
types, we transformed the LAC wild-type strain with plasmids
carrying the psm�, psm�, hld (encoding �-toxin), or agrA genes/
operons under the control of a constitutively active promoter. In
these constructs, low expression of those genes in SF is thus over-
come by constitutive expression. We first analyzed the formation
of macroscopic clusters during 24-h growth in microtiter plates.
In SF, the LAC wild-type strain formed a large cluster, in accor-
dance with our previous results (4); this was not the case in serum

or TSB (Fig. 5). Importantly, no cluster formation was visible
when the strains expressing psm�, psm�, or hld genes/operons
were incubated in SF. Similarly, no cluster formation was detected
when agrA, which controls expression of all of these genes, was
expressed (16). Furthermore, the �psm mutant, devoid of PSM
production, showed large cluster formation in SF, similar to that
observed with the wild-type and �agr strain.

We next analyzed biofilm formation of the constitutive-ex-
pression constructs by confocal laser scanning microscopy
(CLSM) with an analysis of total biovolume. Similar to the results
obtained for macroscopic cluster formation, biofilm formation by
the constructs expressing psm�, psm�, hld, or agrA was signifi-
cantly less pronounced than that by the wild-type strain (Fig. 6).
Together, these results identify the lack of PSM production as the
main cause for the extensive biofilm and aggregate formation in
SF and show that all PSM types have the capacity to disrupt aggre-
gates.

PSMs work by dispersing bioÞlm matrix molecules such as
PIA. The surfactant characteristics of PSMs suggest that these
molecules function during biofilm development by disrupting the
interaction of biofilm matrix molecules with each other and the
bacterial cell surface (31). However, this has not yet been exam-
ined experimentally. PIA is considered a major biofilm matrix

FIG 3 Agr activity and PSM production are low in synovial fluid. (A and B)
Activity of the Agr P3 (A) and the Agr P2 promoter (B) measured during
suspended growth in SF, human serum, or TSB, using genome-integrated,
single-copy luxABCDE luciferase operon reporter fusion constructs. (C and D)
Expression of RNAIII (C) and agrA (D) at 8 h of growth, measured by qRT-
PCR. (E and F) Expression of psm� (E) and psm� (F) promoters during
growth in SF, human serum, or TSB, using genome-integrated, single-copy
luxABCDE luciferase operon reporter fusion constructs. (G) Expression of
psm� operon by qRT-PCR, at 8 h of growth. (H) PSM production determined
in culture filtrates after 8 h of growth. All experiments were performed in
triplicate. Error bars show standard deviations (SD). *, P 	 0.05; **, P 	 0.01;
***, P 	 0.001; ****, P 	 0.0001.

FIG 4 Aggregate size distribution after incubation of S. aureus under dif-
ferent conditions. (A) Size distribution of aggregates, measured by a Cellom-
eter, after 20 min incubation in the respective fluids (SF or TSB) of LAC
wild-type (WT), isogenic �agr deletion, or total �psm deletion strains. Aggre-
gates between 10 and 100 �m were determined; larger aggregates cannot be
measured by this method. (B) Corresponding representative microscopic pic-
tures. Note the absence of clusters in the TSB wild-type sample in both panels.
Scale bars, 50 �m.
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component in staphylococci (6). We showed previously that
strain LAC produces a large amount of surface-located PIA when
grown in SF (4). Transcription of the ica PIA biosynthesis operon
(as determined by qRT-PCR of the icaA gene) was not increased in
SF (Fig. 7A). However, immunological assessment using PIA-spe-
cific antibodies revealed that (i) PIA retention on the bacterial
surface was significantly higher in SF than TSB and serum (Fig.
7B) and (ii) PIA was released from the bacterial surface in a PSM-
dependent manner (Fig. 7C). The latter was demonstrated by the
fact that surface PIA levels were similarly high in the isogenic
�psm mutant when it was grown in either TSB or SF and in the
wild-type strain grown in SF (conditions without or with very low
PSM production) but significantly higher than PIA surface levels
in the wild-type strain grown in TSB (under which condition
PSMs are produced) (Fig. 7C). These results suggest that PIA ma-
trix molecules are abundant on the bacterial surface in the absence
of PSMs, indicating that PSMs cause separation of the PIA matrix
molecules from the bacterial surface.

To provide further evidence supporting that mechanism, we
compared cluster formation of the wild-type and �psm mutant
strains using scanning electron microscopy (SEM). This was done
in TSB, because (i) there is no host-derived fibrous material over-
shadowing bacterial exopolymers during growth in TSB and (ii)
we have shown here that there is virtually no PSM production in
SF. SEM showed only single cells and no cluster formation of the
wild-type strain (in accordance with the results shown in Fig. 4).
In contrast, the �psm mutant formed clusters, which had fibrous
material on their surface (Fig. 7D), which—in the absence of host
material such as fibrin—are strongly indicative of the deposition
of bacterial biofilm matrix molecules, such as PIA, but also likely
includes other biofilm matrix components, such as teichoic acids,
extracellular DNA, and biofilm matrix proteins. Thus, these find-
ings further confirmed that PSMs interfere with the deposition of
matrix molecules on the bacterial surface.

DISCUSSION

In our previous study, we discovered that S. aureus proteins that
connect the bacteria to the human matrix proteins fibrin and fi-
bronectin are prerequisites for the formation of biofilms and bio-
film-like aggregates during joint infections (4). In the present
study, we asked which factors are responsible for the excessively
strong degree of aggregate and biofilm formation in SF, which is
the basis for the notorious recalcitrance of such infections to an-
tibiotic treatment (28). We identified the low activity of Agr and
consequentially low production of PSMs as major factors contrib-
uting to that phenotype. Our results support a two-step model of
aggregate formation during joint infection which includes (i) bac-
terial attachment to fibrin and fibronectin via ClfA, ClfB, FnbA,
and FnbB and (ii) extensive agglomeration of cells and bacterial
matrix molecules, owing to the absence of the surfactant-like, sep-
arating effect of the Agr-controlled PSMs. It appears surprising at
first glance that there is low activity of the quorum-sensing regu-
lator Agr in cellular aggregates, despite such aggregates represent-
ing a high-cell-density situation. However, we and others have
observed overall low activity of Agr activity in in vitro staphylo-
coccal biofilms (11, 12, 32). Furthermore, there has been consid-
erable doubt about a direct correlation of cell density and the
activity of quorum-sensing systems (33). Whether the low activity
of Agr in SF is due to specific factors that are present in SF, such as
hyaluronic acid (34, 35), or the overall chemical composition of
SF (35) awaits further investigation. One specific possibility that
remains to be explored is whether the increased concentration of
serum proteins in traumatized SF (36) contributes to a quorum-
quenching effect due to sequestration of the Agr pheromone, as
described for apolipoprotein B (37).

FIG 6 PSM expression abolishes biofilm formation in SF. (A) Derivatives of
the LAC wild-type strain containing plasmids (pTX�) for constitutive expres-
sion of agrA, psm�, psm�, or hld genes or a control plasmid (pTX�16) were
assayed for biofilm formation in SF under static conditions (24-h growth).
Plasmid-containing strains received 12.5 �g/ml tetracycline for plasmid main-
tenance. Biofilms were stained with propidium iodide for CLSM. (B) The total
biovolume was calculated using Imaris software using 3 randomly chosen
image fields. Error bars show standard deviations (SD). ****, P 	 0.0001.

FIG 5 PSM expression abolishes the formation of macroscopic cell clusters in
SF. The LAC wild-type strain (WT) was inoculated into 200 �l SF, human
serum, or TSB at 104 CFU and incubated under static conditions for 18 h. In
addition, the LAC �agr and �psm strains and derivatives of the LAC wild-type
strain containing either plasmids (pTX�) for constitutive expression of agrA,
psm�, psm�, or hld genes or a control plasmid (pTX�16) were inoculated and
grown under the same conditions in SF. Plasmid-containing strains received
12.5 �g/ml tetracycline for plasmid maintenance. Afterwards, cell clusters
were visualized by staining with ethidium bromide. Note that large clusters
formed only in the WT (when grown in SF) and SF-grown �agr, �psm, and
plasmid control samples (arrows), whereas expression of any of the psm loci or
the PSM regulator agrA resulted in abolishment of cluster formation.
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The significance of our results extends beyond joint infection.
For the first time, we provide evidence in a system closely resem-
bling in vivo conditions, and this evidence underscores a key role
of PSM production in defining the extent of S. aureus biofilms.
Specifically, we demonstrate that low PSM production causes
strongly increased biofilm formation. Furthermore, we show that
absence of PSMs leads to increased formation of floating aggre-
gates, which was shown previously only for surface-attached bio-
films (13, 15). Moreover, our results provide previously unavail-
able evidence for the mechanism by which PSMs disperse
biofilms, inasmuch as we demonstrate PSM-dependent release of
PIA from the bacterial surface.

Our results are of particular interest given that in vitro studies
have led to two different models of how PSM production impacts
S. aureus biofilm development. Our previous studies, performed
using TSB, indicated that absence of PSMs leads to more extensive
and compact biofilm formation, owing to a lack of PSM-mediated
biofilm structuring and dispersal (13). In contrast, using a differ-
ent growth medium, Schwartz et al. observed that PSMs form
amyloid-like fibrils that promote (rather than decrease) biofilm
formation in vitro (38). In our present study, we demonstrate that
under conditions emulating the in vivo situation present during a
biofilm-associated infection, absence of PSMs leads to extensive
formation of biofilms, while the amyloid model of Schwartz et al.
would have predicted that in the absence of PSMs, biofilms would
be less pronounced. In accordance with our previous in vivo re-

sults (13), our present findings further suggest that the role of PSM
amyloid fibrils in biofilm development applies only to a very spe-
cific in vitro setup.

Our results further support the notion that differences in Agr
activity are associated with different types of staphylococcal infec-
tion and demonstrate the crucial role that PSMs play in that asso-
ciation. Mutants that are dysfunctional in Agr have been found
more frequently in chronic, biofilm-associated infections (14, 39)
and in cases of S. aureus bacteremia (40). In contrast, a functional
Agr system and high production of Agr-regulated toxins, such as
PSMs and alpha-toxin, are associated with acute forms of S. aureus
infection, such as acute skin and lung infections (18, 41, 42), and
osteomyelitis (43). Since there is continual developing of drugs
targeting the Agr system (44), we caution that the use of Agr-
blocking therapeutics should be limited to certain infection types
and would be counterproductive in others.

In conclusion, the findings from our study indicate that the
exceptional recalcitrance of staphylococcal PJI to antibiotic treat-
ment (28) is due to the specific environment in joints that sup-
presses Agr and production of biofilm-dispersing PSMs, which
together with the interaction with host-derived fibrin leads to the
formation of extensive bacterial agglomerates. These results fur-
ther our understanding about the role Agr and PSMs play in de-
fining biofilm-associated S. aureus disease, which could lead to the
development of antibiofilm therapeutic strategies against PJI. Our
findings suggest that therapeutic strategies against staphylococcal

FIG 7 Growth in SF leads to increased retention of the biofilm exopolysaccharide PIA on cells. (A) Expression of PIA biosynthetic operon (measured by
qRT-PCR of the icaA gene) at 8 h of growth under different conditions. (B and C) Cell-bound PIA after 12 h of growth, measured using detection by anti-PIA
antiserum in immune dot blots followed by densitometry. Error bars show standard deviations (SD). *, P 	 0.05; ****, P 	 0.0001 (1-way ANOVA versus the SF
value [B] and versus the WT SF value [C]). (D) Wild-type LAC (WT) and the PSM-free isogenic �psm strain were grown for 8 h in TSB, and bacterial cells were
assayed by SEM. Cell clusters were not found in the wild-type strain but were found in high numbers in the �psm strain (also compare the results shown in Fig.
3, obtained using a Cellometer).
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PJI should target the host-derived and bacterial factors that con-
tribute to agglomerate formation, such as fibrin and bacterial bio-
film matrix molecules, including PIA.
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