrodes Unremarkable Unremarkable LTLE −0.01649
−0.35912
0.06109

RTLE
90.53%

[0.289–0.981] Implants + ATL + Class I
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slight drop of the lowest confidence interval, but yet good average accu-
racy with cross-scanner data.

3.7. Using operated patients to predict non-operated patients

One of the limitations of our patient sample is that it contains data
from both operated and non-operated patients. Despite the efforts of
the clinical team, the identification of the seizure focus in non-
operated patients remains inferential; only patients who underwent
surgery with good clinical outcome can be considered to have con-
firmed seizure lateralization. To investigate the quality of the current
classifications attributed by the clinical team, we trained the predictive
algorithm on operated patients with good seizure outcome and applied
the prediction to the 23 patients who did not yet receive surgery. Of the
35 patients who underwent surgery, 29 (83%) had good seizure control
and were used for training (24 Engel class I and 5 Engel class II). The
prediction of the 23 non-operated patients showed 100% correspon-
dence with the current classification assigned by the clinical team.
This analysis provided further evidence that, despite the inferential na-
ture of the SOZ in non-operated patients, their clinical classification is in
linewithwhat can predicted based on available patients with good sur-
gery outcome.

3.8. Logistic regression within MRI-positive patients

Our sample consisted in patients who were all PET-positive. Conse-
quently, the main reason why the winning model included only PET
asymmetries could be that pathologies in the other modalities were
under-represented. To put both MRI and PET modalities at a compara-
tive level, we built a predictive model only within the 35 MRI-positive
patients (19 LTLE, 16 RTLE). Unthresholded asymmetries from the
main dataset were introduced as potential predictors in stepwise logis-
tic regression. Two variables entered the equation, PET-hippo and
THICK-mes-Frees, reaching an average bootstrapped accuracy of 99.7
with 95% CI = [97% 100%]. This finding confirmed that MRI can be a
valid predictor of seizure laterality when MRI pathology is present.
However, we also applied on these patients the winning algorithm ob-
tained from the three PET asymmetries. Average bootstrapped accuracy
of this model was 99.9% with 95% CI = [100% 100%]. In sum, success
rates obtainedwith PET asymmetries alonewere comparable, if not bet-
ter, than the success rates obtained with the two PET/MRI predictors
above.

3.9. Clinical application: predicting new TLE patients

The applicability of the predictive algorithmwas tested on a series of
patients recently admitted and reviewed by the Comprehensive Epilep-
sy Board at Thomas Jefferson Hospital. Data from new patients followed
the same processing pipeline used for the other patients in the study,
though the predictive algorithm was enhanced to provide a probabilis-
tic classification of each new patient. In short, for each new patient,
10,000 predictions were obtained with random training ratios between
52% and 97%. Each prediction was complemented with a goodness of fit
(or generalizability score) of the model that produced it. This score
consisted in the classification accuracy of the patients that were left
out during training (i.e., accuracy of classifying 48% when the other
52% was used for training). Finally, the 10,000 predictions of the new
patient were weighted by the goodness of fit of each prediction; i.e., a
model that predicted 100% of the non-trained patients was counted
100 times, a model that predicted 50% of the test patients was counted
50 times. This procedure outputs the ratios of times the patient was
classified as LTLE or RTLE out of the 10,000 predictions, which consists
in a probabilistic classification of the patient. In addition, the confidence
intervals of the regression output provide a measure of fluctuations
(variability) in the probability obtained across the bootstrap. We con-
sidered both these measures when predicting new patients. The toolkit

and data used in this study are available at http://dorianps.github.io/
TLEprediction/.

There were seven new patients reviewed in the past months by the
epilepsy board (Table 2). Their PET reports indicated three cases with
left temporal hypometabolism, one bilateral hypometabolism slightly
biased to the left, two right temporal hypometabolism, and one mild
right temporal hypometabolism. After reviewing all the clinical infor-
mation, the epilepsy board classified the first four as LTLE and the re-
maining three as RTLE. The prediction algorithm correctly classified all
of them over 95% of the 10,000 bootstraps (range 96.33%–100%). Six
of the seven patients had confidence intervals of the posterior probabil-
ities that did not include the uncertainty threshold of 0.5, while one pa-
tient slightly crossed the threshold (95% CI = [0.44 0.99]). This patient
crossed the 0.5 threshold between 2.5% and 5% of the 10,000 bootstraps,
and was rated with mild hypometabolism in visual inspection reports.

3.10. Clinical application: borderline PET cases

The above new patients had lateralized hypometabolism and con-
vergent data from other modalities, which helped the clinical team in
establishing the SOZ. In other cases, the neuroimaging profile may not
be clear; i.e., data may be discordant or PET visual inspections may not
be informative. These are cases in which PET is rated as normal or bilat-
erally hypometabolic, or cases in with hypometabolism in one hemi-
sphere and MRI pathology in the other hemisphere. To test the
predictive model with such cases we searched our database for patients
who had surgery with good surgery outcome, thus, providing a well-
grounded confirmation of SOZ laterality. We found five cases that
were initially excluded from the study because of missing DTI, and ob-
tained the probabilistic classification from each. Their data are shown
in Table 2. Patient 1-RD had discordant MRI–PET findings, with MRI re-
vealing T2 hyperintensities in right frontal, right periventricular region,
left caudate, and a mild right hippocampal atrophy. Two PET examina-
tions were obtained from this patient, the first rated as unremarkable,
the second rated with mild left temporal hypometabolism. The seizure
focus was finally established through intracranial electrodes implanta-
tion, which showed the patient was LTLE. The patient underwent left
anterior temporal resection and has been seizure free for 30 months.
We predicted this patient as LTLE 99.5% of the time, with 95% CI of pos-
terior probability [0.075 0.389]. Patient 2-VOwas foundwith leftMTS in
MRI and was rated with bilateral temporal hypometabolism in PET. She
was classified as LTLE by the clinical team and underwent laser ablation
of the left hippocampus and amygdala, afterwhich has been seizure free
for 28months. We predicted this patient as LTLE 99.9% of the time, with
95% CI of posterior probability [0.001 0.157]. Patient 3-VD had left MTS
in MRI and was rated with bilateral temporal hypometabolism in PET.
He was classified as LTLE by the clinical team and underwent left ante-
rior temporal lobe resection, after which has been seizure free for
34 months. We predicted this patient as LTLE 100% of the times, with
95% CI of posterior probability [0.000 0.004]. Patient 4-CS was PET-
negative and MRI-negative. She was implanted with intracranial elec-
trodes, where seizures were found to originate in the left temporal
lobe. The patient underwent left anterior temporal lobe resection and
has been seizure free for 7 months. We predicted the patient as LTLE
100% of the times, with 95% CI of posterior probability [0 0.01]. Patient
5-LN was PET-negative and MRI-negative. She was implanted with in-
tracranial electrodes, where seizures were found to originate from the
left temporal lobe. She underwent left anterior temporal resection and
has been seizure free for 53 months. We predicted this patient incor-
rectly as RTLE 90.5% of the time, but this was the only patient to show
uncertain posterior probability (95% CI = [0.289 0.981]).

In sum, four of the five patients who had discordant or negative PET
findings, were categorized with high certainty both in classification ra-
tios and in the posterior probability intervals. The only patient that
was miscategorized with probabilistic classification had largely uncer-
tain posterior probabilities.
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3.11. Investigation of asymmetry relationships

A comparison of average correlations between each modality pair
revealed closer PET–DTI relationship in LTLE compared to RTLE
(t[30]=−3.06, p= .005, 95% CI= [0.06 0.32]), and closerMRI–PET re-
lationship in RTLE compared to LTLE (t[46]=−3.65, p b .001, 95% CI =
[−0.42 − 0.12]). The MRI–DTI correlations did not differ between
groups (t[46] = −1.87, p = .07). An overview of asymmetry correla-
tions is displayed in Supplementary Fig. 1. The qualitative inspection
of hierarchical clustering dendrograms showed that PETwas first linked
with DTI, with MRI asymmetries located on a different branch in LTLE
patients. Vice versa, PET was first linked to MRI and later merged with
DTI asymmetries in RTLE patients (Supplementary Fig. 1).

4. Discussion

This study investigated the predictive power of asymmetry indices
from three different modalities, PET, MRI, and DTI, with the aim of build-
ing a clinically applicable predictive tool capable of distinguishing the
laterality of the seizure focus in temporal lobe epilepsy. To achieve the
necessary confidence required in clinical settings, we performed split-
sample validations using robust statistical methods (i.e., bootstrapping),
and tested the predictive model on several new patients.

4.1. Predictive power of the three modalities

Among all the asymmetries considered, PET asymmetries stood out
as the most informative with respect to the lateralization of the SOZ.
These asymmetries also survived multiple comparison correction,
while none of the asymmetries from MRI and DTI survived the correc-
tion. The importance of PET has been reported in several previous stud-
ies. For example, reports have shown that good surgical outcome is best
predicted by the presence of hypometabolism in PET images, while the
presence or absence of MRI pathology adds no further value to the pre-
dictive value of PET (Carne et al., 2004; Choi et al., 2003; Feng et al.,
2014; Gok et al., 2013; Kuba et al., 2011; LoPinto-Khoury et al., 2012;
Struck et al., 2011; Yang et al., 2014). When comparing the predictive
value of PET, MRI, and DTI, Thivard et al. (2011) found that PET carries
themost useful information to identify the SOZ, while DTI added predic-
tive value only for cases with PET-negative findings. In our study, PET
had top predictive power not only in the total sample of mixed MRI-
positive/MRI-negative patients, but also in the restricted group of
MRI-positive patients. Thus, our data, and the abovementioned studies,
highlight the importance of using metabolism as a predictor of SOZ
laterality in TLE patients. Note, hypometabolism is not directly related
to structural pathologies found in MRI (Lamusuo et al., 2001; O3Brien
et al., 1997; Theodore et al., 2001), though recent findings suggest that
even MRI-negative patients carry some structural pathology at the mi-
croscopic level (Deep et al., 2012). These findings suggest that subtle
structural GM pathologies may frequently be present in TLE, and,
while not visible on MRI, might still be detected at the metabolic level.

Differently from previous studies that reported success rates in the
range 85%–92% when classifying TLE patients with PET data (Didelot
et al., 2010; Kerr et al., 2013; Li et al., 2000; Muzik et al., 1998; Soma
et al., 2012), we were able to achieve 100% success rates on the full
dataset, and above 95% in split-sample validation. We took extra care
in verifying this result with thousands of bootstraps and 16 split-
sample steps, up to a split-half validation. While such rigorous valida-
tion has not been reported in previous studies, this is an important
step for obtaining reliable and replicable classifications. Indeed, several
authors have warned against the widely used leave-one-out validation,
as a suboptimal method with unstable prediction error estimates
(Gabrieli et al., 2015; see also http://www.russpoldrack.org/2012/12/
the-perils-of-leave-one-out.html; Kohavi, 1995; Rao and Fung, 2008).
Interestingly, we observed such instability as an increase in confidence

interval range when the split sample approached the leave-one-out
procedure (i.e., training sample = 97% in Fig. 2). This result supports
the previous warnings that a reliable estimation of prediction error re-
quires split samples larger than one or two subjects.

Among the reasons that allowed us to create a highly accurate pre-
dictive model, the analysis procedures played an important role. First,
we used a new masking procedure based on smoothed cortical mantel
masks, similar to probabilistic ROIs. Previous studies have used voxel-
wise asymmetries (Didelot et al., 2010; Kim et al., 2003; Van Bogaert
et al., 2000) or region-wise asymmetries (Muzik et al., 2005), but not
asymmetries from probabilistic ROIs. The results obtained in our study
suggest that probability masks of smoothed cortical mantel can be a
simplistic, yet powerful, solution to automatize PET analyses. Second,
we included not just asymmetries ofmean, but also asymmetries of var-
iance, skewness, and kurtosis. No previous study has used these mea-
sures to classify TLE patients yet. Importantly, results from cancer
research suggest that these measures improve significantly the predic-
tive power (Nair et al., 2012). Third, all PET asymmetries were obtained
without smoothing or normalizing the data, thus, keeping the PET
image as close as possible to the original scanner output. This choice
seems to be advantageous for conserving subtle variance changes that
can dissociate LTLE from RTLE.

PET was followed by DTI as the second best predictive modality at
the individual modality level (71%), while MRI was the third best
(67%). Evenwhenmultimodal asymmetrieswere combined, the combi-
nation of asymmetries of PET with DTI yielded higher accuracy rates
than the combination of PET with MRI (lower CI 100% and 96%, respec-
tively). This finding is congruent with the report of Thivard et al. (2011)
who found DTI to be the next best predictor after PET. However, in our
study MRI was an important predictor within MRI-positive patients,
wheremesial temporal lobe thicknesswas combinedwith hippocampal
metabolism to produce a highly successful model. A similar findingwas
obtained by Focke et al. (2012), who studied only patients with hippo-
campal sclerosis, and found that T1-weighted MRI is better able to dis-
tinguish LTLE from RTLE compared to DTI. Together, our findings and
the above literature indicate that MRI measures can be more sensitive
than DTI in the restricted group of MRI-positive patients, while DTI
can be slightly superior when all TLE patients are considered.

Attempts to predict seizure laterality fromMRI or DTI have also been
reported. Success rateswithMRI data have been in the range 86%–100%
(Duchesne et al., 2006; Focke et al., 2012; Li et al., 2000; Moser et al.,
2000). Our MRI-based prediction model was less successful (67%)
than the above studies, a finding that might be related to our choice of
using thickness asymmetries. Previous literature has reported more
widespread atrophy in LTLE than in RTLE (Bonilha et al., 2007; Keller
and Roberts, 2008; Kemmotsu et al., 2011), suggesting that thickness
might be a good variable for distinguishing the groups. The LTLE–RTLE
difference, however, has not been consistently reported in all studies
(Bernhardt et al., 2011; Lin et al., 2007). When inspecting the maps of
thickness anomalies published by some of these studies (Kemmotsu
et al., 2011; Lin et al., 2007) it appears that GM thinningmay occur bilat-
erally in both LTLE and RTLE patients, reducing thepower of thickness to
distinguish LTLE vs. RTLE. Another factor that may limit the use of corti-
cal thickness is the unreliable estimation of thickness in areas ofMRI pa-
thology (i.e., dysplasias). However, we expected these anomalies to be
captured in asymmetries of variance, which would have been positive
from a detection perspective. This benefit did not emerge from our
results.

DTI is a newer method that has not been incorporated in routine
clinical practice. Nevertheless, attempts have been made to use DTI
data for distinguishing LTLE from RTLE. For example, Ahmadi et al.
(2009) reported 90% accuracy, An et al. (2014) reported 91% accuracy,
while Concha et al. (2012) reported 87% accuracy. Our success rate of
71% when using only DTI asymmetries is lower than these reports, a
finding that may again be related to DTI processing steps (i.e., use of
TBSS instead of regular tractography, tracts under investigation, etc.),
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or the selection of variables (i.e., use of raw FA instead of FA asymmetry,
use of mean diffusivity, etc.).

4.2. Inter-modality relationships

A new finding not previously reported is that LTLE patients carry a
closer relationship PET–DTI, while RTLE patients carry a closer relation-
ship PET–MRI. Previous studies have shown that the relationship of
metabolism with structural integrity can break down in proximity of
the epileptogenic area (Theodore et al., 2001). This indicates that the
coupling of structure with metabolism is not static, and might be
interrupted by the presence of pathology. On the other hand, numerous
studies have shown that LTLE carry a more severe form of WM pathol-
ogy than RTLE (Ahmadi et al., 2009; Lu et al., 2013; Pustina et al.,
2014a; Pustina et al., 2015), and that WM is more closely associated
with the clinical course (Kemmotsu et al., 2011). Therefore, one inter-
pretation of our findings might be that the extensive WM pathology in
LTLE biases the relationship of metabolism more toward the status of
WM than to that of GM. Note, metabolic activity is not only related to
GM structural integrity (volume, thickness, etc.), but also to functional
integrity, which is based on the inputs sent and received from other
brain regions. While this hypothesis is speculative, an appropriate way
to investigate it in future studies is the comparison of multimodal rela-
tionships in TLE patients to the same relationships existing in the
healthy population.

4.3. Different cortical thickness estimates depending on software

On the technical side, it is worth noting the differences of cortical
thicknesses obtained from Freesurfer and ANTs.We found a higher con-
cordance of thickness estimated in the lateral temporal lobe (r =
0.673 ± 0.08) than the mesial temporal lobe (r = 0.3 ± 0.03). The dis-
crepancy between the two software asymmetries became evident also
in the relationship of thickness with othermodalities, i.e., the difference
in PET–MRI relationship was largely driven by ANTs asymmetries (Sup-
plementary Fig. 1). On the other hand, Freesurfer asymmetries entered
the predictionmodel of theMRI-positive patients, but could notmake it
on the prediction models of the full sample, where ANTs asymmetries
weremore successful. These findings suggest that the choice of software
may have a strong impact on the results, raising concerns about the sta-
bility of the findings when different methods are used in different
studies.

4.4. Limitations

In considering the conclusions drawn from this study, several limita-
tions should be noted. Ourfindings should not be erroneously interpreted
as evidence that the other modalities besides PET are not needed. In this
regard, the conclusions we draw about the accuracy rates of each modal-
ity pertain only to the specific measures used in this study (i.e., FA from
DTI, thickness from MRI). There are several other measures that can be
obtained fromMRI and DTI, which we did not investigate (i.e., mean dif-
fusivity, jacobian determinants, segmentation probability, etc.), not to
mention recent new acquisition protocols and new analysis techniques
(i.e., HARDI, spherical deconvolution of diffusion data, etc.). Moreover,
we built the model on PET-positive patients, with limited and incon-
clusive results from PET-negative examples. A proper development of
models to apply to the full range of clinical findings requires a more het-
erogeneous sample that includes more PET-negative and ambiguous
cases.

In this study we used a relatively small sample of 58 patients, and,
despite using rigorous validation methods and finding robust effects,
the lack of bias cannot be entirely excluded with such small sample.

The goal of this paper was to develop a quantitative formula that
wouldmatch the clinical teamclassification. However, a better standard
for accurate predictionwould be to train themodel on seizure outcome.

We had a limited number of patients with surgical outcome, and few of
them had bad seizure outcome, providing insufficient information for
training purposes.

Lastly, while we used three variables from a single modality to build
our predictionmodel, recent studies have shown high lateralization ac-
curacy with models based on clinical/cognitive variables (Armananzas
et al., 2013), fMRI (Chiang et al., 2015), or hippocampus architectural
properties (Nazem-Zadeh et al., 2014; Ver Hoef et al., 2013). Future
work can build upon this knowledge to combine the predictive value
of all predictive variables into a single model for routine clinical use.

4.5. Conclusions

To conclude, we investigated the separate and combined power of
asymmetries from three different modalities, and found that metabo-
lism is the single most powerful predictor of SOZ laterality. The crucial
elements of PET3s predictive success were the introduction of a new
masking method and the inclusion of variance asymmetries. Our find-
ings suggest that statistical processing of neuroimaging data can pro-
vide accurate classification of patients that match or exceed the
detection ability of human experts, a conclusion that has been advanced
by several authors (Ferrie et al., 1997; Lee et al., 2000; Matheja et al.,
1998). The implementation of automated procedures of classification
not only allows for an objective estimation of anomalies present in the
data, but also offers a probabilistic range of confidence, which is not ob-
tained from qualitative descriptions. Ultimately, automatic predictions
can be combined with visual inspections to improve detection of subtle
patterns of anomaly. In the spirit of open source science, we have made
available the tools and data necessary to lateralize seizure onset in new
TLE patients: http://dorianps.github.io/TLEprediction/.

Supplementarymaterial for this article can be found online at http://
dx.doi.org/10.1016/j.nicl.2015.07.010.
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