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RESEARCH ARTICLE
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on the Systemic Treatment of DB-1 Human
Melanoma Xenografts in Mice
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Katherine L. Nathanson3,4, Jerry D. Glickson1
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Abstract
Previous NMR studies demonstrated that lonidamine (LND) selectively diminishes the intra-

cellular pH (pHi) of DB-1 melanoma and mouse xenografts of a variety of other prevalent

human cancers while decreasing their bioenergetic status (tumor βNTP/Pi ratio) and

enhancing the activities of melphalan and doxorubicin in these cancer models. Since mel-

phalan and doxorubicin are highly toxic agents, we have examined three other nitrogen (N)-

mustards, chlorambucil, cyclophosphamide and bendamustine, to determine if they exhibit

similar potentiation by LND. As single agents LND, melphalan and these N-mustards exhib-

ited the following activities in DB-1 melanoma xenografts; LND: 100% tumor surviving frac-

tion (SF); chlorambucil: 100% SF; cyclophosphamide: 100% SF; bendamustine: 79% SF;

melphalan: 41% SF. When combined with LND administered 40 min prior to administration

of the N-mustard (to maximize intracellular acidification) the following responses were

obtained; chlorambucil: 62% SF; cyclophosphamide: 42% SF; bendamustine: 36% SF;

melphalan: 10% SF. The effect of LND on the activities of these N-mustards is generally

attributed to acid stabilization of the aziridinium active intermediate, acid inhibition of gluta-

thione-S-transferase, which acts as a scavenger of aziridinium, and acid inhibition of DNA

repair by O6-alkyltransferase. Depletion of ATP by LND may also decrease multidrug resis-

tance and increase tumor response. At similar maximum tolerated doses, our data indicate

that melphalan is the most effective N-mustard in combination with LND when treating DB-1

melanoma in mice, but the choice of N-mustard for coadministration with LND will also

depend on the relative toxicities of these agents, and remains to be determined.
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Introduction
Melanoma, the most deadly of all skin cancers [1], is primarily treated by surgical excision,
which is curative in about 80% of patients if the tumor is detected in its early stages. However,
with recurrence and distant metastases, the prognoses is very poor since effective methods for
treating systemic disease are still under development and are among the most active fields of
current pharmacological research. About 40–60% of melanoma patients exhibit a BRAF muta-
tion occurring with a ninety percent frequency substitution of glutamate for valine at amino
acid 600 (i.e., V600E mutation) [2]. Agents targeting this mutation exhibited considerable ini-
tial success, but response was variable and of limited duration [2]. An effort to deal with mela-
noma resistance to these agents has utilized MEK, RAS and other signal-transduction
inhibitors used in combination [3]. Immunotherapy with Ipilumimab [4] as well as PD-1,
PD-L1 checkpoint inhibitor therapy [5] is currently under clinical evaluation. Adoptive cell
transfer therapy and vaccine development are also under development with some anecdotal
success, but a consistent result of these approaches with any solid tumors is yet to be achieved
[6, 7]. The role of melanin in therapeutic outcome of melanomas has also been studied [8–12].
As promising as these novel targeted therapies are, a curative treatment of systemic melanoma
remains elusive. The most promising approach for systemic treatment of this disease will prob-
ably be the development of multiple therapeutic approaches based on different mechanisms of
action that could be administered simultaneously or sequentially in order to overcome the
inherent heterogeneity of melanoma and its ability to resist almost any agent based on a single
mechanism of action. Towards this end, we have been exploring the use of an existing drug,
LND, to selectively sensitize melanoma and other tumors to treatment with nitrogen (N)-mus-
tards and anthracyclines [13–15]. Conventional cytotoxic chemotherapy with refined methods
to increase melanoma-targeted specificity, drug delivery and minimize systemic toxicity will
probably play a crucial role in a broadly based approach to the treatment of this disease. Mel-
phalan is currently used in hyperthermic isolated limb perfusion for treatment of melanoma in
transit or soft-tissue sarcomas of the limbs, and is also used in the treatment of multiple mye-
loma, whereas doxorubicin remains in prominent use in the treatment of a wide range of
malignancies. Therefore, increasing the activities of these agents by coadministration with LND
may have considerable impact on treatment of neoplastic disease. While we have previously dem-
onstrated that LND potentiates melphalan response, we now compare this N-mustard with three
additional N-mustards to determine the relative efficacy of the LND-N-mustard combination for
treating melanoma.

As a consequence of high levels of aerobic glycolysis [16], tumors generally exhibit a slightly
acidic extracellular pH (pHe) and a neutral to alkaline intracellular pH (pHi) leading to a plas-
malemmal pH gradient, that is slightly acidic on the outside and neutral to slightly alkaline on
the inside. Since normal cells do not grow well in an acidic environment, this gradient enables
tumor cells to successfully compete with stromal cells during invasive tumor growth [17].
Manipulation of pHe and/or pHi of tumors impacts tumor growth, metastasis and response to
therapy [18, 19]. The microenvironment of tumors can be modified by administering sodium
bicarbonate in order to increase the pHe and thereby reduce tumor invasiveness [17, 20–25].
In contrast, our aim was to decrease the pHi in order to increase the intracellular activity of
N-mustards. We accomplished this by administering lonidamine (LND, 100 mg/kg, intraperi-
toneally; i.p.), an inhibitor, of the monocarboxylate transporter (MCT) that blocks cellular
export of lactic acid and also impedes mitochondrial metabolism [13–15], which would
otherwise prevent accumulation of lactate in the cytosol. Phosphorus-31 magnetic resonance
spectroscopy (MRS) measurements indicate that LND decreases the pHi of the tumor to a min-
imum of 6.33 ± 0.10 in about 80 min following i.p. administration; these lower levels of pHi are
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sustained for at least 3hr, whereas the bioenergetic status of the tumor (βNTP/Pi) decreases
monotonically after LND treatment, falling by over 66.8 ± 5.7% in 3 hr while having no effect
on pHi or bioenergetic status of muscle or brain, and only a small transient effect on pHi and
bioenergetic status of liver [15]. Since acidification has been reported to enhance the activity of
N-mustards [26–28], we have evaluated the effect of LND-induced acidification on three repre-
sentative N-mustards, chlorambucil, cyclophosphamide, and bendamustine. These findings
point to the potential utility of N-mustards when administered after LND in the systemic treat-
ment of disseminated melanoma and perhaps also other malignancies.

Materials and Methods

Materials
LND was purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz CA, USA). The drug
(LND; 5 mg) was dissolved in 227 μL of tris/glycine buffer (22.0 mg/mL), vortexed until the
solution was clear, and administered i.p. at a dose of 100 mg/kg. The buffer consisted of trizma
base (1.2 g) and glycine (5.76 g) in 100 mL sterile water (final pH = 8.3). Chlorambucil was pur-
chased from Sigma Aldrich (St. Louis, MO, USA) and was dissolved by solubilization in 70%
acid ethanol followed by 10-fold dilution with PBS immediately prior to i.v. administration (20
mg/kg). Cyclophosphamide was purchased from Cayman Chemical Company, Inc. (MI, USA),
dissolved in PBS and administered i.v. (40 mg/kg). Bendamustine was purchased from TCI
(Tokyo Chemical Industry Co., Ltd., Tokyo, Japan), dissolved in PBS and administered i.v.
(25 mg/kg).

Human Melanoma Xenografts in Nude Mice
Male athymic nude mice (01B74) 4–6 weeks of age obtained from the National Cancer Insti-
tute, (Frederick, MD, USA) were housed in microisolator cages with access to water and auto-
claved mouse chow ad libitum. DB-1 melanoma cells were early passage human melanoma
cells derived from a lymph node biopsy of a human patient with metastatic melanoma that was
excised before administration of any treatment by Dr. David Berd (Thomas Jefferson Univer-
sity Hospital, Philadelphia, PA). The tissue harvest protocol was reviewed and approved by the
institutional review board at Thomas Jefferson University Hospital in order to protect the
rights and anonymity of the patient. At that time, the committee concluded that this study was
exempt from informed consent due to the samples being collected absent of patient identifiers.
A melanoma lung metastasis from a previously untreated patient was excised for therapeutic
purposes associated with immunotherapy in 1989. The explant was cooled on ice immediately
after surgery, as described by Hill LL et al. [29]. A portion of the excised tissue was disaggre-
gated to a single cell suspension by collagenase and DNAase. The presence of melanoma cells
was verified by melanoma antigens [30]. Cell suspensions were then frozen in 10% DMSO and
then stored in liquid nitrogen. For experiments, cell suspensions were rapidly thawed, counted
in an electronic counter (Coulter Diagnostics, Hialeah, FL) and kept on ice in aliquots of
25x106 cells in 2 ml before inoculation subcutaneously for growth as xenografts. The DB-1 line
was serially transplanted twice as subcutaneous xenografts in SCID mice. After the second
transfer, cells were disaggregated and grown in monolayer culture at 37°C and pHe 7.3 in 5%
CO2 in α-MEM supplemented with 10 FBS, 12 mM glucose, 10 ml/L nonessential amino acids
solution and 2.9 g/L glutamine. Culture medium contained penicillin-streptomycin antibiotics
for the first three weeks, and then cells were cultured in antibiotic free medium. Cells were
maintained in exponential growth and passaged twice a week for 16 passages. The doubling
time of the cells was approximately 36 hrs, and the plating efficiency (PE) was approximately
60%. These cyro-preserved cells were the source of inoculum used for our experiments.
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Cultures were not propagated longer than 2 months before being discarded and replaced by
new outgrowth of frozen cells. Periodically, frozen cell stocks had to be replenished by another
16th passage amplification. Cells were monitored periodically to be free of mycoplasma con-
tamination. Over the years using this process, the cell cycle time, PE and morphology were
unchanged. During this period, the doubling time for DB-1 xenografts has remained
unchanged at about 5 days. DB-1 melanoma cell preparation and inoculation in male athymic
nude mice and tumor volume measurement were performed as described previously [15].

Chemotherapy with Chlorambucil, Cyclophosphamide and
Bendamustine and in DB-1 Human Melanoma Xenografts
When tumors of human melanoma xenografts (DB-1) reached 20.2 ± 3.0 mm3, 8 cohorts of
age- and weight-matched animals were randomized to the following treatment groups: Cohort
1 (sham-treated control) administered sham i.p. injections of tris/glycine buffer and was
infused intravenously (i.v.) with PBS; Cohort 2 was infused i.v. with PBS 40 min after LND
administration i.p. (100 mg/kg); Cohort 3 was injected i.p. with tris/glycine buffer and infused
i.v. with chlorambucil (20 mg/kg); Cohort 4 was injected i.p. with tris/glycine buffer and
infused i.v. with cyclophosphamide (40 mg/kg). Cohort 5 was injected i.p. with tris/glycine
buffer and infused i.v. with bendamustine (25 mg/kg). Cohort 6 was infused i.v. with chloram-
bucil (20 mg/kg) 40 min after LND administration i.p. (100 mg/kg). Cohort 7 was infused i.v.
with cyclophosphamide (40 mg/kg) 40 min after LND administration i.p. (100 mg/kg). Cohort
8 was infused i.v. with bendamustine (25 mg/kg) 40 min after LND administration i.p. (100
mg/kg). Values shown are means ± SEM; n = 5 animals for controls, LND, chlorambucil, cyclo-
phosphamide, bendamustine, LND + chlorambucil, LND + cyclophosphamide, and LND
+ bendamustine treated animals.

During the treatment and sham-treatment procedures, all animals were anesthetized with
ketamine hydrochloride (10 mg/mL) and acepromazine (1 mg/mL) with additional anesthesia
being re-administered approximately every 45–60 min to maintain sedation. Animals were
placed on a water pad heater (Gaymar T-Pump, Gaymar Industries, Inc., Orchard Park, NJ,
USA) to maintain body temperature during anesthesia. Tumor dimensions were measured as
well as body weight. To prevent blood clotting, tail vein catheters (I.V. Catheters FEP, Tyco
Healthcare) filled with heparin (100 USP Units/mL) were placed using a restrainer (MTI Brain-
tree Scientific, Braintree Scientific Inc., Braintree, MA, USA). After treatment, catheters were
removed and animals were allowed to recover in cages. For the first five days post-treatment,
tumor volume and animal weight were measured daily with calipers (Scienceware, Bel-Art
Products, Wayne, NJ, USA) and scale (Acculab PP401, H & CWeighing Systems, Columbia,
MD, USA), respectively. Afterwards, these measurements were repeated every other day. The
tumor dimensions were measured with a caliper in three orthogonal directions, and the volume
was calculated using the equation, V = π(a × b × c)/6, where a, b, and c are the length, width,
and depth of the tumor. All animal studies were performed in accordance with a protocol
approved by the University of Pennsylvania Institutional Animal Care and Use Committee
(IACUC).

DNA Purification, Library Preparation, and Sequencing
DNA purification was performed using the DNeasy Blood & Tissue Kit (Qiagen). Five hundred
ng of genomic DNA was sheared randomly into 200 bp fragments with the CovarisTM S200
UltraSonicator (Covaris1). Sheared DNA was A-tailed and ligated with adaptor-embedded
indices using the NEBNext1 UltraTM DNA Library Prep Kit for Illumina1 (New England Bio-
Labs, Inc.). DNA quality, fragment size, and concentration of library preps were measured
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using Agilent’s DNA 1000 chips in conjunction with the 2100 Bioanalyzer (Agilent Technolo-
gies). Samples were equimolarly pooled prior to capture with a 2.2 Mbp SureSelectXT Custom
Target Enrichment Kit (Agilent Technologies) targeting 108 genes previously implicated in
melanomagenesis. Paired-end sequencing was performed on the HiSeqTM 2000 sequencing
system (Illumina) at the Perelman School of Medicine Next-Generation Sequencing Core
Facility.

Mutational Analysis
Short-sequenced reads were aligned to the hg19 human reference genome using the Burrows-
Wheeler Alignment (BWA) tool [31]. Duplicate reads were removed, as well as reads that map
to more than one location, off-target reads, and variants annotated with the incorrect tran-
script. The Genome Analysis Toolkit (GATK) was used for data quality assurance as well as for
Single Nucleotide Variant (SNV) and small insertion and deletion (indel) calling [32, 33]. After
down-sampling by GATK, a mean target coverage of 197X was achieved. Variants were anno-
tated with wANNOVAR [34].

Copy Number Variation Prediction
Prediction of copy number variation from sequencing data was performed using CODEX [35].
This algorithm normalizes the data using a Poisson latent factor model that removes biases due
to GC content, exon capture, amplification efficiency, and latent systemic artifacts. Six latent
factors were used for the normalization of the dataset in this study. Segmentation was restricted
to exons only for all genes. Only homozygous loss and high amplification calls are reported.
Log2 ratio thresholds used for high amplification and homozygous loss were 1.33 (copy num-
ber five) and -1.2, respectively. Visual confirmation of SNV calls was accomplished with Nexus
7.5 (BioDiscovery, Inc.) software.

Statistical Analyses
The approach to the primary analysis followed methods described by Demidenko [36]. The
analysis plan was designed to address the question of whether each alkylating agent delays
tumor growth, and whether the addition of LND further delays tumor growth relative to the
alkylating agent alone. The data were first visualized using individual growth curves and
smoothed using locally weighted scatterplot smoothing (loess). For each animal, we deter-
mined the time from treatment until the tumor reached a volume of 150 mm3, or approxi-
mately 3 doublings from its initial volume at the time treatment began. The treatment delay
was estimated from the difference in the mean time to 150 mm3 between the (T) treated and
(C) control arm and p-values determined using a Wald test. To determine the proportion of
tumor cells surviving, we first computed the slope of the log tumor volume curve for each ani-
mal. This slope was computed using pre-treatment data for the treated animals and both the
pre-treatment data and the data up to day 20 post-treatment in the controls, where the log
tumor volume curve for the controls remained linear. We then computed the mean slope of
the growth curves (B) across both arms of the study and estimated the proportion of the tumor
cells surviving treatment as exp(−(T−C) × B). This estimate was truncated at a maximum of 1.0
as surviving cells cannot exceed 100%. Standard errors of the estimates were computed using
the bootstrap percentile method and used to construct Wald tests. We further compared the
data from these experiments to our previous work on melphalan in the absence of glucose [14].
While these data were analyzed using the same methods described here, the initial tumor vol-
ume in the earlier experiment was larger; thus, the target volume was four times the initial vol-
ume, and the control data were terminated at day 6 post-treatment. We used one-sided tests
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and a type I error rate of 0.05. To be consistent with the one-sided p-value, we present two-
sided 90% confidence intervals obtained by the bootstrap percentile method.

We used weight loss as a measure of toxicity. The minimum weight for each animal in the
first 21 days post-treatment was normalized to its median pre-treatment weight. The log of this
ratio was the outcome in a series of linear models where the predictor was the alkylating agent
with or without LND. P-values were one-sided as it is of scientific interest to determine
whether the alkylating agents increased weight loss relative to the control, and whether the
combination caused increased weight loss relative to the individual agent. Analyses were con-
ducted in R Studio (V 99.484) using R (Version 3.2.1; R Foundation for Statistical Computing,
Vienna, Austria) [37].

Results
The effects of treatment with LND in combination with chlorambucil, cyclophosphamide and
bendamustine (Fig 1) were evaluated using tumor growth delay experiments. For these experi-
ments, mean tumor-doubling times ranged from 4.6 days (LND alone) to 11.0 days (benda-
mustine alone). These rates are comparable to those observed in our earlier experiences with
melphalan (doubling times of 5.3 to 5.9 days).

Compared to control (Cohort 1), Table 1 shows that LND alone neither significantly
delayed tumor growth nor altered cell survival. Similarly, each of the alkylating agents, when
administered as single agents (Cohorts 3–5), yielded no statistically significant differences rela-
tive to control for either mean tumor growth delay or cell surviving fraction (Table 1). Among
the three alkylating agents administered individually, the largest mean growth delay of 3.8 days
occurred for bendamustine (p = 0.11) which also exhibited the most reduced cell surviving
fraction of 79% (p = 0.28).

In sharp contrast, each of the alkylating agents in combination with LND (Cohorts 6–8)
showed both statistically significant growth delays and statistically significant reductions in cell
surviving fraction relative to the control group (Cohort 1). Specifically, compared to control,
the mean growth delay for each of the combinations of LND with an alkylating agent ranged
from 5.9 to 10.6 day (p< 0.05 for each agent in combination with LND, see Table 1 or Fig 1 for
specific individual p-values). Similarly, compared to control, the mean surviving fraction for
each of the combinations ranged from 41 to 62% (p< 0.01 for each agent in combination with
LND, see Table 1 for specific p-values).

We next compared the response to the combination of LND plus an alkylating agent to the
alkylating agent alone. Here we found that the mean growth delay for each of the alkylating
agents, combined with LND, yielded a mean growth delay that achieved or approached statisti-
cal significance. Specifically the mean growth delay for LND + chlorambucil (Cohort 6)
exceeded chlorambucil alone Cohort 3 (p = 0.002) and the mean growth delay for LND + cyclo-
phosphamide (Cohort 7) exceeded cyclophosphamide alone (p = 0.050). The mean growth
delay for LND + bendamustine (10.6 days, Cohort 8) exceeded bendamustine alone (3.8 days,
Cohort 5,) but this result did not achieve strict statistical significance (p = 0.052) (Table 1).

For each of the three alkylating agents, the estimate of the cell surviving fraction for the
combination with LND was smaller than for the alkylating agent alone. However, in no case
did the differences achieve strict statistical significance. We note that the surviving cell fraction
for LND + cyclophosphamide was 42% versus 100% for cyclophosphamide alone, and that the
surviving cell fraction for LND + chlorambucil was 62% versus 100% for chlorambucil alone,
with p< 0.10 for both contrasts (Table 1).

In previous work we showed that the mean growth delay for LND + melphalan (17.8 days,
previously published results) exceeded melphalan alone (7.6 days, previously published results,
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p = 0.015). The mean difference in cell surviving fraction for LND + melphalan (10%, previ-
ously published results) versus melphalan alone (41%, previously published results) did not
achieve significance [14, 15].

Fig 1. Growth Delay Experiments on DB-1 Melanoma Xenografts.Growth delay experiments performed on DB-1 humanmelanoma
xenografts in nude mice treated with 20 mg/kg chlorambucil, 40 mg/kg cyclophosphamide or 25 mg/kg bendamustine. Mice were treated on
Day 0 as follows: control (sham i.p. tris/glycine buffer + sham i.v. PBS), LND (lonidamine; 100 mg/kg; i.p.), chlorambucil, LND + chlorambucil,
cyclophosphamide and LND + cyclophosphamide, or bendamustine, LND + bendamustine. Each grey line is the trajectory for an individual
animal. The trend for each group is illustrated using the loess smoothed curve (dark line) and its standard error (shaded area). The time at
which each animal’s tumor achieved a volume of 150 mm3 (dashed line) was used to estimate the mean tumor growth delay (T-C) shown in
Table 1. P-values for the difference in mean growth delay for each pair of plots are shown. Values labeled NS did not achieve the threshold of
0.05. P-values for the mean difference in cell survival rates appear in Table 1. Abbreviations are as follows: Ctl, Control; Chl, Chlorambucil;
Cyc, Cyclophosphamide; Ben, Bendamustine; NS, Not Significant.

doi:10.1371/journal.pone.0157125.g001
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LND + chlorambucil (Cohort 6), LND + cyclophosphamide (Cohort 7) and LND + benda-
mustine (Cohort 8) resulted in a 38%, 58% and 64% cell kill, respectively. In our previous study
LND + melphalan yield 90% cell kill, respectively, [14, 15] (Table 1).

Weight Loss
For each cohort, Fig 2 displays boxplots of the maximum weight loss, relative to the pre-treat-
ment value. The mean pre-treatment weight across all animals was 30.1 g (95% CI of 29.3,
30.3). Without LND, the average weight of the controls post- versus pre-treatment was 97.0%
(90% CI 96.1, 97.9%, p< 0.001). With LND, the average weights of the controls post- versus
pre-treatment was 91% (90% CI 90.2, 92.0) of control, and significantly lower than in the
absence of LND (p< 0.001). Fig 2 and Table 2 show that for the alkylating agents alone, the
mean post-treatment weight declined to levels that significantly exceeded that of the weight
loss observed in the control without LND. The pre-treatment: post-treatment weight reduction
ranged from 89.4% (chlorambucil, Cohort 3, p< 0.001 versus control without LND) to 96.6%
(cyclophosphamide, Cohort 4, p = 0.030 vs control without LND) (Table 2).

For the animals treated with the alkylating agent in combination with LND, post-treatment
relative to pre-treatment weight ranged from 84.7% (LND + bendamustine, Cohort 8) to 92.6%
(LND + cyclophosphamide, Cohort 7) (Table 2). For chlorambucil, the weight loss was similar

Table 1. Summary of estimatedmean growth delay (T-C), and surviving fraction as a percent (100×exp(−(T−C)×B), with bootstrap 95%CI), log cell
kill method, by experiment and treatment arm in DB-1 humanmelanoma xenografts. Individual growth curve data appear in Fig 1.

Experimental Groups Growth Delay (T-C; days) Surviving fraction (%) Estimates (90% CI)

Estimate (90% CI) p value Estimates (90% CI) p value

Vs Control Vs Single Agent Vs Control Vs Single Agent

Lonidamine (LND) -2.1* 0.73 NA 100 0.67 NA

(-7.4, 2.9) (59, 100)

Chlorambucil -4.1* 0.96 NA 100 0.81 NA

(-8.1, 0.2) (98, 100)

Cyclophosphamide -1.3 0.65 NA 100 0.63 NA

(-6.1, 3.6) (62, 100)

Bendamustine 3.8 0.11 NA 79 0.28 NA

(-1.8, 9.8) (42, 100)

Melphalan 7.6 0.007 NA 41 < 0.001 NA

(2.3, 14.6) (16, 75)

LND + Chlorambucil 7.7 0.008 0.002 62 0.004 0.090

(2.5, 13.1) (35, 86)

LND + Cyclophosphamide 5.9 0.018 0.050 42 0.001 0.068

(0.6, 10.8) (19, 92)

LND + Bendamustine 10.6 <0.001 0.052 36 < 0.001 0.13

(4.9, 16.0) (20, 62)

LND + Melphalan 17.8 <0.001 0.015 10 < 0.001 0.247

(10.8, 23.8) (5, 24)

Note: Mean growth delay and survival estimates for LND (lonidamine) alone, and for each of the three alkylating agents, either alone or in combination

with LND. All p values are one-sided. Doubling times are assumed identical across all treatments. Compared to control, LND alone did not yield significant

differences in either growth delay (p = 0.73) or percent survival (p = 0.67). NA is not applicable.

*Negative growth delay indicates return to tumor volume at an estimated rate that was slightly faster than the control (Fig 1). The 90% CI in all cases

where the estimate was negative covered zero, suggesting that these differences represent random variation among animals.

doi:10.1371/journal.pone.0157125.t001
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with or without LND. In contrast, for cyclophosphamide and bendamustine, the estimated
weight loss was significantly lower than for the alkylating agent without LND (p< 0.015 and
p< 0.001 respectively) (Table 2).

We note that, the minimum post versus pre-treatment weight of animals receiving melpha-
lan (92%, p = 0.011) or LND + melphalan (87.7%, p = 0.001) was significantly lower than
control, but that differences between the two groups were not significant (p = 0.082) [15]
(Table 2).

Fig 2. Weight Loss Experiments on DB-1 Melanoma Xenografts. Box plot of weight loss relative to median pretreatment weight for the
control and each alkylating agent with (+) or without (-) LND (lonidamine). Bold horizontal lines indicate median, boxes indicate interquartile
range, (IQR) whiskers extend to the smaller of either the range of the data or the box +/- 1.5 IQR. Outliers appear as dots. Abbreviations are as
follows: Ctl, Control; NS, Not Significant.

doi:10.1371/journal.pone.0157125.g002
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Fig 3 shows in vitro, in vivo and ex vivo characteristics of human DB-1 melanoma cells. S1
Spreadsheet shows tumor growth delay and body weight data.

Mutations and Copy Number Aberrations in the DB-1 Human Melanoma
Cell Line
The DB-1 cell line contained the following known pathogenic mutations: BRAF p. V600E;
TP53 p.L145R; CDK4 p.R24C and TERT promoter region Chr5:1295228–1295229 GG>AA.
Additional variants identified were PTEN p.T176A, JAK3 p.P693L, EGFR p.P753S, and APC
p.140G. The cell line also contained homozygous loss of CDKN2B.

Discussion
TheWarburg effect has been exploited for the detection and treatment of cancer for many
years. PET (Positron Emission Tomography) imaging with FDG (fluorodeoxyglucose) has uti-
lized it for the minimally invasive and sensitive detection of cancer. We reasoned that if we
could trap the lactate produced by tumor cells inside the cytosol, we would have a method to
selectively acidify cancer cells and make them susceptible to alkylating agents whose activity is
enhanced by acid [13–15, 38] and whose lethal effect is also enhanced under acidic conditions.
The goal of the present study was to determine whether intracellular tumor acidification and

Table 2. Weight loss of DB-1 humanmelanoma xenografts following treatment with nitrogen-mustards alone or in combination with LND

Experimental Groups Ratio of Post-treatment: Pretreatment Weight (% Relative to Control)

Estimate (90% CI) p value

Vs Control Vs Single Agent

Alkylating Agent Alone

Chlorambucil 89.4 < 0.001 NA

(86.1, 92.8)

Cyclophosphamide 96.6 0.030 NA

(93.8, 99.5)

Bendamustine 93.2 < 0.001 NA

(91.3, 95.1)

Melphalan* 92.0 0.011 NA

(86.8, 97.4)

Alkylating Agent in Combination with LND

LND + Chlorambucil 90.5 < 0.001 0.627

(87.1, 93.9)

LND + Cyclophosphamide 92.6 0.001 0.015

(89.7, 95.5)

LND+ Bendamustine 84.7 < 0.001 < 0.001

(83.0, 86.4)

LND + Melphalan* 87.7 0.001 0.082

(83.0, 92.6)

Note: Ratio of minimum post-treatment to pre-treatment weight for each group, normalized to the ratio in the control group. P-values are for the

comparison to control, and for the comparison of the combined LND (lonidamine)-alkylating agent to the alkylating agent alone. The mean weight at the

start of treatment for animals in the current experiment was 30.1 g (95% CI 29.3, 30.3). For the control group the relative post- to pre-treatment weight was

97.0% (90% CI of 96.1, 97.9%).

* Melphalan data was adopted from previous publication [14, 15].

doi:10.1371/journal.pone.0157125.t002
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deenergization could increase the efficacy of bendamustine, cyclophosphamide and chloram-
bucil in DB-1 melanoma xenografts following LND administration. Previous studies had indi-
cated that i.p. injection of LND at 100 mg/kg produced the optimal effects on tumor
acidification and bioenergetic decline without significant toxicity to normal tissues. N-mus-
tards are generally administered by i.v. infusion, and were administered at levels comparable to
those used by other investigators in studies of mouse xenografts [15]. Compared to the alkylat-
ing agent alone, we observed significant, or near-significant increases in growth delays for all
three alkylating agents when combined with LND. Additionally, compared to control each
alkylating agent in combination with LND showed statistically significant cell kill, with rates
ranging from 38 (Chlorambucil) to 64% (Bendamustine). In contrast, the alkylating agents
alone demonstrated very little cell kill with rates ranging from 0 to 21%. We note that cell kill
rates for the combination of alkylating agent plus LND compared to the alkylating agent alone
did not achieve strict statistical significance (p values ranging from 0.068 to 0.13). We chose to

Fig 3. In vitro, In vivo and Ex vivo Characteristics of Human DB-1 Melanoma Cells. (A) DB-1 cells in
culture at 40X magnification. (B) Cell pellet demonstrating amelanotic characteristic of cells. (C) Typical
xenograft tumor on flank of an athymic nude mouse. Arrow pointing towards lesion. (D) H&E stain at 42X
magnification of section through harvested tumor. Inset represents region shown in panel E at 840X
magnification.

doi:10.1371/journal.pone.0157125.g003
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report the experiment as planned, rather than repeating it, given the statistical comparison to
the control, and the consistent pattern in both growth delay and cell kill across all three agents
in combination with LND. In our experiment relative cytotoxicities of these agents in DB-1
melanoma xenografts after LND administration were bendamustine (cell kill, 64%)> cyclo-
phosphamide (cell kill, 58%)> chlorambucil (cell kill, 38%). These differences in cytotoxicities
are small and conclusions regarding the relative toxicity of these agents would require a sub-
stantially larger number of animals than was used in the current study. We have previously
reported cytotoxicity of melphalan (cell kill, 90%) following LND administration in DB-1 mel-
anoma xenograft [14], suggesting that among the N-mustards, melphalan may exhibit the
highest level of potentiation following LND treatment. This conclusion must be taken with
some caution as (1) confidence intervals were broadly overlapping and (2) the experiments
were not conducted concurrently, and (3) we cannot strictly rule out differences between
experimental conditions for the two sets of results. Lastly, we note that the three alkylating
agents examined here were associated with a 3.4% to 10.6% increase in post-treatment weight
loss relative to control, while the combination of agents with LND were associated with a 7.4%
to 15.3% increased weight loss relative to control, values that for cyclophosphamide and benda-
mustine were significantly larger than for the alkylating agent alone. The effect on weight loss
is similar to those observed for melphalan.

In preparation for studies combining LND with alkylating agents, we have already performed
ex vivo investigations of the effects of a number of candidate platinum and alkylating agents on
cultured DB-1 melanoma cells [15]. Melphalan exhibited the greatest cytotoxicity as a single
agent, followed by cisplatin, bendamustine and chlorambucil. LND also exhibited a low level of
cytotoxicity as a single agent in these experiments. This most likely occurred due to the presence
of serum in the medium, thus limiting the bioavailability of LND to exhibit an effect. Cyclophos-
phamide was not included in ex vivo study at that time. Recently, we have demonstrated by 31P
MRS (Phosphorus Magnetic Resonance Spectroscopy) that the treatment of DB-1 melanoma
xenografts with LND (100 mg/kg, i.p.) selectively acidifies and de-energizes tumors [15].

The activity of N-mustards increases with increasing acidification of tumors [26–28, 39–
42]. In the case of N-mustards, this could be caused by three effects: (i) increased concentra-
tions of the active intermediate cyclic aziridinium ion; (ii) decreased concentrations of compet-
ing nucleophiles, such as hydroxide and glutathione, whose production is diminished by
decreased activity of gluthathione-S-transferase under acidic conditions; and (iii) decreased
DNA repair as a result of acid inhibition of O6-alkyltransferase [40, 42]. This is probably largely
because acid shifts the equilibrium between the various forms of these agents towards more
active forms. In the case of N-mustards, the active species is the cyclic aziridinium ion. In cells,
the reactivity of these agents will also be affected by considerations of transport into the cell
and, eventually, into the nucleus, where DNA alkylation occurs. Elimination of these agents by
active transport via multidrug resistant pumps will also modify the activities of melphalan [43]
and other N-mustards. Since multidrug resistance is an energy consuming process, deenergiza-
tion of the tumor should increase the retention and, hence, also the activities of these alkylating
agents in tumor cells.

Differences were observed between the three groups but did not achieve statistical signifi-
cance. This may reflect the sample size within each group, which was chosen with the primary
goal of determining differences between the individual agent and the combination with LND.
With this limitation in mind, it is of interest that bendamustine exhibited the longest growth
delay and largest cell kill. Previous reports indicated that increased efficacy of bendamustine
might be due to inhibition of mitotic checkpoints, inefficient DNA repair, and initiation of
p53-dependent DNA-damage stress response, all of which lead to mitotic catastrophe and apo-
ptosis [44]. Moreover, the presence of a benzimidazole ring in addition to the N-mustard

In Vivo Lonidamine Potentiation of Nitrogen Mustards

PLOS ONE | DOI:10.1371/journal.pone.0157125 June 10, 2016 12 / 17



group may influence the way bendamustine interacts with DNA and/or its antimetabolite
properties [44]. The benzimidazole central ring system is unique to bendamustine; the intent
of adding this structure to the N-mustard was to include the antimetabolite properties of benz-
imidazole. This heterocyclic ring structure may contribute to the unique antitumor activity of
bendamustine and distinguish it from conventional 2-chloroethylamine alkylators-cyclophos-
phamide, chlorambucil and melphalan [44].

Studies have shown that melanotic melanomas exhibited significantly shorter disease-free
survival and overall survival than those with amelanotic lesions. Similarly, melanin-producing
lymph node metastases were linked to shorter overall survival and disease-free survival, which
was confirmed by a significantly longer mean/median disease-free survival for amelanotic ver-
sus melanotic metastases [9]. Bryoanza et al. have shown that melanin content also acts as a
radioprotector and scavenger resulting in changing of properties of melanoma cells [10]. Mela-
nogenesis is a metabolic pathway characteristic of normal and malignant melanocytes that can
affect the behavior of melanoma cells or their surrounding environment, and the inhibition of
melanogenesis might represent a valid therapeutic target for the management of advanced mel-
anotic melanomas [11]. However, in the current study, with the DB-1 melanoma cell pellet
indicating a very low content of melanin, based on a lack of colorization (amelanotic), DB-1 is
probably an ideal cell line to examine these therapeutic effects independent of pH interaction
with melanin. A possible future direction would be to examine LND effects on pH in a xeno-
graft model that is more highly expressive of melanin.

Unfortunately, we have no clinical history of the response of the primary tumor in donor
from whom the DB-1 cell line originated. Nor do we have any information regarding the treat-
ment response of the donor’s metastases. The DB-1 cell line, besides being a cancer cell model,
is a model of metastatic disease. It is hoped that the results we observe with DB-1 xenografts,
investigating the tumor sensitizing effects of LND, are a guide to the response to treatment
with alkylating agents of patients with metastatic melanoma.

Earlier studies have supported the mechanism of MCT inhibition by LND [15, 45–47].
MCT-1 and MCT-4, the other isoform of MCT present in DB-1 melanoma [48], have Km val-
ues of about 4.5 mM and 22 mM for lactate, respectively [49]. Recent LC-MS (Liquid chroma-
tography-mass spectrometry) analysis of the effects of LND on DB-1 melanoma cells indicates
that this agent also inhibits complex II at the ubiquinone reduction step [50]. Furthermore, our
recent data demonstrates that LND inhibits the MPC of isolated liver and heart mitochondria
with an IC50 of 2.5 μM [51]. Thus, the most potent site of activity of LND is the MPC followed
by MCT1 and MCT4, and complex II (in that order) at increasing concentrations of LND.

Our group and other researchers have identified the sites of action of LND that are common
to both normal tissue and melanoma [50, 51]. Explanation for why melanoma and other can-
cers demonstrate selectivity for metabolic response to LND compared to normal tissues needs
further investigation. Oncogenic mutations of BRAF have been implicated in changes of the
metabolic phenotypes seen in melanoma favoring a shift towards more oxidative and less gly-
colytic metabolism [52, 53]. Prior to treatment the DB-1 tumor derives about equal amounts of
its ATP from both of these pathways [54–56]. LND should decrease mitochondrial ATP pro-
duction to a greater extent than glycolytic energy production since it inhibits mitochondrial
uptake and oxidation of pyruvate resulting in a decrease in TCA cycle flux, and it also inhibits
electron transport, while the concentration of lactate (and, hence, the extent of glycolysis) in
the tumor triples [15]. Therefore, the effect of shifting tumor metabolism in the direction of
oxidative metabolism as a result of the BRAF-V600E mutation makes the tumor more respon-
sive to LND and agents that it potentiates such as N-mustards and anthracyclines.

Limited success has been achieved in treating melanomas with agents that target the
BRAF-V600E mutation observed in about 50% of melanomas [2] and with ipilumumab [57,
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58], but none of these have been curative. Development of resistance following oncogene inhi-
bition is common in the clinic, where tumor cells acquire or develop pro-survival mechanisms
to maintain their growth [59, 60]. While BRAF inhibitors have displayed a rapid and dramatic
response rate in BRAF mutated melanoma patients, most of these patients eventually relapse
[61, 62]. Studies have shown the increased expression of genes involved in TCA cycle, oxidative
phosphorylation and ATP generation in melanomas with mutant BRAF treated with vemura-
fenib, an inhibitor of BRAF-V600E [52]. Combination of an immunotherapeutic agent and a
BRAF inhibitor may help overcome oncogene inhibition resistance [63], and, as noted above,
LND, should make the mutant BRAF more responsive to N-mustards and anthracyclines. The
most promising approach for the systemic treatment of this disease will probably involve the
development of multiple therapeutic agents functioning by a variety of independent mecha-
nisms that would be very difficult to simultaneously circumvent. The present study demon-
strates one such method that utilizes the Warburg effect and agents that trap lactate in tumors
to selectively acidify melanoma and sensitize it to systemic therapy with conventional alkylat-
ing agents.

Supporting Information
S1 Spreadsheet. Tumor growth delay and body weight data spreadsheet.
(XLSX)
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