Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases.

Jason L. Chien
Thomas Jefferson University

Kareem Sioufi
Thomas Jefferson University

Sandor Ferenczy
Thomas Jefferson University

Emil Anthony T. Say
Thomas Jefferson University

Carol L. Shields
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/willsfp

Part of the Ophthalmology Commons

Let us know how access to this document benefits you

Recommended Citation

https://jdc.jefferson.edu/willsfp/76
Optical coherence tomography angiography (OCTA) allows visualization of iris racemose hemangioma course and its relation to the normal iris microvasculature.

OBJECTIVE To describe OCTA features of iris racemose hemangioma.

DESIGN, SETTING, AND PARTICIPANTS Descriptive, noncomparative case series at a tertiary referral center (Ocular Oncology Service of Wills Eye Hospital). Patients diagnosed with unilateral iris racemose hemangioma were included in the study.

MAIN OUTCOMES AND MEASURES Features of iris racemose hemangioma on OCTA.

RESULTS Four eyes of 4 patients with unilateral iris racemose hemangioma were included in the study. Mean patient age was 50 years, all patients were white, and Snellen visual acuity was 20/20 in each case. All eyes had sectoral iris racemose hemangioma without associated iris or ciliary body solid tumor on clinical examination and ultrasound biomicroscopy. By anterior segment OCT, the racemose hemangioma was partially visualized in all cases. By OCTA, the hemangioma was clearly visualized as a uniform large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3) or midzonal iris (n = 1), before returning to the peripheral iris (base of light bulb). Intravenous fluorescein angiography performed in 1 eye depicted the iris hemangioma; however, small-caliber radial iris vessels were more distinct on OCTA than intravenous fluorescein angiography.

CONCLUSIONS AND RELEVANCE Optical coherence tomography angiography is a noninvasive vascular imaging modality that clearly depicts the looping course of iris racemose hemangioma. Optical coherence tomography angiography depicted fine details of radial iris vessels, not distinct on intravenous fluorescein angiography.
All patients underwent comprehensive ophthalmic examination including slitlamp evaluation and photography, dilated fundoscopic examination, UBM, AS-OCT, IVFA (when possible), and OCTA. Optical coherence tomography angiography was performed with Optovue RTVue XR Avanti, version 2016.1.0.26 (Optovue Inc).9 For AS OCTA, a volume cube scan protocol was used to scan the lesion (3.00 × 3.00 mm; AngioRetina); however, the Z-motor positioning and focus settings were adjusted manually to allow visualization of the AS and precise focus of the OCT B-scan, and the P-motor was automatically adjusted.

Patient demographics (including age, race/ethnicity, and sex) and referral diagnoses were recorded. Data regarding clinical features included affected eye, visual acuity, iris color, tumor clock-hour location, tumor size (number of clock hours), and presence of iris or ciliary body mass. Imaging features were recorded from UBM, AS-OCT, IVFA, and OCTA, including visualization of hemangioma, vascular course, and hemangioma type (simple vs complex).10

Results

Mean age was 50 years (range, 43-67 years), and all patients were white with bilateral 20/20 visual acuity. By slitlamp biomicroscopy, the hemangiomawas minimally visible within the iris stroma as a large, dark-red vessel with a tortuous course buried within normal stromal tissue without solid tumor in the iris or ciliary body. The hemangiomawas located temporally or inferotemporally in the right (n = 3) or left (n = 1) eye and demonstrated 1.0-1.5 clock hours of involvement (Table).

On UBM, the hemangiomacould not be identified. Anterior segment OCT over the hemangiomashowed its lumen as a hyporeflective spherical core with poorly delineated margins against normal iris stroma and vasculature. By OCTA, the hemangiomaappeared as a uniform, large-caliber vascular tortuous loop without aneurysmal changes, and with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb), forming a tortuous loop on reaching its peak (midfilament) near the pupil or midzonal iris, before returning to the peripheral iris (base of light bulb).

On UBM, the hemangiomacould not be identified. Anterior segment OCT over the hemangiomashowed its lumen as a hyporeflective spherical core with poorly delineated margins against normal iris stroma and vasculature. By OCTA, the hemangiomaappeared as a uniform, large-caliber vascular tortuous loop without aneurysmal changes, and with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. The vascular course on OCTA resembled a light bulb filament (filament sign), arising from the peripheral iris (light bulb base) and forming a tortuous loop on reaching its peak (midfilament) near the pupil (n = 3, Figure 1B and D and Figure 2D) or midzonal iris (n = 1, Figure 1F), before returning to the peripheral iris (light bulb base). Optical coherence tomography angiography was not able to visual-

Key Points

Question How does iris racemose hemangioma appear by optical coherence tomography angiography?

Finding In this case series using optical coherence tomography angiography, iris racemose hemangioma appears as a large-caliber vascular tortuous loop with intense flow characteristics superimposed over small-caliber radial iris vessels against a background of low-signal iris stroma. It resembles a light bulb filament (filament sign), arising from the peripheral iris (base of light bulb), forming a tortuous loop on reaching its peak (midfilament) near the pupil or midzonal iris, before returning to the peripheral iris (base of light bulb).

Meaning These findings suggest iris racemose hemangioma has distinct features on optical coherence tomography angiography.

| Table. Iris Racemose Hemangioma: Clinical and Imaging Features in 4 Cases |
Demographics	Patient 1	Patient 2	Patient 3	Patient 4	
Age, y	45	43	43	67	
Race/ethnicity	White	White	White	White	
Sex	Female	Male	Male	Female	
Referral diagnosis	Iris lesion	Iris lesion	Iris lesion	Iris lesion	
Clinical features	Involved eye	Right	Right	Right	Left
Visual acuity	20/20	20/20	20/20	20/20	
Iris color	Blue	Blue	Green	Green	
Clock hours, h:min	7:00-8:30	7:00-8:30	9:00-10:00	4:00-5:30	
Iris or ciliary body massa	Negative	Negative	Negative	Negative	
Imaging features	UBM	Indistinct	Indistinct	Indistinct	Indistinct
AS-OCT	Visualization	Partialb	Partialb	Partialb	Partialb
IVFA	Visualization	NA	NA	NA	Yes
Vascular course	NA	NA	NA	PI-Pupil-PI	
Hemangioma type	NA	NA	NA	Simple	
OCTA	Visualization	Yes	Yes	Yes	Yes
Vascular course	PI-Pupil-PI	PI-Pupil-PI	PI-Midzone-PI	PI-Pupil-PI	
Hemangioma type	Simple	Complex	Simple	Simple	

Abbreviations: AS-OCT, anterior segment optical coherence tomography; IVFA, intravenous fluorescein angiography; NA, not applicable/not done; OCTA, optical coherence tomography angiography; PI, peripheral iris; UBM, ultrasound biomicroscopy.

*a Imaged using UBM and AS-OCT.

*b Lumen of racemose hemangioma was partially visualized.
ize vascular details in the angle; hence, it was difficult to ascertain the exact origin of the hemangioma by OCTA. In the 1 case that received AS IVFA, the vascular course of the hemangioma was delineated on AS IVFA; however, details regarding relationship to normal iris microvasculature were not fully captured on AS IVFA (Figure 2B and C).

Discussion

Optical coherence tomography angiography can provide vascular imaging capability of iris and conjunctival tumors. Skalet et al showed increased intratumoral vascular density in iris melanomas compared with benign iris nevi using AS OCTA. Kang et al demonstrated iris microhemangiomatosis by OCTA, delineating pinpoint vascular lesions with flow arising from the posterior iris stroma, while Chien et al used OCTA to visualize abundant vasculature within conjunctival racemose hemangioma not seen on IVFA.

In this study, we found that commercially available OCTA showed remarkable clinical utility for imaging iris racemose hemangiomas to be of uniform vascular caliber with a consistent looping course extending from the peripheral iris (yellow arrowheads) to the pupillary margin (red arrowhead) or midzonal iris (blue arrowhead).

Optical coherence tomography angiography showed all iris racemose hemangiomas to be of uniform vascular caliber with a consistent looping course extending from the peripheral iris (yellow arrowheads) to the pupillary margin (red arrowhead) or midzonal iris (blue arrowhead).
The characteristic vascular pattern of iris racemose hemangioma was identified on both OCTA and traditional IVFA. However, it is important to realize several limitations of each method and that each should not be used interchangeably. Intravenous fluorescein angiography is limited by light penetration of deeper tissue and vascular leakage that can obscure microvascular details. Conversely, OCTA is limited by motion artifact and its inability to detect some flow patterns, especially vascular leakage. In cases where iris vascular lesions are clinically indistinguishable, features on IVFA could potentially allow differentiation because iris racemose hemangioma does not leak, while iris neovascularization typically exhibits slow leakage of dye into the aqueous. In terms of time efficiency, OCTA may be advantageous because it allows a quicker noninvasive evaluation of iris microvasculature. Further, only lightly pigmented irides were imaged using commercially available OCTA. Light penetration using superluminescent diode typically used in spectral domain OCT may not be sufficient for darker irides. Also, all patients scanned in this series had excellent cooperation during image acquisition. Anterior segment OCTA imaging requires patient cooperation because eye tracking and motion correction used for posterior segment OCTA demonstrate less proficiency when applied to the AS.

Conclusions
In summary, we report OCTA features in 4 cases of iris racemose hemangioma. Optical coherence tomography angiography allowed visualization of the characteristic uniform vascular caliber and looping course of iris racemose hemangioma and provided information in relation to normal iris microvasculature. Future improvements in OCTA technology may allow improved details and extend limitations on iris color.
REFERENCES

