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RESEARCH Open Access

Looking for consistency in an uncertain
world: test-retest reliability of
neurophysiological and behavioral readouts
in autism
Shlomit Beker1,2, John J. Foxe1,2,3, John Venticinque4, Juliana Bates1, Elizabeth M. Ridgeway1,
Roseann C. Schaaf5 and Sophie Molholm1,2,3,6*

Abstract

Background: Autism spectrum disorders (ASD) are associated with altered sensory processing and perception.
Scalp recordings of electrical brain activity time-locked to sensory events (event-related potentials; ERPs) provide
precise information on the time-course of related altered neural activity, and can be used to model the cortical loci
of the underlying neural networks. Establishing the test-retest reliability of these sensory brain responses in ASD is
critical to their use as biomarkers of neural dysfunction in this population.

Methods: EEG and behavioral data were acquired from 33 children diagnosed with ASD aged 6–9.4 years old,
while they performed a child-friendly task at two different time-points, separated by an average of 5.2 months. In
two blocked conditions, participants responded to the occurrence of an auditory target that was either preceded or
not by repeating visual stimuli. Intraclass correlation coefficients (ICCs) were used to assess test-retest reliability of
measures of sensory (auditory and visual) ERPs and performance, for the two experimental conditions. To assess the
degree of reliability of the variability of responses within individuals, this analysis was performed on the variance of
the measurements, in addition to their means. This yielded a total of 24 measures for which ICCs were calculated.

Results: The data yielded significant good ICC values for 10 of the 24 measurements. These spanned across
behavioral and ERPs data, experimental conditions, and mean as well as variance measures. Measures of the visual
evoked responses accounted for a disproportionately large number of the significant ICCs; follow-up analyses
suggested that the contribution of a greater number of trials to the visual compared to the auditory ERP partially
accounted for this.
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Conclusions: This analysis reveals that sensory ERPs and related behavior can be highly reliable across multiple
measurement time-points in ASD. The data further suggest that the inter-trial and inter-participant variability
reported in the ASD literature likely represents replicable individual participant neural processing differences. The
stability of these neuronal readouts supports their use as biomarkers in clinical and translational studies on ASD.
Given the minimum interval between test/retest sessions across our cohort, we also conclude that for the tested
age-range of ~ 6 to 9.4 years, these reliability measures are valid for at least a 3-month interval. Limitations related
to EEG task demands and study length in the context of a clinical trial are considered.

Keywords: ASD, ICC, Biomarkers, Inter-trial variability, ERP, EEG

Background
Autism spectrum disorder (ASD) is defined by social-
communication deficits and restricted and repetitive pat-
terns of behavior, and is often accompanied by sensory,
motor, perceptual, and cognitive atypicalities. Although
well defined by clinical diagnostic criteria and assessed
professionally through interviews and clinical observation,
ASD is highly heterogeneous, with wide ranging presenta-
tion and a variety of etiologies and developmental trajec-
tories [1–3]. As a neurodevelopmental condition, direct
measures of brain activity provide for greater understand-
ing of the underlying neuropathology and how this im-
pacts information processing. If robust, replicable, and
reliable neurophysiological measures of processing differ-
ences in ASD can be developed, these might then have
utility in the stratification of individuals at early stages of
the condition, to optimize targeted interventions, and as
biomarkers for assaying treatment efficacy.
Scalp recordings of electrophysiological brain re-

sponses (electroencephalogram: EEG) provide a non-
invasive readout of network level neural processing with
millisecond temporal resolution. EEG time-locked to
stimulus presentation or to behavioral responses, re-
ferred to as event-related potentials (ERPs), is used to
characterize the time-course of information processing
[4, 5], and can also be used to model the cortical loci of
the underlying neural networks [6, 7]. EEG/ERPs are
thus well-suited to the characterization of when and
where cortical information processing might be altered
in ASD, and have the potential to provide sensitive as-
says of treatments that are expected to act on processes
with a clear neural signature. Additionally, since EEG/
ERPs directly index neural function, they are likely more
sensitive to initial treatment effects, given that they can
measure site-of-action effects in real-time. This feature
is particularly meaningful for clinical trials, which tend
to be of relatively short-duration, and would benefit
from more sensitive and immediate outcome measures.
In contrast, more typical clinical and behavioral assays
might be expected to show somewhat delayed
treatment-related changes, since neural changes due to
intervention would only give rise to changes in behav-
ioral outcomes after sufficient time has passed.

There is an accumulation of support for altered
sensory-perceptual processing in ASD, with evidence for
differential processing across all the major sensory mo-
dalities, including audition [8–12], vision [13–16], soma-
tosensation [17, 18], and multisensory integration
systems [19]. However, it bears mentioning that these
differences, when present, can often be subtle, and that
there has tended to be a high degree of inconsistency
across the literature (see [20]). Nonetheless, a promising
development is that variance in sensory ERPs has been
related to the severity of the clinical phenotype [12, 21],
going to their utility as potential biomarkers. A similarly
promising development is work showing that both audi-
tory and visual sensory responses can be modulated by
training, signifying potential sensitivity to treatment ef-
fects [22, 23]. However, sensory ERPs have not yet been
submitted to standard assessment of test-retest reliability
in ASD, which is surely a minimal requirement in asses-
sing their potential as sensitive biomarkers. Indeed, this
seems particularly germane given often inconsistent
findings across studies, and suggestions by some re-
search groups of increased inter-trial variability of the
sensory evoked response in ASD [2, 24], but see [25, 26].
In the quest for reliable biomarkers to index brain

function in ASD, we sought here to measure the test-
retest reliability of auditory and visual evoked potentials
and related task performance. High-density EEG record-
ings and behavioral responses were recorded from chil-
dren with ASD while they engaged in a simple speeded
reaction time (RT) task in response to visually cued and
non-cued auditory stimuli. Intraclass correlation coeffi-
cients (ICCs) [27–29] were calculated to assess the reli-
ability of the sensory evoked responses and behavioral
data recorded across two identical experimental sessions
that were temporally separated by an average of about 5
months.

Methods
Participants
Data from 33 children diagnosed with ASD ranging from
6.1 to 9.4 years of age were included for this analysis
(see Table 1 for participant characteristics). These came
from a larger dataset (N = 94) collected in the context of
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a clinical trial on the efficacy of different behavioral in-
terventions, and included a subset of the participants
from whom we recorded EEG and behavioral data from
two sessions, which we refer to as test (pre intervention)
and retest (post intervention). Of the 33 participants in-
cluded in these analyses, two thirds (n = 22) were in ac-
tive treatment groups (applied behavioral analysis
(ABA), N = 10; sensory integration therapy (SIT), N =
12), and one-third in a treatment as usual control group
(N = 11). Data were collapsed across treatment groups
due to the relatively small N.
While we had full datasets from test and retest ses-

sions in 40 participants, 7 (17.5%) were excluded from
the current analysis because of insufficient data due to
artifact contamination in one or both of the recording
sessions. See Table 2 for reasons for exclusion and for
comparison of the demographics and characteristics of
the included versus excluded participants; see also “Dis-
cussion” section.
The time between test and retest was 5.2 ± 2 months

(min: 2.9; max: 10.4). Participants were recruited without
regard to sex, race, or ethnicity. IQ quotients for per-
formance (PIQ), verbal (VIQ), and full-scale (FSIQ)
intelligence were assessed in all of the participants using
the Wechsler Abbreviated Scales of Intelligence (WASI
[30];). To be considered for the study, participants had
to meet diagnostic criteria for ASD on the basis of the
Autism Diagnosis Observation Schedule (ADOS-2) [31],
childhood history, and clinical impression of a licensed
clinician with extensive experience in the evaluation and
diagnosis of children with ASD. The Repetitive Behavior
Scale-Revised (RBS-R) [32] questionnaire was collected
to obtain continuous measures of ASD characteristics
related to insistence on sameness such as ritualistic/
sameness behavior, stereotypic behavior, and restricted
interests. Participants received modest recompense for
their participation (a total of $250 for participation in
the treatment study). Exclusionary criteria included epi-
lepsy or premature birth (< 35 weeks). While the major-
ity of participants had non-verbal IQs > 80, a subset (N
= 6) had lower scores (ranging from 64 to 79, with a
mean of 73 and standard deviation of 5.3). All partici-
pants passed a screen for normal or corrected-to-normal
vision and normal hearing on the day of testing. Parents
and/or guardians of all participants provided written in-
formed consent. All procedures were approved by the
Institutional Review Board of the Albert Einstein College
of Medicine.

Stimuli and task
The paradigm was designed like a computer game, with
stimuli that consisted of a cartoon dog face as the visual
stimulus, and cartoons of a running, happy, or sleeping
dog as feedback for responses to the auditory target that
were, respectively, too fast, right on time, or too slow.
The visual feedback was accompanied by an uplifting
sound (slot machine sound) or a neutral sound (two
tones in high-low pitch sequence), for responses falling
in/outside the response window, respectively. The visual
cue stimuli were presented centrally on a 25” ViewSonic
screen (refresh rate: 60 Hz, pixel resolution: 1280 × 1024
× 32) of a Dell computer using Presentation® software
(Version 20.0, Neurobehavioral Systems, Inc., Berkeley,
CA), and subtending ~ 4.4° of visual angle. The auditory
target stimulus was a 1000 Hz tone 80 ms in duration
that was delivered at an intensity of 75 dB SPL via a sin-
gle, from a centrally located loudspeaker (JBL Duet
Speaker System, Harman Multimedia) (see Fig. 1 for
paradigm schematic and the corresponding grand aver-
age ERP responses over the full trial epoch at occipital
channels). The task was designed to test the hypothesis
that children with ASD do not use temporally predictive
information in a typical way [33, 34]. Two conditions
were included: For the Cue condition, participants were
presented with a sequence of 4 visual isochronous stim-
uli for a duration of 80 ms each presented at a Stimulus
Onset Asynchrony (SOA) of 650 ms, followed by an 80
ms auditory stimulus, presented 650 ms after the onset
of the last visual cue. For the No-Cue control condition,
the auditory stimulus was not preceded by a sequence of
visual cue stimuli. Both conditions included 15% catch
trials on which the auditory target was not presented.
Each target appeared 2600 ms after the beginning of the
trial, during which participants were focused on the
screen. In all other respects, the paradigm, including the
timing of the stimuli, was identical between the Cue and
No-Cue conditions. Cue and No-Cue conditions were
presented in blocks, with 25 trials per block, and a total
of 20 blocks (10 Cue; 10 No-Cue). Each block lasted 3.5
min, and the order of blocks within the experiment for a
given participant was randomly generated prior to each
experimental session. Participants were encouraged to
take short breaks between blocks as needed. The entire
experimental session lasted around 3 h, and, in addition
to data acquisition, included cap application, frequent
short breaks, lunch, and cap removal. Participants were
seated at a fixed distance of 65 cm from the screen and

Table 1 Means ± SD and range of characteristics and cognitive scores of all participants

Sex Age Time between
tests (months)

Handedness IQ* (full scale) IQ (verbal) IQ (non-verbal) ADOS severity

29 (M)
4 (F)

7.54 ± 1 [6.1–9.4] Average: 5.2 ± 2
[2.9–10.4]

Right/Left: 20/13 92.9 ± 16 [58–131] 90.4 ± 20 [56–130] 95.5 ± 16 [64–128] 7.78 ± 1.5 [5–10]
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Table 2 Reasons for exclusion (A), and statistical comparison of clinical and other characteristics of included and excluded
participants (B)

A) Reasons for exclusion

Withdrew from the study after 1st

session
Covid-19 related
issues

EEG
attempted
but
unsuccessful

Noisy EEG
data

Still in intervention

N = 61 8 (13.1%) 13 (21.3%) 31 (50.8%) 7 (11.5%) 2 (3.3%)

B) Age, Sex and cognitive scores

Age Sex IQ (Full scale) IQ (Verbal) IQ (Non-
verbal)

ADOS
severity

Included in analysis (N
= 33)

7.54 ± 1 [6.1–9.4] 29(M)
4 (F)

92.9 ± 16 [58–
131]

90.4 ± 20 [56–
130]

95.5 ± 16 [64–
128]

7.78 ± 1.5
[5–10]

Excluded from
analysis (N = 61)

7.46 ± 1 [6–9.5] 50 (M)
11 (F)

83.8 ± 19 [50–
124]

75.9 ± 22 [45–
128]

92.5 ± 19 [56–
143]

8.1 ± 1.7 [3–
10]

Difference (two
sample T test)

t-stat = 0.1
df = 92
p = 0.87

χ2stat = 0.56
p = 0.45

t-stat = 2.6
df = 92
p = 0.01

t-stat = 3
df = 92
p = 0.003

t-stat = 0.8
df = 92
p = 0.42

t-stat = 0.4
df = 92
p = 0.63

Fig. 1 Schematic of experimental paradigm. A Top: Cue condition trial. Bottom: Cue condition grand average responses over trial epoch at
occipital channels (O1, O2, Oz). B Top: No-Cue condition trial. Bottom: grand average of evoked responses for the trial. No-Cue condition grand
average responses over trial epoch at occipital channels (O1, O2, Oz)
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responded with their preferred hand. In all trials, they
were instructed to press a button on a response pad
(Logitech© Wingman Precision Gamepad) as soon as
they heard the auditory tone. Responses occurring be-
tween 150 and 1500 ms after the auditory target stimu-
lus were considered valid, and positive feedback of a
cartoon dog image and an uplifting sound was provided.
If the response was outside this time window, a running
dog cartoon with a sad sound was presented to indicate
that the response was too fast, and a sitting dog image
with the sad sound was presented to indicate that the re-
sponse was too slow. Frequent breaks were given as
needed to ensure maximal task concentration. Here, we
focus on the behavioral and sensory evoked responses to
evaluate their reliability between two data recording ses-
sions separated by a minimum of 10 weeks (2.5 months).
A case-control study testing the hypothesis that children
with ASD do not use temporally predictive information
in a typical way is presented in a separate report [34].

Data acquisition Response times were recorded with
Presentation® software. EEG recordings were collected
from 70 active channels (10–20 system; 64 scalp chan-
nels and 6 external electrodes: 2 upper mastoids; 2 lower
mastoids; 2 vertical EOG) at a digitization rate of 512
Hz, using Active Two (BioSemi™, Amsterdam, The
Netherlands) with an anti-aliasing filter (− 3dB at 3.6
kHz). Analog triggers indicating the timing of stimulus
onsets and button presses were sent to the acquisition
PC via Presentation® and stored digitally at a sampling
rate of 512 Hz, in a separate channel of the EEG data
file.

Eye tracking
To ensure that participants adhered to our instruction
to fixate centrally, we monitored eye-position through-
out the experiment using the Eyelink100® eye-tracking
system (sampling rate: 1000 Hz) and with video moni-
toring. If the experimenter noticed through video moni-
toring that the child was looking away, or if the eye
tracking system indicated that gaze moved away from
the screen, the experimenter reminded the participant to
look at the centrally placed fixation cross.

Data processing and analysis
Data were processed and analyzed using custom
MATLAB® scripts (MATLAB r2017a, MathWorks, Na-
tick, MA), and the FieldTrip toolbox [35]. A minimum
number of 50 EEG trials per analysis was set as a criter-
ion for a participant to be included in the analysis; how-
ever, most participants had more than 100 trials in each
condition and session (e.g., for auditory trials, Cue con-
dition; test: mean ± standard deviation (SD): 208 ± 86;
retest: 209 ± 95). Due to occasionally extreme RT in

some of the participants, the tails of the RT distributions
of each participant (2.5% at each end) were excluded
from further analysis.
Measurements that were used in the ICC analysis were

calculated as follows:

1. Behavior

RT and sensitivity indexed by d-Prime (d′) were calcu-
lated from the behavioral data [36, 37]. Hits were de-
fined as responses that occurred between 150 and 1500
ms following the auditory tone. Proportion of hits was
defined as the ratio between the number of hits and the
number of all targets presented to the participant. A
false alarm was defined as a response to a catch trial
(i.e., pushing the button even though no auditory target
stimulus occurred). The proportion of false alarms was
defined as the ratio between the number of false alarms
and the number of all catch trials presented to the
participant.
Kolmogorov-Smirnov test of normality of distribution

showed a normal RT distribution. Hence, both means
and standard deviations (SDs) per participant were used
to assess ICC for mean and inter-trial variability (ITV)
metrics of RT, respectively. d′ was calculated for each
participant as the difference between the proportions of
the hits and false alarms of the values, after they were
transformed to z-scores: d′ = Z(p(Hit)) − Z(p(False
Alarm)). The ICC was calculated for RT means and SDs,
and for d′, for both Cue and No-Cue conditions.

2. EEG data processing

Continuous EEG data were down-sampled to 256 Hz,
band-pass filtered between 0.1 and 55 Hz using Butter-
worth Infinite Impulse Response (IIR) windowing with
filter order of 5, and then epoched as specified below.
Epochs were demeaned to normalize for DC shifts, and
baseline-corrected using the 100 ms time window prior
to stimulus onset. After epoching, a two-stage automatic
artifact rejection was applied at the single trial level.
First, channels that varied from the mean voltage across
all channels and from the auto-covariance by 1 standard
deviation were classified as bad. A maximum of six bad
channels was set as an inclusion criterion for trials to be
analyzed. For these trials, channels were interpolated
using the nearest neighbor spline [38, 39]. Second, a cri-
terion of ± 120 μV was applied. Electrodes that exceeded
this criterion were considered bad. The EEG compo-
nents were calculated as follows:

i. Visual evoked response (VEP): To derive the VEP,
epochs of 200 ms before and 850 ms after visual
stimulus presentation were generated and baselined
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to the 100 ms pre stimulus onset, and then
averaged across trials separately for each participant
and recording session. Data were referenced to a
midline frontal channel (AFz) to optimize
visualization and measurement of the VEP over
occipital scalp. In accordance with the literature
(e.g., [5]) and confirmed by visual inspection of the
data, amplitude values from occipital channels (O1,
O2, Oz), at the maxima/minima of each
participant’s visual P1 (80–160 ms), N1 (150–210
ms), and P2 (300–400 ms) response were taken for
subsequent statistical analyses. Both means and SDs
per participant were used to assess ICC for mean
and ITV metrics of the VEP, respectively, for a total
of 6 measures across the three visual components.

ii. Auditory evoked response (AEP): To derive the
AEP, epochs of 300 ms before and 850 ms after
auditory stimulus presentation were generated and
baselined to the 100 ms pre stimulus onset, and
then averaged across trials separately for each
participant and recording session, and in both Cue
and No Cue conditions. Data were referenced to a
channel near the left mastoid (TP7) to optimize
visualization and measurement of the AEP over
fronto-central scalp. In accordance with the litera-
ture (e.g., [40, 41] and confirmed by visual inspec-
tion of the data, amplitude values from fronto-
central channels (FC1, FC2, FCz), at the maxima/
minima of each participant’s auditory P1 (30–80
ms), N1 (80–150 ms), and P2 (160–240 ms) compo-
nents were taken for subsequent statistical analyses.

Each of the 6 behavioral measurements and the 6 VEP
and the 12 AEP components elaborated above were calcu-
lated for each participant for each of the two sessions. Two
datasets, one VEP and one AEP, each from a different sub-
ject, did not meet criteria for inclusion and were excluded
from the analysis. Hence, ICC of both VEP and AEP com-
ponents was calculated on 32 of the 33 participants.

Test-retest analysis
Our analyses focused on assessing the consistency of be-
havioral and electrophysiological responses across two
recording sessions. To do this, we performed intraclass
correlation coefficient (ICC) analyses using a one-way
mixed effect model with absolute agreement and mul-
tiple observations [27, 29, 42, 43], according to the
formula:

ICC 1; kð Þ ¼ MSR−MSw
MSR

MSR = mean square for rows (variance between partic-
ipants); MSW = mean square for residual sources of

variance; k = number of raters (or measurements, in this
case k = 1).
Separate ICCs were calculated for test-retest pairs for

each of the 24 measurements. ICC was computed with
the Intraclass Correlation Coefficient package:
h t tps : / /www.mathworks . com/mat labcent ra l /

fileexchange/22099-intraclass-correlation-coefficient-icc,
MATLAB Central File Exchange (Arash Salarian, 2020).
To correct for multiple comparisons, Bonferroni correc-
tion [44] was applied to the ICC values.
Testing for association between test-retest similarity

and participant cognitive variables: First, a test-retest
similarity index (SI) was calculated for each individual,
indicating the degree of similarity between the test and
retest across all measurements. SI was calculated on all
test-retest pairs as following:

Y ¼ Zscore X1…Xnð Þ; SIn ¼ 1� var
Xm

k¼i
Y n=m

� �

X= Measurement (ERP or behavior), n = number of
participants, m = number of measurements (ERP and
behavior).
For purely descriptive purposes, Pearson linear correl-

ation coefficients were calculated for the pairs of obser-
vations (test/retest) for each of the behavioral and ERP
parameters. While such correlations do not account for
absolute agreement between the values across sessions
as does ICC, they allow for visualization of the relation-
ship between test and retest measures. Pearson correl-

ation was computed as: ρ ¼ covðX;Y Þ
σX ∙σY . Cov = covariance of

test and retest; σX and σY are the SD of test and retest,
respectively. To control for false discovery rate (FDR),
Bonferroni correction [44] was applied on all p values of
all correlations.
To measure for possible associations between the SI

and participant cognitive variables, Pearson correlation
coefficients were calculated between SI, PIQ, VIQ, RBSR,
and ADOS, in the form of a correlation matrix. Results
were then corrected for multiple comparisons [44].
Finally, to test for the possibility that test-retest reli-

ability found for the participants was linked to the par-
ticipant age, number of trials, or to the time that had
passed between the sessions, which varied quite widely
between 2.9 and 10.4 months, we measured the correl-
ation between the participants’ similarity index and the
each of those variables: age, the number of visual trials
included per participant, and the test-retest time
interval.

The influence of number of trials on signal-to-noise-ratio
and ICC
In addition to the above analyses, we considered the
signal-to-noise-ratio (SNR) of the auditory and visual
ERPs, reasoning that the differing number of trials that
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went into the auditory and visual ERPs might have influ-
enced SNR. In turn, we considered how decreasing the
number of trials that went into the visual measures
would influence SNR and ICC values. We first measured
SNR [45] for visual and auditory evoked responses, sep-
arately. We used the pre-stimulus period of − 100 to 0
ms as an estimate of background noise, and the corre-
sponding visual P1 and auditory P2 values (as described
above) as an estimate of the signal. Signal was divided by
noise and converted to decibels in order to be scale-
invariant. The resulting SNRs were compared between
the two modalities using an unpaired t test.
To assess how reducing the number of trials that went

into the visual ERP influenced ICC and SNR values, we
calculated these using 25% of visual trials, to be compar-
able to the number of trails that went into the AEPs,
and 12.5% of visual trials, which yielded mean ± SD =
117 ± 39 trials (min: 28 max: 192). Trials were selected
randomly from the whole set to achieve the subsets, and
this was done 5 times each for the 25% and 12.5% sub-
sets, and ICC and SNR calculated for each. The reported
ICC and SNR values are based on the average of these 5
ICC and SNR values.

Results
The auditory and visual sensory evoked responses at test
and retest are illustrated in grand average VEP and AEP
waveforms and topographic maps in Fig. 2, and the indi-
vidual participant VEP, AEP and behavioral responses in
Fig. 3. A striking similarity between the group mean re-
sponses can be observed in Fig. 2, whereas at the indi-
vidual participant level, in Fig. 3, some variance is
apparent. ICC analyses were performed to formally as-
sess the consistency of responses at the individual par-
ticipant level between test and retest.

Intraclass correlation coefficient
Twenty-four measures of behavioral and EEG data (see
methods) were submitted to intraclass correlation coeffi-
cients (ICC) analysis. ICC R values are presented in Fig.
4. ICC R values, p values and lower and upper bounds of
the 95% confidence interval, calculated separately for
each measurement, are presented in Table 3.
For ICC analysis, the higher the R value is, the stron-

ger the agreement between the two sessions. Per con-
vention, values below 0.50 are generally considered to
have a poor level of reliability, values from 0.50 to 0.75
to be of moderate reliability, values from 0.75 to 0.90 to
have good reliability, and, when higher than 0.90 they are
considered to have excellent reliability [46]. Note that
other categorization criteria for ICC values have been
suggested. For example, by Fleiss’s [47] scheme, in which
R > 0.75 is categorized as excellent, the top 10 measures
in Table 3 would be considered excellent, rather than

good. After applying Bonferroni correcting for multiple
comparison, the following 10 measures with ICC > 0.75
remained significant: RT Cue, RT No-Cue, RT No-Cue
ITV, VEP P1, VEP P1 ITV, VEP N1, VEP N1 ITV, VEP
P2 ITV, AEP N1 Cue, and AEP P2 Cue. In the Pearson
correlations that we performed for descriptive purposes,
significant correlations for all measurements but AEP P1
No Cue, AEP P2 No Cue, and AEP P1 ITV were found
following correction for multiple comparisons. Pearson
correlations for the test-retest pairs are presented in
Supplementary Fig. 1.

ICC and signal-to-noise ratio
Comparison of signal-to-noise-ratio (SNR) between the
VEP and AEP show significantly reduced SNR for the
AEP compared with VEP (see Table 4).
ICC and SNR values for two subsets of the VEP trials,

25% and 12.5% of the general pool, were calculated to
assess how number of trials influenced ICC and SNR
(see Fig. 5). Each reduction of the pool size resulted in
lower ICC values for all 6 measures tested. The mean
ICC values for VEP components for the 100%, 25% and
12.5% sets of trials are 0.81, 0.70, and 0.63, respectively.
This reduction is in accordance with the SNR values,
which are different between the 25% (SNR mean ± SEM
= 50.4 ± 2.2) 12.5% (45.1 ± 2), and 100% sets (55.6 ± 3;
ANOVA F = 4.28; df = 95; p = 0.016). Tukey-Kramer
post-hoc test revealed a significantly lower SNR value
for the 12.5% compared to the 100% set (p < 0.01).

Similarity index and clinical measures
Similarity index (SI) was generated for each participant
(see “Methods” section) and tested for correlation with
ADOS severity scores, PIQ, VIQ, and RBSR in a correl-
ation matrix (Supplementary Figure 2). None of these
correlations survived Bonferroni correction [44]. Finally,
no correlation was found between SI and age (Rho = −
0.11; p = 0.54), SI and number of visual trials per partici-
pant (rho = − 0.21; p = 0.24), or SI and the between-
sessions time interval (rho = 0.006; p = 0.97).

Discussion
In autism research, several factors bring into question
the possibility that brain measurements can serve as reli-
able markers of neurocognitive function. Basic findings
on sensory processing from recordings of electrophysio-
logical brain activity often differ across laboratories; and
there is some evidence of higher inter-participant [48–
50] and inter-trial ([51–53], but see [25, 26]) variability
within such recordings compared to control groups.
This raises the possibility that such measurements may
simply be too noisy to serve as reliable readouts of brain
function in ASD. Alternatively, differences in findings
between laboratories may result from factors that do not
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have direct implications for the reliability of the scalp re-
corded electrical brain response, such as differences in
stimuli, task, EEG recording setup and analysis pipeline,
ascertainment bias, and clinical cohort. What is more,
inter-participant variability may reflect a feature of the
heterogeneity of the disorder rather than random noise.
Surprisingly few studies to date have sought to test the
stability of these responses when participants, recording
equipment, analytic approach, and stimulation parame-
ters are held constant, which is particularly critical to es-
tablish if a biomarker is to be used as an outcome
measure in a clinical trial, or as a reliable indicator of
neural and neurocognitive dysfunction [54, 55]. Only

two previous studies, as far as we are aware, examined
the reliability of such measures in ASD across two re-
cording sessions. Levin and colleagues [56] collected 5
min of resting state EEG from children with and without
ASD at two intervals separated by ~ 6 days, and found
good reliability of the center frequency and amplitude of
the largest alpha-band peak. Cremone-Caira and col-
leagues [57] found moderate to good reliability of the ex-
ecutive function related frontal-N2 response elicited
during go/nogo and flanker tasks in children with ASD
across two time points separated by ~ 3 months.
Here, we add to this emerging literature with the find-

ing that in children with ASD, auditory and visual ERPs,

Fig. 2 ERPs: visual evoked potentials (VEP) and auditory evoked potentials (AEP) in the two test sessions. A VEP (averaged over channels O1, O2,
and Oz) collapsed across all visual evoked responses, in test (red) and retest (blue). B Topography maps for the VEP P1 (1st row), N1 (2nd row), P2
(3rd row) components shown in (A) for (from right to left): test, retest, and the difference between them. C AEP (averaged over channels FC1,
FC2, FCz) for test and retest in the Cue conditions. D Topography maps for the AEP P1, N1, P2 components in Cue condition, for test, retest, and
the difference between them. E AEP for test and retest in the No-Cue condition. Same as in (D), for No-Cue condition
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Fig. 3 (See legend on next page.)
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as well as reaction-times collected in an accompanying
target detection task, show good test-retest reliability.
We found statistically significant test-retest reliability, as
measured by the intraclass correlation coefficient, for a
full 15 of the 24 electrophysiological and behavioral
measurements submitted to analysis, with significant
ICC values ranging from 0.65 to 0.86 (representing mod-
erate to good ICC values [46, 47]). Interestingly, these
high ICC values were found not only for mean responses
but also for the inter-trial variability (ITV) of these re-
sponses. Significance was found across data category
(ERP and behavior), sensory domain (VEP and AEP),
ERP component (P1, N1, and P2), experimental condi-
tion (Cue and No-Cue), and response metric (mean and
ITV). Among the 9 measurements for which significant
ICCs were not found, 6 were from the AEP (represent-
ing 50% of the AEP derived measures). In notable con-
trast, ICC was significant for all measurements of the
VEP. This difference may be partly accounted for by a
higher SNR for the visual ERP. However, when number
of trials was more-or-less equated between auditory and
visual ERPs, SNR was still substantially higher for the
visual compared to the auditory dataset (t = 5.05; df =
61; p < 0.01).

A follow up analysis on number of visual trails and
their relationship to SNR and ICC values showed that
while reducing the number of trials only had a moderate,
although significant, effect on SNR, ICC values for the
ERPs were substantially impacted, dropping dramatically
in some cases (see Fig. 5). This suggests that amount of
data collected is an important consideration when using
EEG as an outcome measure in clinical trials. Notably,
however, in the vast majority of cases when considering
only 25% of the trails (mean ± SD = 234 ± 79), ICC
values were 0.7 or greater and were significant at p <
0.05. In contrast, reducing the dataset size further to ~N
= 117 resulted in a major reduction of ICC values for
most of the visual measures. It is noteworthy that some
of the ICC values for the behavioral measures, which
were calculated on the same number of trials as the
AEP, were among the highest, indicating that the behav-
ioral data required fewer trials to stabilize than the EEG
data.
Given the minimum interval between test/retest ses-

sions across our cohort, we conclude that for the tested
age-range of ~ 6 to 9.4 years, these reliability measures
are valid for at least a 3-month interval. These results
add to a still small but growing body of evidence for

(See figure on previous page.)
Fig. 3 Individual-level ERPs and reaction times (RT) for test and retest. A Top, ERPs showing VEP (left) and AEP (right) for test and retest, for all
participants (each colored line represent an evoked response of an individual participant). Black: grand average for each session. Bottom,
illustration of measurement consistency for the ERP data that showed the highest ICC scores: amplitudes of the visual N1 (left) and auditory N1
(right) at test and retest. B Illustration of measurement consistency for the behavioral data that showed the highest ICC scores: reaction times (RT)
for the Cue (left) and No-Cue (middle) conditions, and inter-trial variability (ITV) of RT for No-Cue (right), at test and retest

Fig. 4 ICC values, grouped by measurement type: VEP, AEP (Cue and No-Cue), and Behavior
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good test-retest reliability of the EEG/ERP response in
ASD [56, 57], and extends these findings to the early
cortical sensory components as well as related RT data,
and for a longer test-retest interval than previously
shown. However, we also show that dataset size is an
important variable for test-retest reliability, and that, at
least for the current paradigm, a relatively large dataset
is required for good test-retest reliability for visual ERPs.

Clearly, many variables will influence the amount of data
required for a reliable signal; further, one must consider
the trade-off between extent of reliability of the signal
and feasibility of test duration for a given population
and circumstances.
Atypicalities in sensory evoked neural responses and

behavioral performance have been widely reported in
ASD, including altered responses to visual [2, 49, 58],
auditory [59], and somatosensory stimuli [60, 61]. More-
over, in some studies, higher inter-participant [48–50]
and within-participant inter-trial [51–53] variability of
brain responses to sensory stimuli has been shown. This
is in line with higher inter-trial behavioral variability that
was observed for individuals with ASD, measuring reac-
tion times to executive function [62] and tactile judg-
ment tasks [63], as well as rhythmic tapping tasks [64].
The higher variability between trials and between indi-
viduals with ASD has, in turn, been interpreted in the
context of neuronal processing being “noisy” or “unreli-
able” (e.g., [49, 50, 52, 65–67], but see [68, 69] and [25,
26] for reports of lower, or typical levels of noise in
ASD, respectively). According to this view, high levels of
endogenous neural noise in ASD render neural signals
unreliable [53, 70]. Arguing against a pure noise account,
here we see a stable pattern of both mean activity and
ITV over time. The current data suggest that such vari-
ance likely represents replicable neural processing differ-
ences at the individual participant level in the clinical
group, rather than noise. Hypo- and/or hypersensitivity
of synaptic activity, for example, could lead to a higher
than typical range of neuronal responses to a given
stimulus [71]. A possible result would be an increased
range of neural activity across large-scale neural net-
works that is nevertheless stable over time [25]. At the
same time, given the consistency of individual responses
within our clinical group, the inter-participant variability
that has been observed in ASD [48, 50] is likely to reflect
that ASD has a variety of etiologies and developmental
routes [1], that in turn lead to heterogeneous neural and
behavioral phenotypes.
A number of notable recent reviews have focused on

the promise of EEG-based biomarkers of IDDs, and dis-
cussed the requirements and challenges therein [54, 72–
74]. Biomarkers have the potential to serve many pur-
poses including assessment of risk, diagnosis, disease
progression, intervention response, and mechanism of
disease. Validity and reliability of the potential bio-
marker are critical to establish. Here, we find good reli-
ability of sensory evoked responses to simple auditory
and visual stimuli using an active paradigm suitable for
children. Since auditory and visual sensory ERPs have
been shown to differ in ASD, the additional finding that
they can be reliably measured and show stability within
individuals over time opens the door to their further

Table 3 R values, p values, and upper bounds (UB) and lower
bounds (LB) of the 95% confidence interval for test-retest, for
each of the measurements, ranked from the highest ICC value
to the lowest. In italics: significant measurements after
correction for multiple comparisons

Measure R value (ICC) P value UB LB

ICC > 0.75

VEP N1 0.8615 1.2359 × 10−7 0.9321 0.7185

VEP N1 ITV 0.856 1.9969 × 10−7 0.9294 0.7072

RT NC ITV 0.8282 1.1297 × 10−6 0.9149 0.6548

RT NC 0.8201 1.9527 × 10−6 0.9108 0.6385

VEP P2 ITV 0.8148 3.8236 × 10−6 0.9093 0.6236

RT Cue 0.811 3.4601 × 10−6 0.9063 0.6203

VEP P1 0.7946 2.4445 × 10−5 0.8993 0.5825

VEP P1 ITV 0.7944 1.2216 × 10−5 0.8992 0.582

AEP N1 Cue 0.7926 1.2074 × 10−5 0.8984 0.5785

AEP P2 Cue 0.7518 8.7397 × 10−5 0.8784 0.4955

0.5 < ICC < 0.75

AEP N1 NC 0.7462 1.0912 × 10−4 0.8757 0.4842

VEP P2 0.7203 2.8088 × 10−4 0.8629 0.4314

AEP N1 Cue ITV 0.7181 3.0223 × 10−4 0.8619 0.427

AEP P2 NC ITV 0.6657 0.0014 0.8362 0.3204

AEP P2 Cue ITV 0.6616 0.0016 0.8342 0.3121

D′ No-Cue 0.6136 0.004 0.8084 0.2234

AEP P1 NC ITV 0.6114 0.0048 0.8096 0.2102

RT Cue ITV 0.6082 0.0045 0.8058 0.2125

D′ cue 0.595 0.0058 0.7992 0.186

ICC < 0.5

AEP N1 NC ITV 0.4451 0.0513 0.7281 -0.128

AEP P1 Cue 0.4387 0.0547 0.725 -0.1408

AEP P1 NC 0.3302 0.1324 0.6718 -0.3615

AEP P2 NC 0.2632 0.1973 0.639 -0.4976

AEP P1 Cue ITV 0.2088 0.2567 0.6123 -0.6081

Visual evoked response (VEP), inter-trial variability (ITV), reaction time (RT), no
cue (NC), auditory evoked response (AEP)

Table 4 Mean ± SD for SNR in visual P1 and auditory P2

Visual (P1) Auditory (P2) t test

SNR 55 ± 18 23 ± 29 t = 5.5; df = 61; p < 0.001

N trials 922 ± 328 208 ± 86
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development as biomarkers. Next steps will be to estab-
lish if these measures are equally reliable in the absence
of a task and how they are affected by state (e.g., drowsy
versus alert), to determine if they can be applied in more
severely affected individuals [75–77]. Given the simpli-
city of the paradigm and stimuli, such biomarkers could
also be suitable for translational studies in non-human
models of ASD (see discussion by [74]).
We should note that full datasets were collected for

fewer than half of the potential cohort. Consideration of
the reasons for this, and the implications for EEG bio-
marker use in clinical studies, is worthwhile. The parent
study, a clinical trial, required a minimum of ~ 40 lab
visits. During these visits, clinical assessments were per-
formed, collection of primary outcome measures was
made at three time-points, and therapy sessions oc-
curred. Due to the already significant demands of the
parent study, EEG recordings were not prioritized since
they did not provide a primary outcome measure. In this
context, about half of the participants that completed
the parent study did not yield full EEG datasets (N =
31): 32% did not perform the task correctly or at all and
so EEG data collection was terminated, 29% would not
wear the cap, 16% refused to continue the EEG experi-
ment partway into data collection, 13% did not sit still
enough to acquire good EEG data and so data collection
was terminated, and for 10% either no attempt at EEG
data collection was made or hairstyle prevented ad-
equate cap application. Participant characteristics for in-
cluded and excluded participants are presented in Table
2. Most notably, verbal IQ and full scale IQ were signifi-
cantly higher for the included group. Otherwise,

participant demographics and characteristics appeared
to be highly similar.
This brings to light possible challenges for EEG-data

collection in clinical trials in pediatric populations with
neurodevelopmental disorders, especially when using a
paradigm in which participants perform an active task.
Use of a passive auditory or somatosensory paradigm
while watching a movie with the sound off, an approach
that we often take with lower functioning individuals,
would have obviated issues of task compliance, and may
also have reduced boredom and hyperactivity. Indeed,
good-to-excellent test-retest reliability was shown in a
group of Fragile-X participants with substantially lower
IQ than in the current study, for AEPs recorded using a
passive oddball stimulation paradigm and a 32-channel
EEG montage [78]. Nevertheless, the impetus is on
us, as researchers with the goal of developing EEG
biomarkers that can be used as outcome measures in
clinical trials, to develop approaches for pediatric clin-
ical populations that allow EEG data collection in a
wider range of circumstances. Low montage EEG re-
cordings (e.g., [79, 80]), using wireless technology,
and embedding of stimuli in movies or highly en-
gaging video games or stories [81] are just some ad-
aptations that may increase participant compliance.
These are not yet commonly used, if at all. The valid-
ity and reliability of EEG measurements under such
conditions are not known, and will have to be estab-
lished each time significant methodological changes
are introduced.
We note that when EEG data collection is primary to

the study that the participant has been recruited for and

Fig. 5 ICC values (color lines; left y axis) and SNR (gray bars; right y axis) as a function of number of visual trials used in the calculation
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therefore is prioritized, we typically have high levels of
compliance of at least 85%. In our EEG studies in high
functioning clinical populations, we achieve at least this
rate of compliance even when we use paradigms that in-
volve relatively complex tasks. What is more, we have
similar compliance rates in our EEG studies in lower
functioning populations such as Rett Syndrome [75–77]
and Batton Disease, where we use passive paradigms that
do not require task performance, and in studies on indi-
viduals with severe neuropsychiatric conditions [82, 83].
ICC is a strong metric of the reliability of a response

for a given group, but it does not provide individual
scores that can be used to assess how test-retest similar-
ity may vary as a function of another variable such as
the time interval between measures. We therefore gener-
ated a composite measure for each individual, the simi-
larity index (SI), which is simply the mean of the
variance between test and retest values across all of the
z-scored ERP and behavioral measures. The SI may be
considered a composite measure of the stability within
an individual of the neuronal/behavioral readouts,
evoked by a given task. The more similar the test-retest
readouts of a process are, the more stable and less vari-
able the neuronal activity that underlies this process.
The SI was used to test if the reliability of the measure-
ments systematically varied with three parameters that
were variable between the participants: age, number of
visual trials, and the time interval between test and retest
(the latter of which arose due to uncontrolled factors
such as appointments being rescheduled). There was no
evidence for a relationship between SI and any of these
parameters. We additionally tested for possible covari-
ance of SI scores with participant traits, as represented
by cognitive/clinical variables, but found no significant
correlation between SI and RBSR, IQ or autism severity
scores. Future work will be required to establish the val-
idity of such a composite SI.

Study limitations
A potential limitation of the current analysis is that the
data were collected in the context of a treatment study.
Importantly however, with regard to hypotheses for the
parent study, there was no expectation that the treat-
ments would influence the basic auditory and visual sen-
sory responses or RTs that we focused on here, and for
which we found good reliability.
Lastly, while our study finds strong consistency of

neuronal and behavioral measurements in children with
ASD, it does not include similar data from an age-
matched typically developing (TD) control group, and
thus we cannot draw conclusions regarding whether reli-
ability differs from a healthy control group and how.
However, this does not detract from evidence for re-
markably good consistency of the responses between two

recording sessions in children with ASD and all its im-
plications, which is a critical feature for a treatment
biomarker.

Conclusions
The present data show that sensory ERPs and related be-
havior can be highly reliable across multiple measure-
ment time-points in ASD. The data further suggest that
the inter-trial and inter-participant variability reported
in the ASD literature likely often represents replicable
individual participant neural processing differences. The
stability of these neuronal readouts supports their use as
biomarkers in clinical and translational studies on ASD,
although manipulation of the size of the visual dataset
reveals that better test-retest reliability is found when
using larger amounts of data.
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