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Cardiac-derived CTRP9 protects against
myocardial ischemia/reperfusion injury via
calreticulin-dependent inhibition of
apoptosis
Dajun Zhao1, Pan Feng1, Yang Sun2, Zhigang Qin1, Zhengbin Zhang2, Yanzhen Tan1, Erhe Gao3, Wayne Bond Lau 4,
Xinliang Ma4, Jian Yang1, Shiqiang Yu1, Xuezeng Xu1, Dinghua Yi1 and Wei Yi 1

Abstract
Cardiokines play an essential role in maintaining normal cardiac functions and responding to acute myocardial injury.
Studies have demonstrated the heart itself is a significant source of C1q/TNF-related protein 9 (CTRP9). However, the
biological role of cardiac-derived CTRP9 remains unclear. We hypothesize cardiac-derived CTRP9 responds to acute
myocardial ischemia/reperfusion (MI/R) injury as a cardiokine. We explored the role of cardiac-derived CTRP9 in MI/R
injury via genetic manipulation and a CTRP9-knockout (CTRP9-KO) animal model. Inhibition of cardiac CTRP9
exacerbated, whereas its overexpression ameliorated, left ventricular dysfunction and myocardial apoptosis.
Endothelial CTRP9 expression was unchanged while cardiomyocyte CTRP9 levels decreased after simulated ischemia/
`reperfusion (SI/R) in vitro. Cardiomyocyte CTRP9 overexpression inhibited SI/R-induced apoptosis, an effect abrogated
by CTRP9 antibody. Mechanistically, cardiac-derived CTRP9 activated anti-apoptotic signaling pathways and inhibited
endoplasmic reticulum (ER) stress-related apoptosis in MI/R injury. Notably, CTRP9 interacted with the ER molecular
chaperone calreticulin (CRT) located on the cell surface and in the cytoplasm of cardiomyocytes. The CTRP9–CRT
interaction activated the protein kinase A-cAMP response element binding protein (PKA-CREB) signaling pathway,
blocked by functional neutralization of the autocrine CTRP9. Inhibition of either CRT or PKA blunted cardiac-derived
CTRP9’s anti-apoptotic actions against MI/R injury. We further confirmed these findings in CTRP9-KO rats. Together,
these results demonstrate that autocrine CTRP9 of cardiomyocyte origin protects against MI/R injury via CRT
association, activation of the PKA-CREB pathway, ultimately inhibiting cardiomyocyte apoptosis.

Introduction
Ischemic heart disease (IHD) is the leading cause of death

and disability worldwide1,2. Cardiokines are a group of
proteins present in secretomes produced by the heart3,4.

They maintain cardiac homeostasis and modulate patho-
logical remodeling in response to stress via autocrine/
paracrine pathways5. Some cardiokines are secreted during
ischemic stress, and function to salvage viable myocardial
structure and function via anti-apoptotic and anti-
inflammatory properties6–9. These endogenous cardio-
kines may serve as novel therapeutic targets against IHD,
given their immediate response to acute myocardial injury3.
C1q/TNF-related protein 9 (CTRP9) is a member of

the adiponectin (APN) paralog CTRP family, initially
identified as an adipokine modulating metabolic and
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cardiovascular function. Circulating CTRP9 attenuates
myocardial ischemia/reperfusion (MI/R) injury, reverses
post-MI remodeling, and promotes vasorelaxation in an
endocrine fashion10–15. We and others demonstrated that
CTRP9 is highly expressed in the heart, nearly 1.6-fold of
circulating CTRP9 level14,16,17. However, myocardial
capillary endothelial cell-derived CTRP9 was shown
to trigger cardiomyocyte hypertrophy in a paracrine
manner17. The discrepancy in the regulation of myocardial
function by different origins of CTRP9 remains unex-
plained. Whether cardiac-derived CTRP9 protects against
MI/R injury (and if so, by what mechanisms) is unknown.
The aims of this study were (1) to determine the role of

cardiac-derived CTRP9 in MI/R injury; (2) to investigate
whether cardiac-derived CTRP9 regulates myocardial
dysfunction after MI/R in an autocrine or paracrine
manner; (3) to elucidate the underlying mechanisms
responsible for the actions of cardiac-derived CTRP9
upon MI/R injury.

Materials and methods
All experiments were approved by the Fourth Military

Medical University Committee on Animal Care. Eight- to
10-week-old C57BL/6J male mice and neonatal
Sprague–Dawley rats (1–2 days old) were provided by the
Experimental Animal Center of the Fourth Military
Medical University (Xi’an, China). The CTRP9-knockout
(KO) (on a Sprague–Dawley background) rats were gen-
erated by the K&D Gene Technology Co., Ltd (Wuhan,
China). Homozygous CTRP9-KO and littermate WT rats
were used in the present study. Baseline conditions of
CTRP9-KO rats were recorded prior to experiments.

In vivo siRNA-mediated cardiac CTRP9 deficiency
CTRP9 Stealth RNAi (siCTRP9, 0.8 μg/μl, Invitrogen,

MSS248274) or non-specific control small interfering
RNA (siRNA) (NC, Invitrogen, 12935114) pre-mixed by
in vivo jet PEI (Genesee Scientific, 201-10G) were deliv-
ered via three separate intra-myocardial injections (by
32.5-gauge needle) to temporarily blanch the LV free wall
as described previously18,19. Western blot determined
knockdown efficiency 72 h later.

In vivo lentivirus-mediated cardiac CTRP9 overexpression
Green fluorescent protein (GFP)-conjugated CTRP9

lentivirus (LV. CTRP9) or negative control (NC) lentivirus
(NC) were injected into the left ventricle of mice (30 μl)
and rats (100 μl) (Table 1). Frozen heart sections were
prepared after 72 h transfection. Lentiviral location was
assessed by staining with α-actin (Sigma-Aldrich, A2547)
or CD31 (Boster, BA0532) antibodies (Supplemental
Figs. 1B and 2A). Five sections from each heart were
examined by fluorescence microscopy (Olympus, Japan).
The overexpression efficiency was assessed by Western

blot. Plasma CTRP9 was determined by Enzyme-Linked
Immunosorbent Assay (Aviscera Bioscience, SK00081-08)
to detect whether the lentivirus mediated a cardiac-
specific CTRP9 overexpression (Supplemental Fig. 1D).

Animal model of MI/R
Seventy-two hours after intra-myocardial injection of

siRNA or lentivirus, mice and CTRP9-KO rats were
anesthetized with 2% isoflurane. The heart was exposed
by a left thoracic incision. Myocardial infarction was
produced by placing a 6.0 silk suture slipknot around the
left anterior descending coronary artery. After 30 min of
ischemia, the slipknot was released to allow reperfusion
for 3 or 24 h. Sham-operated mice/rats underwent left
thoracotomy only.

Echocardiographic analysis
Mice and CTRP9-KO rats were subjected to trans-

thoracic echocardiography (VisualSonics VeVo 2100
Imaging System) for assessment of cardiac structure and
function after 24 h reperfusion. Echocardiography was
performed, and M-mode tracings were recorded.

Evans blue/TTC staining
After 24 h reperfusion, 1.5% Evans blue (Sigma-Aldrich,

E2129) was injected into the aorta. The heart was
removed and frozen at −80 °C immediately. Subsequently,
the heart was horizontally sectioned into 5–6 slices,
and incubated with 1% 2, 3, 5-triphenyl tetrazolium
chloride (TTC, Sigma-Aldrich, T8877) for 15 min at
37 °C. The left ventricular (LV) area, the area at risk
(AAR), and infarct area (IA) of each section was calculated
by Image J.

TUNEL staining
Mouse and CTRP9-KO rat hearts were perfused with

ice-cold phosphate-buffered saline and fixed with 4%
paraformaldehyde, embedded in paraffin, and coronally
sectioned (3–6 μm thick). Three to five sections from each
heart were subjected to infarct area TUNEL (terminal
deoxynucleotidyl transferase dUTP nick-end labeling)
Staining Assay (Roche Diagnostics Corporation,
11684817910), as per the manufacturer’s protocol.

Measurement of LDH release
Lactate dehydrogenase (LDH) activity in conditioned

medium and cell lysates were determined by the LDH
release assay (Institute of Jiancheng Bioengineering,
A020-2). The percentage of LDH release was calculated as
follows: “(A−B)/(C−B) × 100,” where A is the LDH
activity in conditioned medium, B is the LDH activity
in culture medium (without cells), and C is the
LDH activity in cell lysates, as per the manufacturer’s
protocol.
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Measurement of caspase-3 activity
Caspase-3 activity was measured via a fluorometric kit

(BD Biosciences, 556574). Briefly, heart tissue or cultured
cardiomyocytes were lysed on ice. The supernatant was
collected. The reactions were performed in assay buffer
containing 10mM dithiothreitol (DTT) and 50 µg pro-
teins. The fluorescence emission of the 7-amino-4-tri-
fluoromethyl-coumarin (AFC) was measured via Spectra
Max-Plus microplate spectrophotometer (Molecular
Devices, excitation wavelength, 400 nm; emission wave-
length, 505 nm). Caspase-3 activity was expressed as nmol
AFC/h/mg protein.

Co-immunoprecipitation
The LV tissue lysate was incubated with pre-washed

Dynabeads® Protein G (Invitrogen, 10003D) or Protein
A (Invitrogen, 10006D) at 4 °C for 2 h. Beads were mag-
netically collected against the vessel wall. The supernatant
was then incubated with normal immunoglobulin G (IgG),
anti-CTRP9 (LifeSpan Biosciences, Inc., LS-C373857), or
anti-calreticulin (CRT) (Santa Cruz, sc-373863) primary
antibodies together with 15 μl pre-washed Dynabeads®

Protein G or Protein A at 4 °C overnight. The immuno-
precipitated proteins were released from the beads using
elution buffer, and mixed with a loading buffer containing
100mM DTT. Samples were boiled and analyzed by
Western blot.

Analysis of colocalization by microscopy
Control and post-simulated ischemia/reperfusion (SI/R)

neonatal rat cardiomyocytes (NCMs) were fixed by 4%
paraformaldehyde, and stained with rabbit anti-CTRP9
(LifeSpan Biosciences, Inc., LS-C373857) and mouse anti-
CRT (Abcam, ab22683) primary antibodies at 4 °C over-
night. After washing, cells were stained with Alexa Fluor
488-conjugated goat anti-rabbit and Alexa Fluor 594-
conjugated goat anti-mouse secondary antibodies (Invi-
trogen, A-11008 and R37121). Fluorescent images were
obtained by laser scanning confocal microscopy (Fluo
View TM FV 1000, Olympus).

Plasma membrane protein extraction
Plasma membrane proteins were extracted by

Plasma Membrane Protein Extraction Kit (Fisher
Scientific, P503) via methods slightly modified from the
manufacturer’s protocol. Briefly, heart tissues (20–30mg)
pre-mixed by 500 µL Buffer A were mechanically lysed
by Dounce homogenizer. After centrifugation, the
supernatant was transferred into a fresh microcentrifuge
tube and centrifuged at 100,000 × g, 4 °C for 1 h to extract
cytosolic proteins. The pellet was mixed with 500 µL
Buffer B and incubated at 4 °C for 30min. The total
membrane protein fractions were gathered after 6000 × g
centrifugation at 4 °C for 10 min. Organelle membrane
proteins were extracted after 7800 × g centrifugation at
4 °C for 20min, while plasma membrane proteins were
extracted after additional 16,000 ×g centrifugation at 4 °C
for 30min.

Simulated ischemia/reperfusion
Normal culture medium was replaced by Hanks'

balanced salt solution (Gibco, 14175079). NCMs or C166
mouse embryonic yolk sac endothelial cells (MECs, pur-
chased from ATCC) were placed in a Napco 8000WJ
hypoxia (1% O2, 5% CO2, 94% N2) incubator
(Thermo Fisher Scientific, Inc.). After 12 h of
hypoxia–hypoglycemic culture, cells were bathed again in
normal culture medium, and incubated for 3 or 6 addi-
tional hours in a normal CO2 incubator.

Cell culture and treatments
Isolated NCMs were cultured in Dulbecco's modified

Eagle's medium/F12 (Gibco, 11320033) containing 10%
fetal bovine serum (Gibco, 10438026) to ~80% confluence
(~5 × 104 cells) as previously described20. Five different
lentiviruses (Table 1) were used, including two NC
lentivirus (GFP-conjugated or red fluorescent protein
(RFP)-conjugated), GFP-conjugated CTRP9 lentivirus
(LV. CTRP9) and RFP-conjugated lentivirus carrying
CRT-short hairpin RNA (shRNA) (shCRT), or AdipoR1-
shRNA. Cardiomyocytes were infected at ~100

Table 1 Lentivirus information

Gene Lentivirus type Sequence (5′–3′) Titer

Negative control (NC) LV5 (GFP&Puro) TTCTCCGAACGTGTCACGT 1 × 108 Tu/ml

Negative control (NC) LV10 (RFP&Puro) TTCTCCGAACGTGTCACGT 1 × 108 Tu/ml

C1qtnf9 mus LV5 (GFP&Puro) Full sequence (NM_001191891.1) 1 × 109 Tu/ml

C1qtnf9 Rat LV5 (GFP&Puro) Full sequence (NM_183175.4) 1 × 109 Tu/ml

Calr-Rat-429 LV10 (RFP&Puro) GCATGGAGACTCAGAATATAA 1 × 108 Tu/ml

Adipor1-Rat-1294 LV10 (RFP&Puro) GGAATTCCGTTACGGCCTAGA 1 × 108 Tu/ml

All lentivirus were produced by Shanghai GenePharma Co., Ltd
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multiplicity of infection for 24 h in the presence of 5 μg/
ml Polybrene21,22. Cells were then bathed in normal cul-
ture medium. Stably transfected cells were selected via
GFP and RFP markers after 72 h transfection. The
transfective efficiency was determined by Western blot.
To investigate whether autocrine CTRP9 from cardio-
myocytes contributed to SI/R injury, NCMs were infected
with LV. CTRP9 or NC for 4 h. NCMs were then cultured
for 48 h without serum, after the addition of CTRP9
antibody (LifeSpan Biosciences, Inc., LS-C373857) or IgG
(Cell Signaling Technology, Inc., #2729). To investigate
the role of cardiac-derived CTRP9 in PKA activation, a
PKA-specific inhibitor H89 (20 μM, Sigma-Aldrich,
371963-M) was employed.

Western blot analysis
Mouse and rat LV tissue was harvested and lysed.

Protein concentrations were determined by BCA Protein
Assay Kit (Thermo Fisher Scientific, Inc., 23227). Proteins
were separated by electrophoresis and transferred to
polyvinylidene fluoride membranes. The membranes were
blocked in Tris-buffered saline containing Tween-20 (pH
7.6) and 5% nonfat dry milk for 2 h, and subsequently
incubated overnight at 4 °C with primary antibodies to the
following proteins: Bcl-2 (#3498), Bax (#5023), GRP78
(#3177), caspase-12 (#2202), PKA (#4782), p-PKA
(Thr197), AMPK (#2532), p-AMPK (Thr172, #2531),
CREB (#9197), p-CREB (Ser133, #9198), Akt (#2967), p-
Akt (Thr308, #13038), ERK1/2 (#4696), p-ERK1/2

Fig. 1 Modulation of cardiac-derived CTRP9 affects left ventricular dysfunction and myocardial infarct size after MI/R. a–d Effect of cardiac
CTRP9 deficiency upon left ventricular ejection fraction (LVEF), left ventricular end-systolic diameter (LVESD), and left ventricular end-diastolic
diameter (LVEDD), determined by echocardiography. e TTC/Evans blue double staining. The left ventricular (LV) area, the area at risk (AAR), and
ischemia area (IA) were measured. f–i Effect of cardiac CTRP9 overexpression upon LVEF, LVESD, and LVEDD. j Effect of cardiac CTRP9 overexpression
upon myocardial infarct size. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01 vs. sham group; #P < 0.05, ##P < 0.01 vs. MI/R+ NC group.
N= 8–12

Zhao et al. Cell Death and Disease  (2018) 9:723 Page 4 of 13

Official journal of the Cell Death Differentiation Association



(Thr202/Tyr204, #9106), Na+-K+-ATPase α1 (#23565),
β-actin (#8457) (all from Cell Signaling Technology, Inc.),
CTRP9 (LifeSpan Biosciences, Inc., LS-C373857), CRT
(Abcam, ab22683 and Santa Cruz, sc-373863), AdiopR1
(Abcam, ab126611), Calnexin (Santa Cruz, sc-23954),
KDEL ER marker (Santa Cruz, sc-58774), and GAPDH
(CMCTAG, Inc., AT0002). After washing, the membranes
were probed with appropriate secondary antibodies
(Zhongshan Company, ZB-2301, ZB-2305) at room tem-
perature for 90min. Protein bands were detected by Bio-
Rad Imaging System (Hercules), and normalized to β-
actin or GAPDH.

Statistical analysis
All values in the text and figures are presented

as the mean ± standard error of mean (SEM) of n
independent experiments. The data were analyzed
using GraphPad Prism 6 statistic software (La Jolla,
CA, USA). Data were subjected to t test (two groups)
or one-way analysis of variance (ANOVA) (three or
more groups). Data of CTRP9-KO rat experiments
were determined by two-way ANOVA followed by
post hoc test with Holm adjustment. P values of
<0.05 (two-sided) were considered to be statistically
significant.

Fig. 2 Cardiac-derived CTRP9 inhibits myocardial apoptosis subjected to MI/R injury. a TUNEL staining. Bar= 20 μm. b Caspase-3 activity.
c Western blot analysis of Bcl-2 and Bax expression. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01 vs. sham group; #P < 0.05, ##P < 0.01 vs.
MI/R+ NC group. N= 5–8
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Results
Cardiac-derived CTRP9 deficiency aggravates, while its
overexpression ameliorates, LV dysfunction after MI/R
To determine the effects of cardiac-derived CTRP9 in

the setting of MI/R injury, we first utilized CTRP9 siRNA
(siCTRP9) to knock down its expression in the mouse
heart (Supplemental Fig. 1A). Compared to MI/R+NC
group, cardiac CTRP9-deficient mice manifested lower
LV ejection fraction (LVEF) with an enlarged LV end-
systolic diameter following MI/R (Fig. 1a–d). Inhibition of
cardiac CTRP9 increased mice myocardial infarct size
with 20.4% upregulation of the IA to AAR ratio (P < 0.05,
Fig. 1e). To confirm the role of cardiac-derived CTRP9 in
MI/R injury, cardiac CTRP9 was specifically over-
expressed (Supplemental Fig. 1B and 1C) without altering

plasma CTRP9 level (Supplemental Fig. 1D). Cardiac
CTRP9 overexpression increased animal LVEF and
reduced LV end-diastolic diameter after MI/R (Fig. 1f–i).
Meanwhile, cardiac CTRP9 overexpression mice mani-
fested smaller myocardial infarct size (P < 0.05, Fig. 1j).
Together, these data suggest that cardiac-derived CTRP9
directly protects against MI/R injury.

Cardiac-derived CTRP9 inhibits myocardial apoptosis
after MI/R
We next assessed myocardial apoptosis in MI/R injury

after genetic manipulation of cardiac CTRP9 expression.
TUNEL staining results revealed that cardiac CTRP9
overexpression inhibited (P < 0.01), while its deficiency
increased, cardiomyocyte apoptosis (P < 0.05) (Fig. 2a).

Fig. 3 Autocrine CTRP9 of cardiomyocyte origin protects against SI/R-induced apoptosis. a, b CTRP9 expression in NCMs after hypoxia for 12 h
followed by reoxygenation for 3 and 6 h. c–e Cardiomyocytes were infected with negative control (NC) or CTRP9 lentivirus (LV. CTRP9) and treated
with CTRP9 antibody (Ab) or control IgG. Cell apoptosis were determined by LDH release and caspase-3 activity. f, gWestern blot analysis of Bcl-2 and
Bax expression. Data are presented as mean ± SEM. *P < 0.05, **P < 0.01 vs. control group; #P < 0.05 vs. Reoxygen 3 h group; $$P < 0.01 between the
two groups connected by line. N= 3–6
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Caspase-3 activity manifested similar changes following
cardiac CTRP9 modulation (Fig. 2b). Furthermore,
cardiac CTRP9 overexpression activated anti-apoptotic
signaling via the increase of the Bcl-2 to Bax ratio,
which was suppressed in cardiac CTRP9-deficient
mice (Fig. 2c). Together, these data indicate that
cardiac-derived CTRP9 exerts anti-apoptotic actions
after MI/R.

Autocrine CTRP9 of cardiomyocyte origin protects against
SI/R-induced apoptosis
To identify the origin of CTRP9 (autocrine vs. para-

crine) responsive to SI/R injury, we analyzed CTRP9
expression in NCMs and MECs under SI/R. The level of
CTRP9 in MECs was unchanged after SI/R (P= 0.09,

Supplemental Fig. 2B). However, the CTRP9 expression in
NCMs was decreased after 12 h hypoxia followed with 3 h
reoxygenation (P < 0.01), reaching a lower point at 42.3%
as reoxygenation time increased to 6 h (P < 0.01, Fig. 3a,
b). NCMs were infected with LV. CTRP9 (Supplemental
Fig. 1E and 1F) in the presence of CTRP9 antibody or
control IgG. SI/R-induced LDH release and caspase-3
activity were significantly reduced by CTRP9 over-
expression in NCMs (P < 0.01, respectively, Fig. 3c–e).
Moreover, cardiac CTRP9 overexpression approximately
tripled the Bcl-2 to Bax ratio (Fig. 3c, f, g). These effects
were abolished by CTRP9-neutralizing antibody (P < 0.01,
respectively, Fig. 3c–f). Together, these data suggest that
cardiomyocyte-derived CTRP9 inhibits SI/R-induced
apoptosis in an autocrine manner.

Fig. 4 CTRP9 binds with CRT on the cell surface and in the cytoplasm of cardiomyocyte. a Co-immunoprecipitation (Co-IP) analysis of CRT (55
kDa band) with anti-CTRP9 antibody in left ventricular tissue lysate. b Co-IP analysis of CTRP9 (40 kDa band) with anti-CRT antibody in left ventricular
tissue lysate. c Fluorescent images of the colocalization of CTRP9 and CRT in neonatal rat cardiomyocytes (NCMs) exposed to SI/R injury. Green for
CTRP9, red for CRT, and blue for DAPI. Bar= 10 μm. d Detection of surface exposure of CRT in mouse heart tissue during MI/R injury, determined by
Western blot analysis
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The CTRP9–CRT association is responsible for the anti-
apoptotic actions of cardiac-derived CTRP9
As previous reports demonstrate circulating CTRP9

protects against MI/R injury via an AdipoR1-dependent
mechanism, we determined cardiac AdipoR1 expression.
AdipoR1 levels were unchanged under cardiac CTRP9
modulation (Supplemental Fig. 3A). Instead, levels of
endoplasmic reticulum (ER) stress marker GRP78 were
elevated concomitantly with caspase-12 after MI/R. Car-
diac CTRP9 overexpression suppressed, whereas its defi-
ciency increased, GRP78 and caspase-12 expression
(Supplemental Fig. 3B–D). Notably, co-
immunoprecipitation (Co-IP) results demonstrated that
the ER molecular chaperone CRT immunoprecipitated
with anti-CTRP9 antibody in the LV tissue lysate (Fig. 4a,
55 kDa band) and vice versa (Fig. 4b, 40 kDa band). The
colocalization of CTRP9 and CRT in the cytoplasm of
normal NCMs was observed via double staining of CTRP9
(green) and CRT (red) via confocal microscopy (Supple-
mental Fig. 3E), demonstrating that CRT binds to CTRP9
in the cardiomyocyte. In NCMs subjected to SI/R injury
(12 h hypoxia followed by 3 h reoxygenation), a portion
of cytosolic CRT migrated into the cell surface and
combined with CTRP9 (Fig. 4c). The plasma membrane
CRT was also detected in mouse heart tissue after MI/R
injury (30 min ischemia followed by 3 h reperfusion,
Fig. 4d).
To further confirm whether CRT or AdipoR1 was

involved in autocrine CTRP9 anti-apoptotic actions, len-
tivirus were utilized to knockdown CRT and AdipoR1
expression in NCM (Supplemental Fig. 4A–C). CRT
deficiency blunted cardiac-derived CTRP9’s response
to LDH release (P < 0.01, Fig. 5a, b) and caspase-3 activity
(P < 0.05, Fig. 5a, c). Moreover, CRT deficiency blunted
cardiac-derived CTRP9’s regulation of ER stress-related
apoptosis signaling pathway, demonstrated by increased
caspase-12 expression and decreased Bcl-2 to Bax ratio
(Fig. 5a, d–f). However, AdipoR1 deficiency had no sig-
nificant effects upon cardiac-derived CTRP9’s anti-
apoptotic actions (Fig. 5a–f). Together, these results
suggest that cardiac-derived CTRP9 protects against
cardiomyocyte apoptosis after SI/R via CRT binding.

CTRP9–CRT activates PKA–CREB axis to inhibit
cardiomyocyte apoptosis
To explore the downstream mechanism responsible for

CTRP9–CRT interaction against apoptosis, we analyzed
the activation of several pro-survival signaling pathways.
Cardiac CTRP9 overexpression significantly activated
PKA phosphorylation at Thr197 (P < 0.01, Fig. 6a, b).
However, other signaling pathways, including AMPK,
ERK1/2, and Akt, typically activated by circulating
CTRP9 were not affected by cardiac CTRP9 modulation
(Fig. 6a, b). Our in vitro studies consistently demonstrated

that CTRP9 overexpression in NCMs significantly phos-
phorylated PKA and its downstream effector CREB (P <
0.01, respectively, Fig. 6c, d), inhibited by CTRP9 antibody
(P < 0.05 and P < 0.01, respectively, Supplemental
Fig. 5A–D). These results indicate that cardiac-derived
CTRP9 mediates the PKA-CREB signaling pathway in an
autocrine manner.
To confirm these findings, we utilized PKA-specific

inhibitor, H89, in vitro. Administration of H89 virtually
abolished PKA and CREB activation (P < 0.01, respec-
tively, Fig. 6c, d). Meanwhile, H89 inhibited cardiac-
derived CTRP9’s response to SI/R-induced LDH release
(P < 0.01, Fig. 6e) and caspase-3 activity (P < 0.05, Fig. 6f).
Furthermore, CRT deficiency abrogated PKA and CREB
phosphorylation, while inhibition of AdipoR1 had no
effects (Fig. 6g–i). Together, these data demonstrate that
CTRP9–CRT initiates PKA-CREB signaling in cardio-
myocyte to protect against MI/R injury.

CTRP9-KO rats exhibit exacerbated cardiac dysfunction
after MI/R, and cardiac CTRP9-specific overexpression
inhibits acute myocardial injury
To further confirm the in vivo role of cardiac-derived

CTRP9, we generated CTRP9-KO rats upon an SD
background. Under baseline conditions, there were no
differences between 6-week-old CTRP9-KO and litter-
mate wild-type (WT) rats (Supplemental Table 2). CTRP9
protein was undetectable in the heart of homozygous
CTRP9-KO rats. Then, a cardiac-specific expression of
CTRP9 was constructed via intra-myocardial injection of
LV. CTRP9 (Fig. 7a, b). CTRP9-KO rats exhibited lower
LVEF and larger myocardial infarct size, compared with
WT rats after MI/R injury. Cardiac CTRP9-specific
overexpression improved rat LVEF (P < 0.01, Fig. 7c)
and attenuated myocardial infarct size (P < 0.01, Fig. 7d).
TUNEL staining results revealed that CTRP9 ablation
significantly increased myocardial apoptosis in the AAR
regions, while cardiac CTRP9-specific overexpression
reduced MI/R-induced apoptosis (Fig. 7e). Furthermore,
cardiac CTRP9-specific overexpression activated PKA-
CREB signaling (Fig. 7f–h), consistent with in vitro
results.

Discussion
In the present study, we provide the first evidence that

cardiac-derived CTRP9 exerts cardioprotection against
MI/R injury in an autocrine manner. As an APN paralog,
CTRP9 was initially identified as an adipokine16, regulat-
ing systemic metabolism and cardiovascular functions.
Circulating CTRP9 level decreases after MI/R, while
exogenous supplementation of recombinant globular
CTRP9 (gCTRP9) reverses cardiac dysfunction. We and
others have shown that CTRP9 is abundantly produced by
the heart itself, nearly 1.6-fold of plasma CTRP9 level14
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and 2-fold to 3-fold of subcutaneous fat tissue CTRP9
level17. However, the biologic role of cardiac-derived
CTRP9 remained heretofore unclear. In the current study,
we demonstrate that cardiac CTRP9 deficiency exacer-
bates, whereas its overexpression ameliorates, LV dys-
function and myocardial infarct size of mice in MI/R
injury. CTRP9-KO rats manifest similar resistant pheno-
type, while cardiac CTRP9-specific overexpression rever-
ses myocardial function and improves cell survival.
Cardiac-derived CTRP9 inhibits MI/R-induced apopto-
sis, acting as a protective cardiokine.
A recent study demonstrated that myocardial endo-

thelial cell-generated CTRP9 drives cardiac hypertrophy,
performing a maladaptive role in cardiac function17.
However, our in vitro results reveal that endothelial
CTRP9 expression is unchanged in SI/R. Instead, CTRP9
levels in NCMs decreased during SI/R injury, while
lentivirus-mediated endogenous CTRP9 overexpression
inhibits SI/R-induced apoptosis. These results confirm
that autocrine CTRP9 of cardiomyocyte origin at least
partially responds to SI/R injury via inhibition of cell
apoptosis. The divergent roles of CTRP9 of different
origins may be due to different disease models activating
different cell types in response. Myocardial capillary
endothelial cells regulate cardiomyocyte growth, con-
tributing to cardiac hypertrophy,8,23 whereas cardiomyo-
cytes suffered from Ca2+ overload and mitochondrial

permeability transition pore opening are involved in MI/R
injury24.
Next, we demonstrated that cardiac CTRP9 over-

expression decreases, while its deficiency increases the
expression of ER stress-related apoptosis markers GRP78
and caspase-12 after MI/R. This is consistent with our
previous findings in the diabetic heart13. Notably, we
found that the ER molecular chaperone CRT, primarily
located in the ER lumen under physiological conditions,
migrates to the cell surface and nucleus of cardiomyocytes
subjected to SI/R. Cardiac-derived CTRP9 binds to CRT
both in the cytoplasm and on the cell surface of cardio-
myocytes. Inhibition of CRT blunted cardiac-derived
CTRP9’s anti-apoptotic actions. CRT is characterized as
a molecular chaperone with functions of Ca2+ sensing,
glycoprotein folding, and major histocompatibility com-
plex class I assembly25–27. CRT translocates from the ER
lumen to multiple subcellular localizations in response to
stress28–30. It modulates cell survival via ER stress reg-
ulation31–33. Cytosolic CRT regulates cell adhesion34, and
is involved in signal transduction events associated with
innate immunity35,36. Nuclear CRT functions as a nuclear
export receptor37,38. Cell surface CRT functions as a
receptor for C1q39, initiating the clearance of early
apoptotic cells for phagocytosis40,41. Karnabi et al.42

reported surface exposure of CRT in human fetal cardi-
omyocytes. In this regard, CRT may be a new receptor for

Fig. 5 CTRP9–CRT association is responsible for the anti-apoptotic actions of cardiac-derived CTRP9. a Effect of CRT or AdipoR1 deficiency on
LDH release. b Effect of CRT or AdipoR1 deficiency on caspase-3 activity. c–e Western blot analysis of caspase-12, Bcl-2, and Bax expression. Data are
presented as mean ± SEM. *P < 0.05, **P < 0.01 vs. control group; $P < 0.05, $$P < 0.01 between the two groups connected by line. N= 3–6
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cardiomyocyte-derived CTRP9. It may assist CTRP9
folding and synthesis in cardiomyocytes, and promote the
internalization of autocrine CTRP9 during MI/R injury.
Conversely, previous studies have shown that circulating
CTRP9 regulates cardiovascular functions via AdipoR1-
dependent mechanisms. However, our present results
reveal that AdipoR1 expression is unchanged during
cardiac CTRP9 manipulation, and inhibition of AdipoR1
does not affect cardiac-derived CTRP9’s anti-apoptotic
effects after SI/R injury. A recent study identified N-
cadherin as a specific receptor for CTRP9 acting upon

adipose-derived mesenchymal stem cells43. Taking toge-
ther, CTRP9 exerts cardioprotective functions at least
partially via AdipoR1-independent fashion.
Finally, the present study demonstrates that the

CTRP9–CRT interaction activates PKA-CREB pro-survi-
val signaling. Previous results demonstrated that circu-
lating CTRP9 exerts anti-inflammatory, anti-apoptotic,
and cardiovascular protective actions via activation of the
AdipoR1–AMPK axis11,12,15,44,45. However, we did not
find evidence for differential activation of AMPK, ERK1/2,
or Akt in response to cardiac CTRP9 modulation

Fig. 6 The PKA–CREB axis acts as the downstream of CTRP9–CRT interaction in MI/R injury. a, b Western blot analysis of PKA, AMPK, ERK1/2,
and Akt phosphorylation in vivo. c H89 administration inhibits PKA activation in vitro. d Effect of PKA inhibition upon CREB phosphorylation. e, f Effect
of PKA inhibition upon LDH release and caspase-3 activity. g–i Effect of CRT or AdipoR1 deficiency on PKA and CREB activation. Data are presented as
mean ± SEM. *P < 0.05, **P < 0.01 vs. control group; $P < 0.05, $$P < 0.01 between the two groups connected by line. N= 3–6
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following MI/R injury. Instead, we observed significant
phosphorylation of PKA (Thr197) and its downstream
effector CREB (Ser133) in cardiac CTRP9 overexpression
mice and rats, inhibited by functional neutralization of
autocrine CTRP9. Meanwhile, inhibition of PKA abro-
gated cardiac-derived CTRP9’s anti-apoptotic actions. It
might be that different CTRP9 isoforms mediate different
kinase activation. When produced by the heart, CTRP9 is
a full-length glycoprotein containing C1q globular
domain and N-terminal domains; the CTRP9 that circu-
lates in the plasma does so in a globular domain

isoform46. Co-IP results revealed that CRT binds to
full-length CTRP9 (40 kDa). Our previous study showed
that administration of gCTRP9 for 6 weeks after
MI activates PKA10 since sustained exogenous supple-
mentation of gCTRP9 may increase both plasma and
myocardial CTRP9 levels43. Furthermore, our present
results suggest that CRT inhibition, not AdipoR1,
blunts PKA–CREB axis activation. Cardiac-derived
CTRP9 likely activates PKA-CREB signaling due to a
CRT-dependent regulation of intracellular Ca2+ influx
after MI/R injury47,48.

Fig. 7 CTRP9-KO rat displays a dysfunctional phenotype following MI/R injury, and cardiac CTRP9-pecific overexpression reverses acute
cardiac injury. a, b Cardiac CTRP9 expression in WT and CTRP9-KO rats receiving intra-myocardial injection of LV. CTRP9 or NC. c Representative
echocardiograms with LVEF assessment of WT and CTRP9-KO rats subjected to MI/R. d Myocardial infarct size. e TUNEL staining. Bar= 40 μm. f–h
Western blot analysis of PKA and CREB. Data are presented as mean ± SEM. $P < 0.05, $$P < 0.01 between the two groups connected by a line. N=
5–8
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In conclusion, autocrine CTRP9 of cardiomyocyte ori-
gin protects against MI/R injury via CRT binding.
Cardiac-derived CTRP9 activates PKA-CREB signaling
and inhibits ER stress-related apoptosis signaling during
MI/R injury (Fig. 8). These findings improve our under-
standing of CTRP9 of different cell origins in regulating
cardiomyocyte apoptosis after MI/R injury, and suggest
the potential value of therapeutic approaches targeting
cardiac-derived CTRP9 or CRT in the treatment and
prevention IHD and its complications.
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