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Abstract

The order Mononegavirales includes five families: Bornaviridae, Filoviridae, Nyamaviridae, 

Paramyxoviridae, and Rhabdoviridae. The genome of these viruses is one molecule of negative-

sense single strand RNA coding for five to ten genes in a conserved order. The RNA is not 

infectious until packaged by the nucleocapsid protein and transcribed by the polymerase and co-

factors. Reverse genetics approaches have answered fundamental questions about the biology of 

Mononegavirales. The lack of icosahedral symmetry and modular organization in the genome of 

these viruses has facilitated engineering of viruses expressing fluorescent proteins, and these 

fluorescent proteins have provided important insights about the molecular and cellular basis of 

tissue tropism and pathogenesis. Studies have assessed the relevance for virulence of different 

receptors and the interactions with cellular proteins governing the innate immune responses. 

Research has also analyzed the mechanisms of attenuation. Based on these findings, ongoing 

clinical trials are exploring new live attenuated vaccines and the use of viruses re-engineered as 

cancer therapeutics.
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Mononegavirales: non-segmented negative strand RNA viruses

Non-segmented negative strand RNA viruses (NS-NSVs) are a large group of different 

viruses found both in animals and plants. NS-NSVs include several major human, animal, 

and plant pathogens that have a great impact on human health and are commercially very 

important. The order of Mononegavirales contains 5 families: Bornaviridae, Filoviridae, 

Nyamiviridae, Paramyxoviridae, and Rhabdoviridae (Taxonomy, 2013) (Fig. 1).

*Corresponding author. Cattaneo.Roberto@mayo.edu (R. Cattaneo) . **Corresponding author at: Department of Microbiology and 
Immunology, Philadelphia, PA 19107, USA. Matthias.schnell@jefferson.edu (M.J. Schnell). . 

HHS Public Access
Author manuscript
Virology. Author manuscript; available in PMC 2015 November 01.

Published in final edited form as:
Virology. 2015 May ; 0: 331–344. doi:10.1016/j.virol.2015.01.029.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The Bornaviridae family includes only one genus Bornavirus. Borna disease virus (BDV) 

causes severe neurobehavioral changes in horses and sheep; there are conflicting reports 

about BDV infecting humans and causing disease (for review (Kinnunen et al., 2013)). 

Interestingly, BDV replicates in the nucleus of the infected cell. Nevertheless, BDV has the 

typical genome organization of a NS-NSV (Fig. 2) with a nucleoprotein (N), polymerase 

cofactor (X/P), matrix protein (M), surface glycoprotein (G) and polymerase (L).

The family Filoviridae was named after the Latin noun filum meaning “thread” because of 

their long “thread-like” virions of up to 800–1200 nm. The genome organization generally 

follows the pattern of other NS-NSV wherein VP35 is the polymerase cofactor and VP40 is 

the matrix protein (Fig. 2). Ebola virus (EBOV) recently caused a large outbreak in West 

Africa with thousands of deaths and worldwide repercussions. The Filoviridae family was 

reclassified in 2014 into three genera (Ebolavirus, Marburgvirus, and Cuevavirus) with the 

former two of them being most important for human disease (Kuhn et al., 2014).

The new family Nyamiviridae (Taxonomy, 2013) contains the single genus Nyavirus with 

the two species Nyamanini virus (NYMV) and Midway virus, which were isolated from 

insects and birds (Mihindukulasuriya et al., 2009). Like BDV, NYMV replicates in the 

nucleus (Herrel et al., 2012).

The Paramyxoviridae family is large and divided into two subfamilies, Paramyxovirinae 

and Pneumovirinae. The latter includes two genera, Pneumovirus, which includes human 

Respiratory syncytial virus (RSV), an important human pathogen discussed in more detail 

below. The other genus is Metapneumovirus, which includes the important pathogen human 

Metapneumovirus (hMPV). Interestingly, hMPV and RSV do cause a very similar disease. 

hMPV was isolated for the first time in 2001, but nevertheless might be the second most 

important virus for lower respiratory tract infection in humans after RSV (for review 

(Falsey, 2008)). An unusual feature for Pneumovirinae compared to other NS-NSVs is that 

they encode two nonstructural proteins (NS1 and NS2), which are located upstream of the 

nucleoprotein within the genome (Fig. 2) and interfere with the host innate immunity.

The other subfamily, Paramyxovirinae is divided into seven genera, two of them including 

several viruses of great importance for human and animal health. Typically, viruses of the 

Paramyxovirinae subfamily encode six or seven genes. Viruses are divided into different 

genera depending on two characteristics: (1) expression of one or two additional proteins 

(called V and C) from their P gene; and (2) neuraminidase activity of the attachment 

glycoprotein (hemagglutinin, H or hemagglutinin-neuraminidase, HN) (Lamb and Parks, 

2013). A fairly newly discovered fish-infecting paramyxovirus, Atlantic salmon 

paramyxovirus, established the new genus Aquaparamyxovirus. Avian paramyxoviruses, 

among them the species prototype Newcastle disease virus (NDV) form the genus 

Avulavirus. Fer-de-Lance paramyxovirus is a reptile virus and represents the genus 

Ferlavirus. The two viruses in the Henipavirus genus, Hendra (HeV) and Nipah virus (NiV) 

are emerging infectious pathogens naturally harbored by bats, but highly pathogenic when 

transmitted to human or other mammals, causing respiratory or neurological diseases. 

Distinct from other viruses in the subfamily, the attachment protein is not called H, but 

simply glycoprotein (G). The genus Morbillivirus consists of closely related, but highly 
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host-specific viruses including Measles virus (MeV), Canine distemper virus (CDV), and 

Rinderpest virus (RPV). Although infecting epithelial tissues of their host, a common 

feature of these viruses is lymphotropism and virus-induced immunosuppression. The 

attachment protein H does not have neuraminidase activity. The genus Respirovirus includes 

several parainfluenza viruses, which cause flu-like respiratory diseases. The murine 

prototype, Sendai virus (SeV), is among the most important model paramyxoviruses. 

Parainfluenza viruses (PIVs) type 1 and 3 are human pathogens, which are similarly 

problematic as RSV and hMPV from the Pneumovirinae. The seventh genus, Rubulavirus 

consists of a second group of parainfluenza viruses, among them the important human 

pathogens Mumps virus (MuV), human Parainfluenza viruses type 2 and 4, and 

Parainfluenza virus type 5, formerly known as Simian virus 5 (SV5). Although pathogenesis 

of these viruses is similar to respiroviruses, they are grouped into a distinct genus, because 

they do not express a C protein and encode a small hydrophobic membrane protein (SH).

The Rhaboviridae family contains both animal and plant viruses, which are divided into 11 

genera with 71 species. The best know species infecting human and animals is Rabies virus 

(RABV) of the Lyssavirus genus, which contains 13 other species causing a rabies-like 

disease in most mammals. Whereas classical RABV does cause 99% of human cases, the 

other species are important because the current RABV does not protect against several of 

them (Evans et al., 2012). The other well-known member is vesicular stomatitis virus 

(VSV), which is “the model” rhabdovirus because it has been widely used to study NS-NSV 

molecular virology and biochemistry. Both Lyssavirus and Vesiculovirus have only the five 

genes defining the basic NS-NSV genome organization (Fig. 2).

NS-NSVs have very specific or broad host tropism, depending on the virus. For example, 

RABV has a wide host range and can infect most mammals. On the other hand, MeV infects 

only certain primates. While NS-NSVs have different host(s) and tissue tropism and come in 

different shapes and sizes, their genomes are similarly organized and they have, with a few 

interesting variations, a similar replication process.

Replication of NS-NSVs

The genome of all NSVs is a single-stranded RNA of negative polarity, which can be one 

molecule (NS-NSV) or multiple segments for segmented negative-strand RNA viruses (S-

NSV). Fig. 3 shows the replication cycle of RABV. The mode of replication and specific 

elements required for replication and transcription are conserved for all NSVs. The 

ribonucleoprotein (RNP) is the functional template for replication and transcription. As the 

name suggests, RNP is RNA associated with a protein. Both the minus-strand genome and 

the plus-strand anti-genome are encapsidated into the nucleoprotein (N or NP); the naked 

RNA is not infectious (Conzelmann, 2004). Encapsidation follows a common mechanism 

for all NSV (Green et al., 2014). This is an important feature of NSVs because such a RNP-

template must be formed when a new virus is created de novo from cDNA. This 

encapsidation step has been a major challenge to the generation of NSVs from cDNA (see 

below). In order to begin replication, NSV need a complex composed of the viral 

polymerase (L), the catalytic enzyme, and the non-catalytic phospoprotein (P), in addition to 

the RNP (Conzelmann, 2004).
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NS-NSV transcription begins when the viral polymerase recognizes the 3′ end of the 

genome and transcribes a short leader RNA followed by the viral genes. These are flanked 

by conserved sequences that signal to the polymerase complex to start or stop (Fig. 3) 

(Whelan et al., 2004). Transcription is not always successfully reinitiated after each stop 

sequence; this lack of polymerase reinitiation results in a 3′-5′ transcription gradient. For 

example, the VSV transcript levels are reduced by about 20% at each gene junction (Iverson 

and Rose, 1981), and similar observations have been reported for MeV and other NS-NSVs 

(Cattaneo et al., 1987).

The polymerase complex may switch to replication mode as function of the amount of N 

and/or P protein available. In replication mode, the transcription start-and-stop signals are 

ignored and full-length NP-encapsidated anti-genomic RNA is synthesized (Barik and 

Banerjee, 1992; Gupta and Banerjee, 1997). The antigenomic RNP serves as template for 

the production of more genomic RNPs. The matrix (M) protein organizes the assembly of 

these genomic RNPs and the surface glycoprotein(s) and controls transcription (Whelan et 

al., 2004).

Reverse genetics: how did it all begin?

The foundations for RNA virus reverse genetics were laid in 1978 by the observation that 

full-length cDNA copies of bacteriophage Qbeta RNA cloned into a plasmid form plaques 

after transfection of E. coli (Taniguchi et al., 1978). Three years later a similar observation 

was reported for the eukaryotic Poliovirus (Racaniello and Baltimore, 1981). While the 

subsequent development of reverse genetics for many more positive strand RNA viruses was 

relatively straightforward, the complex mechanisms of NSV replication initially represented 

a difficult barrier to overcome. However, in 1989 the Palese group showed that a marker 

gene (chloramphenicol acetyl transferase, CAT) can be temporarily expressed by influenza 

virus (Luytjes et al., 1989). Luytjes et al. inserted the CAT open reading between the 

genomic 3′ and 5′ ends of a synthetic viral RNA, utilized purified NP and PBA, PB1, and 

PB2 protein to create a synthetic RNP genome segment de novo, transfected it, and detected 

CAT activity after infection with standard virus.

When attempts to recover infectious virus by encapsidating NS-NSV genomes in vitro and 

transferring them into virus-infected cells failed, focus shifted to short artificial RNA 

derived from the 3′ and 5′ end of the genome containing a marker gene (CAT) or to short, 

naturally-occurring genomes of defective interfering (DI) viral particles. Park and Krystal 

established a system to create a synthetic DI-RNA for SeV. They fused the T7 RNA 

polymerase promoter 5′ to the viral genome and linearized the plasmid to generate the 3′ 

genome end (Park et al., 1991). After in vitro transcription, this synthetic RNA was 

transfected into cells, and CAT activity was detected after helper virus infection. Collins and 

colleagues reported the recovery of a RSV-derived DI with almost 50% of the genome 

length (Collins et al., 1993).

In 1992, the Wertz group utilized a hepatitis delta virus (HDV)-derived ribozyme to create 

an exact 3′ end of the RNA instead of just linearizing the plasmid encoding the genomic 

RNA. In combination with the expression of the viral replication proteins through the 
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vaccinia virus T7-RNA polymerase expression system (Fuerst et al., 1987), this resulted in 

efficient and reproducible recovery of the synthetic RNP (Pattnaik et al., 1992). 

Analogously, the Conzelmann group used a similar system to recover several artificial 

RABV genomes expressing two different marker genes (Conzelmann and Schnell, 1994). 

Importantly, recovery efficiency of these synthetic model RNAs was inversely proportional 

to genome size (Conzelmann and Schnell, 1994).

A positive approach for the recovery of a negative sense RNA virus

The new approach that allowed the first successful recovery of a NS-NSV (Schnell et al., 

1994) was based on the use of anti-genomic (plus strand) rather than the genomic (minus 

strand) RNA that was previously used for experiments based on synthetic DI genomes. Use 

of plus-strand RNA appeared counterintuitive, but Schnell et al. were concerned that 

simultaneous expression of naked negative sense genomic RNA and positive strand mRNAs 

would result in hybridization and generation of double strand RNA, inducing interferon 

while also reducing successful encapsidation. Indeed, RABV was rescued from a positive 

strand cDNA (antigenome), but not when the negative strand genome was transcribed 

(Schnell et al., 1994).

The Rose (Lawson et al., 1995) and Wertz (Whelan et al., 1995) laboratories then used 

variants of the positive approach to successfully recover genetically marked recombinant 

VSV and several other groups recovered recombinant viruses from the families 

Paramyxoviridae and Filoviridae using similar or slightly modified systems as for RABV 

(Table 1 and references therein). Several groups attempted virus recovery using both the 

anti-genomic and the genomic RNA, but only the anti-genomic, positive strand RNA 

worked. There has been one exception: the Nagai group recovered recombinant SeV by 

expression of the negative strand genome. However, rescue efficiency from anti-genomic 

RNA was about 100-fold lower than from genomic RNA (Kato et al., 1996).

Alternative recovery systems

Stable cell lines expressing the viral replication proteins have been used as alternative virus 

recovery systems. The Billeter group recovered the first paramyxovirus in 1995 by using a 

cell line stably expressing MeV N, P and T7 RNA polymerase (Radecke et al., 1995). After 

transfection of a plasmid expressing the MeV anti-genome and a plasmid expressing MeV 

L, infectious genetically marked MeV was rescued with high efficiency (Radecke et al., 

1995). Buchholz et al. generated a BHK-derived cell line stably expressing T7 RNA 

polymerase and recovered a slow, replication-impaired BRSV mutant (Buchholz et al., 

1999). This indicated that the system was very efficient and remediated the cytolytic and 

inhibitory effects of vaccina virus. A key parameter for efficient virus rescue is the synthesis 

of genomes with correct 5′ and 3′ ends. T7-dependent transcription of viral antigenomes 

added three non-virus G bases. While these bases were removed during replication, their 

presence interfered with efficient RNP formation. To address this problem, Le Mercier et al. 

introduced a hammer-head ribozyme (HamRz) after the GGG of the T7 promoter (Le 

Mercier et al., 2002), which created an exact 5′ end, improving rescue efficiency. 

McGettigan et al. introduced the sequence of HamRz into the RABV vaccine vector SPBN, 
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which allowed recovery of a RABV-based vaccine construct (McGettigan et al., 2003). 

Analogously, for HeV and NiV, the introduction of a HamRz in front the 5′ antigenome 

greatly improved recovery efficiency (Yun et al., 2014). Moreover, use of a more efficient 

HDV ribozyme to cleave the correct 3′ genome end improved the recovery frequency of 

RABV 100-fold (Ghanem et al., 2012).

In summary, the recovery of NS-NSVs has come a long way. The recovery frequency for 

RABV was initially ~1 focus forming unit (ffu) for 107 cell in the vaccinia-based system 

(Schnell et al., 1994). It improved by a factor of 10 on T7 cells when the 3′ ends were 

cleaved with a core HDV ribozyme. Precise and efficient cleavage of both ends yielded 1 ffu 

for 104 cells (Ghanem et al., 2012). However, there is room for improvement. If efficiency 

of the recovery improved, it would become possible to obtain even viruses with certain 

classes of lethal mutations, e.g. virus particles could be recovered but would not be able to 

reinfect or replicate. However for such approaches to become possible, another new key 

finding, such as the use of the antigenome and the creation of the exact 3′ and 5′ end of the 

genome, will be required.

Better understanding of the life cycle of NS-NSV by reverse genetics

While Mononegavirales, especially VSV, have contributed greatly to our understanding of 

molecular and cell biology, their life cycle in natural hosts is less well understood. For 

example, before the advent of reverse genetics, very little was known about where viruses 

replicate immediately after contagion, which made it impossible to understand the series of 

events leading to disease. One of the motivations for the development of reverse genetics 

was to apply new experimental approaches to study tissue tropism and pathogenesis.

Fluorescent reporters expressed by recombinant viruses now provide a simple way to follow 

their spread through the host organism and to identify target tissues and cell types infected. 

RABV is now a widely used tool to study neuroanatomy and neuronal connection. Whereas 

such study was initially performed with naturally-occurring RABV strains (Kelly and Strick, 

2000), reverse genetics opened new possibilities utilizing vector with marker and modified 

tropism (Wickersham et al., 2013).

For pathogenicity studies, we will focus here on the morbilliviruses MeV and CDV. How 

these viruses cause immunosuppression has been a key question (Schneider-Schaulies and 

Schneider-Schaulies, 2009). Until recently textbooks suggested that morbilliviruses 

replicated in the epithelia in the airways immediately after contagion, and that the infection 

eventually somehow caused immunosuppression. But in 2000, researchers identified a 

protein expressed on the surface of immune cells, the signaling lymphocyte activation 

molecule (SLAM), as the primary receptor for MeV (Tatsuo et al., 2000). One year later it 

was observed that MeV entered well-differentiated primary airways epithelia much more 

efficiently from the basolateral side than from the apical side (Sinn et al., 2002). Taken 

together, these two observations suggested that MeV and the other morbilliviruses may take 

advantage of SLAM-expressing alveolar macrophages to traverse the respiratory epithelium 

immediately after contagion, allowing rapid spread in lymphatic organs and causing 

immunosuppression.
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This hypothesis was tested in the ferret model with a new CDV expressing the green 

fluorescent protein (GFP). Indeed it was documented that this virus replicated briskly in 

local lymph nodes and primary lymphatic tissues before spreading to airways epithelia (von 

Messling et al., 2004). This sequence of events was confirmed through the infection of 

macaques with GFP-expressing MeV able to enter cells through either SLAM or through the 

epithelial receptor nectin-4 (Lemon et al., 2011; Leonard et al., 2010, 2008; Muhlebach et 

al., 2011). Thus immunosuppression occurs at least in part due to rapid, very efficient virus 

replication in primary and secondary immune organs. These studies, which have 

fundamentally altered our understanding of morbillivirus pathogenesis, have been made 

possible by reverse genetics techniques.

Virulence: innate immunity control proteins

Viruses must control the innate immune response to replicate efficiently in a host. The 

Mononegavirales do this by targeting both the interferon (IFN) induction and IFN signaling 

pathways, as discussed in recent reviews (Gerlier and Lyles, 2011; Goodbourn and Randall, 

2009; Parks and Alexander-Miller, 2013; Ramachandran and Horvath, 2009; Rieder and 

Conzelmann, 2009; Schneider et al., 2014).

Analysis of the mechanisms by which individual viruses counteract the host innate immune 

response has progressed rapidly in recent years. It has become evident that even viruses with 

small genomes counteract the interferon system by interacting with several of its 

components. For example, viruses of the Paramyxovirinae subfamily express either one or 

both types of accessory proteins named V and C. These proteins are dispensable for virus 

spread in certain transformed cell lines. However, their deletion leads to strong attenuation 

in natural hosts, where infection induces adaptive immune responses of similar magnitude as 

those of wild type infections (Devaux et al., 2008; Kato et al., 1997; von Messling et al., 

2006).

The V proteins of paramyxoviruses inhibit innate immune responses by binding to the 

cytoplasmic double-stranded RNA (dsRNA)-receptor melanoma differentiation-associated 

protein 5 (mda5), as well as the signal transducers and activators of transcription 1 and 2 

(STAT1, STAT2) (Parks and Alexander-Miller, 2013). Mapping of the interaction sites of 

each of these cellular proteins on the V protein of Morbilliviruses has allowed a new 

approach to the assessment of the relevance of individual viral proteins for the interactions 

with specific hosts. A recombinant MeV that was unable to antagonize STAT1 function was 

generated, and its virulence was analyzed in rhesus monkeys (Devaux et al., 2011). This 

recombinant virus could not control inflammation and was attenuated in rhesus monkeys. 

On the other hand, when essentially the same study based on STAT1 interactions abrogation 

was performed with CDV, it resulted in a virus that had minimal effects on CDV 

pathogenesis in ferrets (Svitek et al., 2014). This finding indicated STAT1 inhibition is 

insufficient to disrupt the innate immune response in vivo. On the other hand, in this virus-

host pair, the mda5 and STAT2 interactions played an essential role in pathogenesis, and 

their ablation completely attenuated the virus (Svitek et al., 2014). Thus, even if reverse 

genetics is allowing a systematic approach to the study of the relevance of different innate 
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immunity interactions for virulence, the results are not always predictable. Nevertheless, this 

knowledge is essential for the rational design of attenuated vaccines.

Developing new vaccines against NS-NSV: rational attenuation

The ability to recover NS-NSVs opened new areas of research. First of all, researchers were 

now able to add specific mutations or exchange genes to modify the viral genome, and they 

were able to analyze how such modifications affect the viral life cycle and pathogenicity of 

the respective virus. Moreover, such manipulation allowed researchers to modify the virus in 

such a way that new “designer vaccines” could be generated. Additionally, researchers 

started to focus on using NS-NSVs as vectors for immunization against infectious diseases 

by expressing foreign antigens (for review see (Bukreyev et al., 2006)). Both of these areas, 

namely the generation of novel and improved NS-NSV vaccines as well the use of NS-

NSVs as vaccines for other pathogens grew incredibly fast in number during the past few 

years. As a result, we will not be able to give a complete overview for all of the approaches, 

but rather we will give some examples of such approaches.

While the MeV live attenuated vaccine, now in use for more than 50 years is very safe and 

efficacious (Griffin and Pan, 2009; Katz, 2009), long standing attempts to develop vaccines 

against other Mononegavirales have been less successful. In particular, RSV is notable for a 

historic vaccine failure in the 1960s involving a formalin-inactivated vaccine that primed for 

enhanced disease in RSV naïve recipients. Live vaccines candidates have been shown to be 

free from this complication (Collins et al., 2013). However, early efforts to develop vaccines 

through the classic methods of serial cold-passage yielded vaccine candidates that either 

were not attenuated in young infants or had unacceptable adverse effects (Karron et al., 

2013).

A reverse genetics system for producing infectious RSV developed in 1995 (Collins et al., 

1995) was the basis for the production of all the current attenuated vaccine candidates. 

Reverse genetics allowed first, to directly identify and characterize attenuating mutations in 

existing attenuated strains, and second, to produce novel mutations based on functional 

knowledge. Attenuating mutations can be combined to produce live-attenuated candidate 

vaccines with a range of phenotypes and properties. However, the resulting levels of 

attenuation cannot be predicted precisely (Karron et al., 2013, 2005). The best candidate for 

a live-attenuated RSV vaccine (Phase I clinical trial NCT01893554, Table 2) so far 

combines the described attenuation through temperature-sensitive mutations with additional 

deletion of the NS2 gene (Luongo et al., 2013), which is a major IFN antagonist of RSV 

(Bossert et al., 2003; Lo et al., 2005; Spann et al., 2005).

A different approach currently used to generate a live-attenuated vaccine for RSV is codon-

pair de-optimization of the genome sequence (Le Nouen et al., 2014). Existing frequent 

codons in open reading frames are replaced by alternative rare codons, resulting in a highly 

temperature sensitive mutant RSV (Le Nouen et al., 2014). More targeted codon de-

optimization of both NS genes resulted in a genetically stable virus that was attenuated and 

induced high levels of neutralizing antibodies in a mouse model (Meng et al., 2014).
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EBOV and MARV of the Filoviridae family target the innate immune response through 

multiple mechanisms. The major IFN antagonist is the phosphoprotein VP35, which 

sequesters dsRNA (Cardenas et al., 2006) and blocks the phosphorylation of IRF3 (Basler et 

al., 2003). Recombinant mouse-adapted EBOV expressing VP35 with a single point 

mutation making it unable to block IRF3 activation is highly attenuated in a mouse model 

(Hartman et al., 2008) and therefore might represent a good candidate for vaccine 

development. The IFN signaling pathway is blocked by the matrix protein VP40 of MARV, 

which inhibits phosphorylation of STAT1/STAT2 (Valmas et al., 2010), or by the minor 

matrix protein VP24 of EBOV, which blocks karyopherin-α-mediated nuclear import of 

STAT1/STAT2 (Reid et al., 2006). How these findings can be implicated in the 

development of highly attenuated vaccines needs to be determined.

In vivo attenuation of the neurotropic RABV can be achieved by targeting its IFN 

antagonist, the P protein (Rieder and Conzelmann, 2009). It inhibits the activation of IRF3 

(Brzozka et al., 2005) and STATs (Brzozka et al., 2006; Vidy et al., 2005). Since P is an 

essential cofactor of the viral polymerase, it cannot be deleted from the virus. However, P 

expression can be minimized by moving the gene behind the L gene (Brzozka et al., 2005) 

or by introducing internal ribosome entry site (IRES) elements from positive strand RNA 

viruses of the Picornaviridae family (Marschalek et al., 2009). The resulting viruses have 

proven high attenuation in mice (Marschalek et al., 2009; Rieder et al., 2011), but whether 

they protect against lethal challenge still needs to be tested. RABVs expressing P that is 

unable to inhibit IRF3 activation are attenuated in wt mice, but not in IFNARko mice (Rieder 

et al., 2011). One of these viruses tested as a vaccine candidate successfully protected foxes 

from RABV challenge, although neutralizing antibody titers were lower than with standard 

vaccine; the same virus failed to induce sufficient levels of neutralizing antibodies and 

protection in skunks (Vos et al., 2011). RABV expressing a mutant form of P (W265G/

M287V) unable to interact with STAT1 was completely attenuated in ddY mice (Wiltzer et 

al., 2014). When infected intracranially with this virus, mice only developed mild symptoms 

and recovered completely.

The currently used VSV for reverse genetics is already attenuated compared to wild-type 

VSV even though the mechanism has not been identified yet (Publicover et al., 2004). One 

of the earliest rational approaches to attenuated VSV was the reduction of viral growth by 

the deletion of the cytoplasmic domain of the VSV G from 29 amino acids (aa) to 9 aa or 1 

aa, respectively (Publicover et al., 2004; Roberts et al., 1998).

Another approach to VSV attenuation was by rearrangement of the viral genes. Because 

transcription for NS-NSVs is progressively reduced from 3′ to 5′ (see above), the change of 

the gene order alters the protein expression levels and therefore reduces viral replication 

(Wertz et al., 1998). As expected, VSV modified by gene rearrangement were greatly 

attenuated in vitro and in vivo (Wertz et al., 1998).

The ability to create new vaccines by targeted attenuating changes of the viral genome was 

also shown very early on for RABV. After intensive screening for pathogenicity markers, 

the Dietzschold and Schnell laboratories showed that the RABV G protein as well as the 

level of replication were major factors for RABV pathogenicity (Faber et al., 2007, 2004; 
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McKenna et al., 2004; Pulmanausahakul et al., 2008). Based on these studies, candidate new 

RABV vaccines were generated by introducing attenuating mutations into the G protein in 

RABV vaccine strains (Gomme et al., 2011). However there are still major concerns about 

using live vaccines in humans, and this is especially true for RABV. So other approaches, 

such as gene deletion, have been used to create replication-deficient (Cenna et al., 2009; 

Gomme et al., 2010) and highly replication-impaired RABV vaccines and vectors 

(McGettigan et al., 2014).

Novel viral vectors based on NS-NSVs for immunizations against other 

pathogens

Vaccines are one of the greatest achievements in medicine, as they protect us from 

infectious diseases caused by natural pathogens. One to two inoculations of an attenuated 

pathogen elicit humoral and cellular immune responses. Through reverse genetics specific 

mutations with predictable phenotypes can be introduced into wild type or attenuated virus 

strains, and their effects on the viral life cycle and pathogenicity can be verified. Based on 

these modifications, new vectors for immunization against multiple infectious diseases are 

being developed (for review see (Bukreyev et al., 2006)).

RABV and VSV were not only the first NS-NSVs recovered from cDNA, they were also the 

first NS-NSV to be developed as potential vectors. In the case of RABV, Mebatsion et al. 

showed that the CAT marker gene can be expressed by RABV and is stable over more than 

25 passages (Mebatsion et al., 1996). Similar findings were made simultaneously for VSV, 

indicating not only stable expression of CAT but also that it did not did not affect the viral 

life cycle. Moreover Schnell et al. showed that the minimal transcription start/stop found 

within the VSV genome was sufficient to express a foreign gene (Schnell et al., 1996). 

Research on several other NS-NSV expressing marker genes followed, and the researchers 

showed similar results, particularly the highly stable expression.

Stable foreign gene expression by NS-NSV vectors may seem surprising considering the 

high mutation rate of RNA polymerases in general (for review (Lauring et al., 2013)). 

However, the helical nucleocapsids of NS-NSV form open structures that can grow in 

length. These open structures do not impose the limitations inherent in the icosahedral 

symmetry constraining the cargo volume, and thus the genome length, of most positive 

strand viruses. Another source of genomic instability, genetic recombination, is minimized 

by the fact that the genomic RNA of NS-NSV is always encapsidated, rather than naked as 

the genome of plus-strand RNA viruses. Indeed, several studies have indicated that 

recombination for NS-NSV is a very rare event, and so far it has only been described for 

RSV (Collins et al., 2008; Spann et al., 2003).

Different NS-NSV-based vectors are now used as vaccine vectors to express protein of other 

pathogens for immunization. Based on its ease of use, probably the most utilized vaccine 

vector is VSV that has been developed for influenza virus (Roberts et al., 1998), RSV (Kahn 

et al., 1999), human papilloma virus (Reuter et al., 2002), and henipaviruses (Kurup et al., 

2014), to just name a few. Most developed are the VSV vaccine vectors against human 

immunodeficiency virus type 1 (HIV-1) and EBOV.
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For HIV-1, studies showed that VSV induces strong immune responses in mice and in 

nonhuman primates (NHPs). However, as with other HIV-1 vaccine approaches, not all 

animals were protected when a highly pathogenic challenge virus was used (Ramsburg et al., 

2004). These results were similar to those seen for the RABV-based vector, where the 

immune responses were potent in mice (Lawrence et al., 2013) and NHPs and the 

SIVmac251 challenge virus was controlled, but the RABV-based vector did not protect from 

a highly pathogenic challenge virus (Faul et al., 2009). Nevertheless, a highly attenuated 

form of the live-viral VSV vector is currently being tested in a phase I clinical trial for HIV-

AIDS (NCT01438606, Table 2). Other approaches for HIV-1 vaccines are based on NS-

NSV vectors such as MeV (Lorin et al., 2004) (NCT01320176, Table 2) or NDV (Carnero et 

al., 2009). These vectors are desirable due to their proven efficacy and safety profiles (MeV) 

(del Valle et al., 2007), or because they are replication-deficient in mammals (NDV). Both 

MeV and NDV are currently in different stages of development as the search for an effective 

HIV-1 vaccine continues.

At least six recently initiated clinical studies are assessing the efficacy of NS-NSV-based 

vectors as vaccines against EBOV (Table 2; for review (Marzi and Feldmann, 2014)). This 

effort is urgent due to the current public health crisis in West Africa. Multiple NHP studies 

have proven that a recombinant VSV that has been deleted of its own G protein and is 

instead expressing EBOV glycoprotein (GP) is efficient for preventing the disease (VSVΔG-

ZEBOV, Table 2). A different approach is used for the RABV vector, which contains EBOV 

GP in addition to RABV G. Because both proteins are incorporated into the RABV virions, 

this vaccine can use an inactivated form of the virus, and therefore it should be a very safe 

vaccine against EBOV and RABV (Blaney et al., 2013) infections, which are both a problem 

in West Africa.

Beside these two rhabdoviral vectors, human parainfluenza virus type 3 (hPIV3) (Bukreyev 

et al., 2007) and the other paramyxovirus NDV (DiNapoli et al., 2010) expressing EBOV 

GP are being developed as potential EBOV vaccines. The life cycle of these viruses should 

allow intranasal or oral application, which is an advantage, and both of these viral vectors 

might be safer than other live-viral vectors. However, concerns include preexisting 

immunity for hPIV3 (a common human cold virus) and the lack of a strong anti-EBOV 

immune response. As for all such live vectors, the challenge with these is to achieve a 

balance between pathogenicity and immunogenicity.

Since the major target for NS-NSV antibodies is the glycoprotein or glycoproteins, these 

have been exchanged to circumvent vector-specific neutralizing immune responses. For 

VSV, the Rose laboratory used the G protein of the New Jersey strain to boost HIV-

immunity elicited by a vector using the G protein from the non-cross-reactive VSV serotype 

Indiana (Haglund et al., 2002). Importantly, the filovirus GPs can functionally replace VSV 

G, a fact that is being used to develop Ebola vaccines (review see (Marzi and Feldmann, 

2014)). Even if interference against successive immunization with vaccines containing 

different GPs has not been documented, vector-induced cytotoxic T-cells directed against 

the other VSV proteins may eventually affect vector efficiency.
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On the other hand, because an inactivated vaccine does result in infection, multiple 

applications of an inactivated NS-NSV may not induce specific cytotoxic T-cells that 

interfere with repeated vaccination. This has been confirmed for RABV: multiple 

immunizations with inactivated virions containing foreign antigens are possible in the 

presence of vector immunity (Hudacek et al., 2014; Papaneri et al., 2012).

In summary, different NS-NSV vectors hold great potential for the development of new 

vaccines. It is important to note that certain advantages and disadvantages exist for each of 

them. These include concerns regarding vector pathogenicity for live, replication-competent 

vectors, and the potential need for multiple inoculations for replication-deficient or 

inactivated vaccines. To develop multiple NS-NSV vector platforms is advisable because 

multiple immunizations are not possible for most live viral vectors due the vector-directed 

immune response that is induced after the first application.

New Mononegavirales for oncolytic therapy

The concept of virotherapy originates from the observation of occasional tumor regressions 

after natural viral infections (Kelly and Russell, 2007). While early virotherapy clinical trials 

performed decades ago were poorly controlled, the advent of reverse genetics allowed 

researchers to operate with viruses for which replication and gene expression could be easily 

monitored. Current virotherapy clinical trials are based on viruses of nine different families, 

including Paramyxoviridae and Rhabdoviridae within the order Mononegavirales (Miest 

and Cattaneo, 2014). In these trials, therapeutic efficacy is assessed by well-defined 

biological end points, host immunity is documented, and vectors and clinical trial protocols 

are continuously improved (Liu et al., 2007; Russell et al., 2012). MeV and MuV infections, 

among others, have occasionally been associated with cancer remissions (Kelly and Russell, 

2007). For example, a so-called “spontaneous” complete regression of a large retro-orbital 

Burkitt’s lymphoma tumor was documented after acute measles infection (Bluming and 

Ziegler, 1971), and spontaneous cases of lymphoma remissions after acute measles have 

been documented in hospitals of three continents (Kelly and Russell, 2007). MeV and MuV, 

as the other “oncolytic” viruses, replicate preferentially in cancer cells because these 

accumulate mutations in innate immunity and cell cycle control proteins. Most virus strains 

used in current clinical trials are further targeted for selective replication in cancer cells 

through genetic modifications (Cattaneo et al., 2008).

Rather than attempting to cover all pre-clinical activities ongoing with recombinant 

Mononegavirales, we discuss here in some depth three viruses that are already in cancer 

clinical trials (Table 2): two genetically modified MeV and one VSV (Rhabdoviridae 

family). As mentioned in the “vaccine” section, the modular nature of Mononegavirales 

genomes, in combination with lack of icosahedral symmetry in viral particles, allows stable 

expression of additional proteins, including those used for tracking or arming the 

recombinant oncolytic viruses.

MV-CEA: development and validation

Approval of any new drug, including recombinant viruses, for patient delivery in clinical 

trials is preceded by detailed FDA review of its manufacturing process, as well as 
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comprehensive toxicology and biodistribution studies. A key first step for the development 

of MeV-based cancer clinical trials was the generation of viruses for which distribution and 

replication throughout the body can be monitored. Two approaches were taken to facilitate 

infection monitoring. In the first one, the non-immunogenic soluble form of the 

carcinoembryonic antigen (CEA) was expressed from an additional transcription unit (Peng 

et al., 2002). The replication of this virus (MV-CEA, Table 2, top line) can be easily 

documented by measuring CEA blood concentration by using an available clinical kit.

To support a phase I trial of intraperitoneal administration of MV-CEA in patients with 

recurrent ovarian cancer, biodistribution, toxicity, and efficacy studies were performed. 

Biodistribution was characterized in MeV-sensitive Ifnarko-CD46Ge transgenic mice (Mrkic 

et al., 1998). This analysis revealed that MV-CEA administered into the peritoneal cavity 

efficiently infected peritoneal macrophages and these trafficked to abdominal draining 

lymph nodes, as well as to the marginal zone of the spleen (Peng et al., 2003). Toxicology 

studies were performed by intraperitoneal administration of large doses of MV-CEA in the 

same model. These studies were essentially negative, with no significant toxicity 

encountered at any dose level. Efficacy studies, which included dose–response analyses in 

an intraperitoneal ovarian cancer xenograft model, allowed researchers to correlate the 

different kinetic profiles of CEA expression with the different therapeutic outcomes (Peng et 

al., 2006).

Based on these studies a clinical trial was planned to determine the maximum tolerated dose 

of intraperitoneal administration of MV-CEA (Table 2; clinicaltrials.gov identifier: 

NCT00408590). The trial foresaw treatment of groups of three patients with 10-times 

increasing doses of virus (103–109 infectious units), for a total of 21 patients. Because of the 

requirement to completely evaluate the results obtained with a group of patients before 

proceeding to the next one, the trial needed about 5 years to be completed. At the end of the 

trial, it was concluded that the intraperitoneal treatment with MV-CEA was well tolerated 

even at the highest doses. Interestingly, median survival of patients on study was 12 months, 

comparing favorably to an expected median survival of 6 months in this patient population 

(Galanis et al., 2010). Since the presence of neutralizing antibodies was suspected as being 

the major limitation for efficacy, a follow up phase II clinical trial is planned to addresses 

this limitation by delivering the virus through cell carriers. In this protocol (Table 2; 

clinicaltrials.gov identifier: NCT02068794), patients with recurrent ovarian cancer are being 

treated with mesenchymal stem cells infected with the other recombinant virus MV-NIS.

MV-NIS: monitoring the spread of oncolytic viruses in patients over time

Towards providing anatomical information about the location of virus-infected cells in 

cancer patients, in vivo spread of an oncolytic virus should be monitored noninvasively over 

time. To achieve this goal a recombinant virus coding for the human thyroidal natrium 

iodine symporter (NIS) was generated (Dingli et al., 2004). NIS is a channel protein that 

transports iodine, and its expression in the thyroid has been exploited for more than 50 years 

in clinical practice for thyroid imaging with 123I, or thyroid ablation with 131I.
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MV-NIS infected cells can concentrate radioactive iodine from the bloodstream, enabling 

noninvasive single photon emission computed tomography imaging of infection using 123I 

or technetium. This approach has been used for high resolution monitoring of viral 

replication in pre-clinical models (Miest et al., 2013). MV-NIS has also been used to 

enhance the therapeutic potency of measles virotherapy by timed administration of 131I 

(Dingli et al., 2004). Phase I clinical trials using MV-NIS have been initiated for ovarian 

cancer, myeloma, mesothelioma, and head and neck cancer (Table 2; clinicaltrials.gov 

identifier: NCT00408590, NCT00450814, NCT01503177 and NCT01846091).

As MV-CEA, clinical grade MV-NIS was manufactured in a dedicated facility while 

adhering to the principles of Good Manufacturing Practice (GMP). Since the intravenous 

delivery of up to 1011 infectious units was foreseen, a new process was developed for the 

manufacture of high titer virus stocks. This resulted in the production of pure and 

homogeneous MV-NIS at a concentration of 109 infectious units/ml. Pre-clinical efficacy 

studies were conducted in SCID mice bearing subcutaneous myeloma xenografts. Pre-

clinical pharmacology and toxicology studies were conducted in MeV-susceptible Ifnarko-

CD46Ge transgenic mice, and in MeV-naïve squirrel monkeys (Myers et al., 2007).

Multiple myeloma was selected as target for the first systemically delivered oncolytic 

vitotherapy clinical protocol because most patients have strongly reduced antibody titers to 

many infectious agents, including MeV. The multiple myeloma phase I clinical trial 

(NCT00450814) had a standard cohorts-of-3 design with a first dose level of 106 infectious 

units of MV-NIS, increasing by 10-fold dose increments to a maximum feasible dose of 

1011 infectious units. At the highest dose, the virus was infused into a superficial arm vein in 

100 mL of normal saline over 60 min (Russell et al., 2014).

Even if all eligible patients had relapsing myeloma refractory to approved therapies, Russell 

et al. reported success: the first two measles seronegative patients treated at the highest dose 

responded to therapy, and one experienced durable complete remission at all disease sites. 

Tumor targeting was clearly documented by NIS-mediated radioiodine uptake in virus-

infected plasmacytomas. Toxicities resolved within the first week after therapy (Russell et 

al., 2014). This was the first well-documented remission from disseminated cancer after 

systemic virotherapy. Based on this success, this clinical trial is being expanded at the 

highest virus dose. The target group will include patients with minimal if any measles-

neutralizing antibodies.

VSV-IFNβ: attenuating toxicity by interferon expression

A genetically modified VSV producing interferon-β (VSV-IFNβ) is the third recombinant 

virus of the Mononegavirales order approved as experimental cancer therapeutic. A phase I 

clinical trial to evaluate its safety in patients with liver cancer is recruiting (Table 2; 

clinicaltrials.gov identifier: NCT01628640), and a clinical trial for head and neck cancer is 

in preparation (Kurisetty et al., 2014). Several years ago it was shown that VSV induces 

potent in vitro and in vivo tumor cytotoxic effects, and its oncolytic efficacy was 

documented in a number of xenograft and syngeneic models (Barber, 2005). However, 
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VSV-induced neurotoxicity initially limited the clinical development efforts with this agent 

(Johnson et al., 2007).

To attenuate toxicity, a recombinant VSV that carries the gene encoding interferon-β was 

developed. This virus showed an improved safety profile while keeping its oncolytic 

potency (Obuchi et al., 2003; Willmon et al., 2009). The primary purpose of the current 

phase clinical trial of liver cancer is to evaluate the safety of VSV-IFNβ. Although the 

primary goal of any phase I study is to evaluate safety, patients may benefit clinically by 

having shrinkage or stabilization of their tumor or reduction in their cancer related 

symptoms, as observed in some of the MeV-based clinical protocols.

Next generation oncolytic viruses: enhancing efficacy

Viruses currently used in cancer clinical trials are safe at the highest doses achievable by 

today’s manufacturing processes: adverse events beside fever and general flu-like symptoms 

are rare (Liu et al., 2007). No transmission of an oncolytic virus from treated patients to 

carers or other contacts has been noted, although shedding has been documented in the 

urinary and respiratory tract (Galanis et al., 2010). While safety was consistently shown, 

efficacy is limited. Thus the current key challenge is to develop more effective oncolytic 

viruses that replicate with greater efficiency and specificity.

Towards improving cancer specificity of Mononegavirales, three types of targeting are 

possible: particles can be activated through cancer-specific proteases, cell entry can be re-

directed through cancer-specific cell surface proteins, and microRNA down-regulated in 

cancer cells can be exploited. To improve efficacy viruses are armed through the expression 

of either prodrug convertases that can activate cancer therapeutics, or ion channels that 

enable radiosensitization, or immunostimulatory cytokines that induce antitumor immunity 

(Miest and Cattaneo, 2014). To provide shielding from neutralizing antibodies different 

envelopes are used sequentially. We discuss here selected examples of recombinant viruses 

that illustrate different targeting or arming principles, or their combination towards a 

specific cancer treatment.

Targeted viruses

The principle of cancer-specific in situ activation through proteases was established with the 

Paramyxoviridae SeV (Kinoh et al., 2004) and MeV (Springfeld et al., 2006). This approach 

is based on the modification of their fusion proteins, which require protease cleavage for 

activation. Cleavage was made dependent on a matrix metalloprotease, MMP-2, which 

recognizes and cleaves a specific hexapeptide sequence. MMP are zinc-dependent 

endopeptidases that promote tumor progression by cleaving the extracellular matrix, and are 

up-regulated in almost every type of human cancer (Egeblad and Werb, 2002).

A recombinant MeV was generated with a sequence recognized by MMP-2 engineered into 

the fusion protein. This virus was unable to propagate unless it was added to cells expressing 

MMP-2. In mice, the virus retained full oncolytic activity when inoculated into MMP-

positive subcutaneous cancers, but unlike the wild-type virus, it did not kill susceptible mice 

after intracranial inoculation (Springfeld et al., 2006). Thus the MMP-2 cleavable virus is 
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safer than its standard precursor. While safety is not an issue in current clinical trials, future 

one may consider more aggressive dosing. In these cases, enhanced tumor specificity by 

MMP-selective activation may maintain an ideal safety profile.

The principle of cancer-specific cell entry was also developed with Paramyxoviridae. In the 

envelope of these viruses, receptor attachment and fusion functions are separated on two 

proteins. In contrast, a single protein of other Mononegavirales families performs both 

functions. Among the Paramyxoviridae, targeting of the MeV envelope is most advanced. 

The MeV attachment protein (hemagglutinin, H) interacts with different receptors: the 

primary receptor signaling lymphocyte activation molecule (SLAM, CD150) is used for 

initial spread in lymphatic organs (Ferreira et al., 2010; Tatsuo et al., 2000), whereas the 

adherens junction protein nectin-4 is subsequently used to gain access to the upper airways 

epithelium and exit the host (Muhlebach et al., 2011). In addition, the vaccine strain has 

gained the ability to use the ubiquitous membrane cofactor protein (MCP, CD46). The 

footprints of all three receptors on H have been characterized structurally and functionally 

(Mateo et al., 2014).

In 2000 MeV cell entry was targeted to designated receptors simply by adding small 

specificity determinants to the H-protein (Schneider et al., 2000). It was then demonstrated 

that even larger single chain antibodies could be used to target viral entry in cultivated cells 

(Hammond et al., 2001), as well as in xenografts set in immunodeficient mice (Bucheit et 

al., 2003). Availability of single chain antibodies against almost every cancer-relevant cell 

surface protein allowed testing of many potential entry targets. Indeed MeV-based re-

targeting is versatile: many re-targeted viruses have been generated and shown to be 

effective in different animal models of oncolysis (Nakamura et al., 2005).

On the other hand, cell entry targeting may not be necessary for most cancer applications: 

MV-CEA and MV-NIS can enter cells through CD46, which is over-expressed in many 

cancer types (Russell and Peng, 2009). In view of this fact, and of the complex regulatory 

requirements and large investments necessary to produce clinical grade viruses, specifically 

entry re-targeted strains have not yet reached production stage. However, recent results 

questioned whether CD46-dependent entry always favors efficient oncolysis: no direct 

correlation between CD46 expression levels and therapeutic efficacy was observed in 

clinical trials, and oncolytic ablation of certain lymphoma xenografts occurred only when 

cell entry occurred through SLAM (Miest et al., 2013). Thus, entry targeting may soon be 

re-prioritized.

Based on positive results with other virus types, the principle of negative post-entry 

targeting was established in the two Mononegavirales VSV and MeV (Edge et al., 2008; 

Leber et al., 2011). In particular, since neuron-specific microRNA-7 is downregulated in 

gliomas but highly expressed in normal brain tissue, a microRNA-sensitive MeV containing 

target sites for this microRNA was engineered. Even though highly attenuated in presence of 

microRNA-7, this virus retained full efficacy against glioblastoma xenografts. Furthermore, 

microRNA-mediated inhibition protected transgenic mice susceptible to MeV infection from 

a potentially lethal intracerebral challenge. Importantly, endogenous microRNA-7 

expression in primary human brain resections tightly restricted replication and spread of 
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microRNA-sensitive virus. Since the three targeting mechanisms discussed above are based 

on different principles, they can be combined.

Armed viruses, and the pathway to clinical translation

While multiple targeting layers will yield viruses that replicate very selectively within 

tumors, the main limitation of current clinical trials is efficacy. Cancer therapy efficacy can 

be enhanced by the combination of different treatment modalities. Indeed, no single drug or 

treatment will cure cancer, and most therapeutic regimens are based on combinations of 

drugs, radiation, and surgery to maximize patient survival. Recombinant viruses armed with 

specific genes may perform even better by integrating different components of current 

cancer therapy regimens (Ottolino-Perry et al., 2010). For example, judiciously timed 

administration of 131I can be used to enhance the therapeutic potency of virotherapy (Dingli 

et al., 2004).

A second example of this integrative approach is an armed and targeted virus for lymphoma 

treatment. This virus was generated as an enhancer of FCR, a front-line treatment for certain 

forms of non-Hodgkin lymphoma. The FCR regimen is based on cycles of treatment with 

fludarabine phosphate, cyclophosphamide, and the anti-CD20 antibody Rituxan. As an 

alternative to Rituxan, a CD20-targeted measles virus was considered. This virus was armed 

with the prodrug convertase purine nucleotide phosphorylase, which converts fludarabine 

phosphate to a highly diffusible substance that is capable of efficiently killing bystander 

cells. The CD20-targeted and convertase-armed virus was shown to synergize with 

fludarabine to achieve oncolytic efficacy after systemic inoculation in a mantle cell 

lymphoma xenograft model (Ungerechts et al., 2007). Precise timing of cyclophosphamide, 

virus, and fludarabine administration was shown to increase the window of therapeutic 

opportunity (Ungerechts et al., 2010).

Finally, we note that the original MeV infectious cDNA, from which MV-CEA and MV-

NIS were derived, accidentally accumulated mutations in the innate immunity control 

proteins that further attenuate viruses derived from it (Devaux et al., 2011, 2007). While this 

over-attenuation may have contributed to the safety of MN-CEA and MV-NIS, it may also 

have impacted their clinical efficacy.
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Fig. 1. 
Phylogeny of the genera within the order Mononegavirales. Genera for which reverse 

genetics systems have been established for at least one species are highlighted. The 

phylogenetic tree was generated with phyloT (Letunic and Bork, 2007, 2011). 

Abbreviations: B01 – Bornavirus; F01 – Cuevavirus; F02 – Ebolavirus; F03 – 

Marburgvirus; N01 – Nyavirus; P01 – Aquaparamyxovirus; P02 – Avulavirus; P03 – 

Ferlavirus; P04 – Henipavirus; P05 – Morbillivirus; P06 – Respirovirus; P07 – Rubulavirus; 

P08 – Metapneumovirus; P09 – Pneumovirus; R01 – Cytorhabdovirus; R02 – 

Ephemerovirus; R03 – Lyssavirus; R04 – Novirhabdovirus; R05 – Nucleorhabdovirus; R06 
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– Perhabdovirus; R07 – Sigmavirus; R08 – Sprivivirus; R09 – Tibrovirus; R10 – Tupavirus; 

R11 – Vesiculovirus.
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Fig. 2. 
General genome organization of Mononegaviruses. Size of the genomes and individual 

genes is proportional to their length.
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Fig. 3. 
Transcription and replication of a NNSV shown for RABV. (A) The encapsidated negative-

strand RNA (yellow) serves as a template for the polymerase complex. Transcription starts 

with a short uncapped leader RNA (leRNA) from the 3′ end of the genomic RNA; this is 

followed by the transcription of 5′ capped and polyadenylated mRNAs, which encode the 

viral proteins (green). The polymerase complex stops at a signal sequence, ignores the 

intergenic region (IGR) and restarts transcription at the transcription start signal sequence. 

Subsequent attempts at transcription by the polymerase complex are not always successful; 

therefore, attenuation of transcription occurs in the direction of 3′-5′ (transcription gradient). 

(B) During replication, the polymerase complex ignores the transcription start/stop signals 

within the RABV genome (yellow), rendering a full-length antigenomic RNA (green), 

which is also encapsidated. The antigenomic RNA is encapsidated into the N protein along 

with the genomic RNA. The synthesized antigenome serves then as a template for the 

synthesis of additional copies of genomic RNA (yellow).
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Table 1

Rescue systems currently developed for Mononegavirales. References of the first published rescues of the 

respective species. N/A: No rescue system available as stated in the cited reference. ––: No rescue system 

found in the literature.

Family Subfamily Genus Species Reverse
Genetics
established

Reference

Bornaviridae B01 – Bornavirus Borna disease virus 2005 Schneider et al. (2005)

Filoviridae F01 – Cuevavirus Lloviu cuevavirus – –

F02 – Ebolavirus Zaire ebolavirus 2001 Volchkov et al. (2001)

F03 – Marburgvirus Marburg marburgvirus 2006 Enterlein et al. (2006)

Nyamaviridae N01 – Nyavirus Nyamanini nyavirus 2013 Herrel et al. (2013)

Paramyxoviridae Paramyxovirinae P01 – Aquaparamyxovirus Atlantic salmon
paramyxovirus

– –

P02 – Avulavirus Newcastle disease virus 1999 Romer-Oberdorfer et al. 
(1999)

P03 – Ferlavirus Fer-de-Lance
paramyxovirus

– –

P04 – Henipavirus Hendra virus 2013 Marsh et al. (2013)

Nipah virus 2006 Yoneda et al. (2006)

P05 – Morbillivirus Canine distemper virus 2000 Gassen et al. (2000)

Measles virus 1995 Radecke et al. (1995)

Rinderpest virus 1997 Baron and Barrett (1997)

P06 – Respirovirus Human parainfluenza
virus 1

2002 Newman et al. (2002)

Human parainfluenza
virus 3

1997 Hoffman and Banerjee 
(1997)

Bovine parainfluenza virus 3 2000 Schmidt et al. (2000)

Sendai virus 1995 Garcin et al. (1995)

P07 – Rubulavirus Human parainfluenza
virus 2

2001 Kawano et al. (2001)

Mumps virus 2000 Clarke et al. (2000)

Parainfluenza virus 5 1997 He et al. (1997)

Pneumovirinae P08 – Metapneumovirus Human metapneumovirus 2004 Biacchesi et al. (2004)

P09 – Pneumovirus Human respiratory
syncytial virus

1995 Collins et al. (1995)

Bovine respiratory
syncytial virus

1999 Buchholz et al. (1999)

Rhabdoviridae R01 – Cytorhabdovirus Lettuce necrotic yellows
virus

N/A Kormelink et al. (2011)

R02 – Ephemerovirus Bovine ephemeral fever
virus

– –

R03 – Lyssavirus Rabies virus 1994 Schnell et al. (1994)

R04 – Novirhabdovirus Infectious hematopoietic
necrosis virus

2000 Biacchesi et al. (2000)

Viral hemorrhagic
septicemia virus

2010 Ammayappan et al. 
(2011)

Snakehead rhabdovirus 2000 Johnson et al. (2000)
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Family Subfamily Genus Species Reverse
Genetics
established

Reference

R05 – Nucleorhabdovirus Potato yellow dwarf virus N/A Kormelink et al. (2011)

R06 – Perhabdovirus Perch rhabdovirus – –

R07 – Sigmavirus Drosophila melanogaster
sigmavirus

– –

R08 – Sprivivirus Spring viraemia of carp
virus

– –

R09 – Tibrovirus Tibrogargan virus – –

R10 – Tupavirus Tupaia virus – –

R11 – Vesiculovirus Vesicular stomatitis
Indiana virus

1995 Lawson et al. (1995),
Whelan et al. (1995)
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Table 2

Selected Mononegavirales in clinical trials. Clinical trials can be found at https://clinicaltrials.gov/.

Virus strain Purpose Clinical trials

Respiratory syncytial virus
RSV ΔNS2 Δ1313 I1314L

Live-attenuated vaccine NCT01893554: Safety and immune response in infants and children 
(Phase I)

Respiratory syncytial virus
RSV cps2

Live-attenuated vaccine NCT01852266: Safety and immune response in RSV-seronegative 
infants and children (Phase I)

Measles virus
MV1-F4

Vectored vaccine NCT01320176: Safety and dose-response of MeV vector expressing
HIV-1 clade B antigen in healthy adults (Phase I)

Vesicular stomatitis virus
VSV-Indiana HIV gag

Vectored vaccine NCT01438606: Safety and immunogenicity in healthy, HIV-1-uninfected 
adults (Phase I)

Vesicular stomatitis virus
VSVΔG-ZEBOV (BPSC1001)

Vectored vaccine NCT02280408: Safety and immunogenicity of prime-boost in healthy 
adults (Phase I)

NCT02283099: Safety, Tolerability and Immunogenicity of a Single 
Ascending Dose (Phase I)

NCT02287480: Safety and immunogenicity in healthy adults (Phase I)

NCT02296983: Safety and immunogenicity in healthy adults in Kilifi, 
Kenya (Phase I)

NCT02314923: Safety and immunogenicity in healthy adults (Phase I)

NCT02344407: Safety and immunogenicity in healthy adults in 
Monrovia,

Liberia; comparison with chimpanzee adenoviral vector ChAd3-EBO Z 
(Phase II)

Measles virus
MV-CEA

Oncolysis: Tracking NCT00408590: Ovarian cancer (Phase I) (Galanis et al., 2010)

NCT00390299: Recurrent glioblastoma multiforme (Phase I)

Measles virus
MV-NIS

Oncolysis: Tracking and Arming NCT00450814: Recurrent or refractory multiple myeloma (Phase II) 
(Russell et al., 2014)

NCT02068794: Recurrent ovarian cancer cell carriers (Phase II)

NCT01503177: Malignant pleural mesothelioma (Phase I)

NCT01846091: Recurrent or metastatic squamous cell carcinoma of the 
head and neck (Phase I)

Vesicular stomatitis virus
VSV-IFNβ

Oncolysis: Selective Dis-Arming NCT01628640: Hepatocellular carcinoma (Phase I)
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