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Abstract

Introduction:Olfactory impairment in older individuals is associatedwith an increased

risk of Alzheimer’s disease (AD). Characterization of age versus neuropathology-

associated changes in the brain olfactory pathwaymay elucidate processes underlying

early AD pathogenesis. Here, we report age versus AD neuropathology–associated

differential transcription in four brain regions in the olfactory pathway of 10 female

African green monkeys (vervet, Chlorocebus aethiops sabaeus), a well-described model

of early AD-like neuropathology.

Methods:Transcriptional profileswere determined bymicroarray in the olfactory bulb

(OB), piriform cortex (PC), temporal lobe white matter (WM), and inferior tempo-

ral cortex (ITC). Amyloid beta (Aβ) plaque load in parietal and temporal cortex was

determined by immunohistochemistry, and concentrations of Aβ42, Aβ40, and nore-

pinephrine in ITC were determined by enzyme-linked immuosorbent assay (ELISA).

Transcriptional profiles were compared between middle-aged and old animals, and

associations with AD-relevant neuropathological measures were determined.

Results: Transcriptional profiles varied by brain region and age group. Expression lev-

els of TRO and RNU4-1 were significantly lower in all four regions in the older group.

An additional 29 genes were differentially expressed by age in three of four regions.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
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Analyses of a combined expression data set of all four regions identified 77 differen-

tially expressed genes (DEGs) by age group. Among these DEGs, older subjects had

elevated levels ofCTSB, EBAG9, LAMTOR3, andMRPL17, and lower levels ofCOMMD10

and TYW1B. A subset of these DEGs was associated with neuropathology biomarkers.

Notably, CTSBwas positively correlated with Aβ plaque counts, Aβ42:Aβ40 ratios, and
norepinephrine levels in all brain regions.

Discussion: These data demonstrate age differences in gene expression in olfaction-

associated brain regions. Biological processes exhibiting age-related enrichment

included the regulation of cell death, vascular function, mitochondrial function, and

proteostasis. A subset of DEGswas specifically associated with AD phenotypes. These

may represent promising targets for future mechanistic investigations and perhaps

therapeutic intervention.

KEYWORDS

aging, Alzheimer’s disease, mRNA, nonhuman primates, olfactory pathway, transcriptomics,
vervet

1 INTRODUCTION

Olfactory impairment co-occurs at high prevalence with Alzheimer’s

disease (AD) and mild cognitive impairment.1–3 In addition, olfactory

function generally declines with age, but impairment is more severe

in patients with AD and mild cognitive impairment,4 and develops in

tandem with AD neuropathology.2,5 In mice and humans, olfaction-

associated brain regions, especially the olfactory bulb (OB), are among

the first brain regions to exhibit AD-associated pathology.6,7 Older

individuals experiencing olfactory impairment have over three times

the risk of developing cognitive impairment8 and over twice the

risk of developing dementia in the next 5 years.9 Combining olfac-

tory memory and odor identification further increases the power

for predicting AD development.10 Altogether, olfactory impairment

represents a promising indicator of prodromal AD.11 Characteriz-

ing changes that occur in the olfactory pathway during aging and

in preclinical AD may help illuminate processes underlying early AD

neuropathogenesis.

Specific mechanisms underlying the close associations between

olfactory dysfunction and subsequent diagnosis of cognitive impair-

ment have not been identified. Phenotypic hallmarks of AD such as

amyloid beta (Aβ) and phosphorylated tau (p-tau) accumulation have

been implicated in AD-associated olfactory dysfunction.2 In Tg2576

mice, the OB is among the first brain regions to exhibit Aβ accumu-

lation, and the degree of olfactory-associated behavioral deficits (e.g.,

odor investigation) correlates with Aβ accumulation.7 In a longitudinal

human cohort, Aβ and tau burden, particularly in the entorhinal cor-

tex, accounted for more than 10% of variation in odor identification.12

The apolipoprotein E (APOE) ɛ4 variant has been associated with olfac-
tory dysfunction in both rodent models and humans,13,14 and also

implicated in olfactory dysfunction in the absence of AD.15 Finally,

the dysregulation of norepinephrine (NE), a catecholamine that con-

tributes to stability and retrieval of olfactory memory,16 has long been

observed in patients with AD.17 These findings suggest complex rela-

tionships between AD and related dementias, and pathophysiological

mechanisms in the olfactory system.

Studies of processes contributing to olfactory dysfunction in pre-

clinical models are useful in understanding relationships with AD.

African green monkeys, or vervets (Chlorocebus aethiops sabaeus), are

a well-described nonhuman primate (NHP) model of aging and early

AD-like neuropathology and other AD-relevant phenotypes, includ-

ing cognition, physical function, and fluid biomarkers.18–22 Although

vervets do not exhibit the severity of neuropathological phenotypes

observed in human AD, vervet cognitive performance and physical

function (e.g., gait speed) decrease with age,19 and Aβ plaque load

is greater in the brains of old versus middle-aged vervets20,22 and

correlated negatively with gait speed.21 Aβ40 and Aβ42 levels in cere-
brospinal fluid (CSF) decreasedwith age andwere inversely associated

with Aβ42 levels in temporal cortex.21 Although paired helical filament

(PHF)-tau in vervet brains rarely presents as neurofibrillary tangles,

PHF-tau burden was negatively correlated with bilateral volumes of

insula, cerebellum, and left temporal lobe, whereas levels of p-tau181

in CSF was negatively correlated with prefrontal and temporal lobe

volumes.21 Thus, aged vervet monkeys recapitulate many characteris-

tics of early AD-like neuropathology andmay help illuminate processes

underlying early AD pathogenesis.

The purpose of the present study was to identify neurobiologi-

cal processes in olfaction-associated brain regions that vary with age

and/or associate with biomarkers of AD neuropathogenesis. Subjects

were 10 healthy middle-aged and old female vervets in which we

measured messenger RNA (mRNA) transcripts in four brain regions

important to the olfactory pathway. First, we assessed transcriptomic

differences in brain regions by age and then determined their co-

variation with biomarkers of AD, including Aβ plaque counts in the
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posterior temporal lobe, and levels of Aβ42 and Aβ40 peptides and

NE in the inferior temporal cortex (ITC). We suggest that relationships

between AD biomarkers and transcript levels in vervet brain may facil-

itate the identification of genes of interest in the study of early AD

pathogenesis in the olfactory pathway.

2 METHODS

2.1 Subjects

We studied brain tissue from five middle-aged (median = 11.4, range

= 9.3–11.6 years; corresponding roughly to humans 35 years of age),

and five old (median = 23.6, range = 19.7–26.2 years, corresponding

roughly to humans aged >70 years of age) female vervets. Subjects

were from the Vervet Research Colony (VRC) at Wake Forest School

of Medicine. Enclosures provided ≈28 m2 indoors and 111 m2 out-

doors. Monkeys were fed standard monkey chow, and water was

available ad libitum. The brains in this project were available as a part

of a multidisciplinary pilot project exploring relationships of age with

physiologic and functional phenotypes in healthy middle-aged and old

subjects. Details regarding vervet husbandry and housing are avail-

able elsewhere.19,23–25 All procedures were conducted in accordance

with state and federal laws, standards of the Department of Health

and Human Services, and guidelines established by the Institutional

Animal Care and Use Committee. Details regarding methods for tis-

sue collection and AD phenotypes are presented in the Supplemental

Methods.

2.2 RNA isolation

RNA was isolated from OB, piriform cortex (PC), ITC, and white mat-

ter (WM) using the AllPrep DNA/RNA Mini Kit (Qiagen, Inc., Hilden,

Germany). RNA quantity was determined using a NanoDrop spec-

trophotometer, and quality by integrity of 18s and 28s ribosomal RNA

using theAgilent 2100BioanalyzerwithRNA6000Nano chips (Agilent

Technology, Inc., Santa Clara, CA, USA) following the manufacturer’s

instructions. RNA samples with RIN (RNA integrity) scores >7.0 were

used for expressionmicroarrays.

2.3 Microarrays

Illumina HumanHT-12 v4 Expression BeadChip Arrays were used to

perform genome-wide expression analyses. The Illumina TotalPrep-96

RNA Amplification Kit (Ambion/Applied Biosystems, Darmstadt, Ger-

many) was used for reverse transcription, and amplification with 50 to

500 ng of input total RNA (at 11 uL). All samples from a specific region

were assessed on a single BeadChip, and a stratified approach was

used to assign the individual samples to specific (12 samples/chip) posi-

tions on the chip. Arrays were read using the Illumina HiScan system.

Data pre-processing, which included correction for local background

RESEARCH INCONTEXT

1. Systematic review: We performed a targeted litera-

ture review using online search features. We cite sev-

eral recent reviews describing current knowledge and

remaining questions concerning the olfactory system in

aging and early Alzheimer’s disease (AD) pathogenesis.

Although associations between olfactory deficits, aging,

andADpathology arewell documented, the exactmecha-

nisms leading toAD-related olfactory dysfunction are not

yet fully understood.

2. Interpretation: Our hypothesis-generating research sug-

gests genes and regulatory networks associated with

aging in olfaction-associated brain regions in vervets. Our

work also pinpoints a subset of genes uniquely associated

with AD-relevant phenotypes.

3. Future directions: Our results highlight promising gene

targets for mechanistic studies of AD pathogenesis. Our

research also suggests biological pathways strongly asso-

ciated with AD neuropathology, including vascular func-

tion, mitochondrial function, and proteostasis. Finally,

these results underscore the vervet’s utility as amodel for

early AD-like neuropathology.

and quality control (QC) analyses, were performed using Illumina’s

GenomeStudio.

2.4 Bioinformatics

We conducted differential gene expression (DGE) analyses using the

limma package v3.48.326 in R v4.1.1.27 We performed two sets of anal-

yses: one in which we analyzed expression data across all brain regions

with adjustment for multiple sampling of individuals, and a second in

which we analyzed each brain region independently. When analyz-

ing all four brain regions together, we considered genes “differentially

expressed” if theyhadaBenjamini-Hochberg falsediscovery rate (FDR)

<0.05. When analyzing each brain region independently, we consid-

ered DEGs to be those with an unadjusted p-value <0.05 and a |fold

change value| >1.2, as sample sizes for individual regions were rela-

tively small, and power was therefore low. We do not report differen-

tially expressed probes thatwere unannotated. Additional information

regarding DGE analyses are provided in the SupplementaryMethods.

2.5 Ingenuity Pathway Analysis

DEG sets were evaluated using Ingenuity Pathway Analysis (IPA; Qia-

gen, Hilden, Germany) to identify associated processes and regulatory

networks. We performed separate analyses for DEGs identified in
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F IGURE 1 Regional variation in differentially expressed genes (DEGs) by age. Boxplots feature the DEGs that weremost (A) upregulated and
(B) downregulated in old vervets. Venn diagrams show regional overlap in all DEGs that were (C) upregulated and (D) downregulated in old vervets.
Each cell lists the number of DEGs as well as the percentage of all DEGs represented by that cell. Venn diagramsweremade using Venny 2.1.0.57

combined data sets (all four brain regions) and those identified through

independent analysis of each region. We first investigated canonical

pathways, retaining the “top five” pathways with the greatest neg-

ative log uncorrected p-values. Causal network analyses were then

implemented to identify gene-dependent regulatory networks associ-

ated with DEGs in each brain region, pinpointing “master regulators”

affecting notable DEG sub sets. IPA classifies variousmolecules as reg-

ulators, including genes, microRNAs (miRNAs), hormones, and exoge-

nous chemicals. We retained endogenous regulators and disregarded

all exogenous chemicals, drugs, and reagents from our regulatory net-

work analyses. To determine whether master regulators were likely

activated or inhibited, we used activation Z-score (i.e., an indicator of

whether a given regulator is upregulatedor downregulated) thresholds

of>2 (activated) and<−2 (inhibited).

2.6 Inferential statistical analyses

For each of the DEGs identified in the analysis of age-related differ-

ential expression in the combined data sets, we analyzed expression

levels as a function of Aβ plaque counts, Aβ42:Aβ40 ratios, and NE.

We used the “corr.test” function in R to generate a series of Pearson’s

correlations, running separate correlations for each AD biomarker in

the combined data set as well as within individual regions. Thus, for

each DEG, we performed 12 correlations (i.e., three AD biomarkers ×

expression levels in four brain regions). Correlations were considered

“significant” when two-sided uncorrected p-values were<0.05.

3 RESULTS

3.1 Effects of age on gene expression in the
combined datasets

Analysis of the combined data sets across the four brain regions

yielded 77DEGs, 51 of which (66%) were upregulated in older vervets.

The five genes most upregulated in older individuals across all four

brain regions (Figure 1A) were mitochondrial ribosomal protein L17

(MRPL17), late endosomal/lysosomal adaptor, MAPK and MTOR acti-

vator 3 (LAMTOR3), estrogen receptor binding site associated antigen
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TABLE 1 Differentially expressed genes (DEGs) with the largest fold-changes by age, identified in combined analysis of four brain regions

Direction Gene symbol Name FC T p q (FDR) B

Upregulated MRPL17 Mitochondrial Ribosomal Protein L17 2.864 4.562 <0.001 0.023 1.996

LAMTOR3 Late Endosomal/Lysosomal Adaptor,

MAPKAndMTORActivator 3

1.740 6.414 <0.001 0.001 7.344

EBAG9 Estrogen Receptor Binding Site

Associated Antigen 9

1.726 5.653 <0.001 0.003 5.132

REG1A Regenerating FamilyMember 1 Alpha 1.589 4.396 <0.001 0.034 1.533

LHFPL6 LHFPL Tetraspan SubfamilyMember 6 1.476 4.659 <0.001 0.019 2.271

Downregulated RNU4-1 RNA, U4 Small Nuclear 1 −1.911 −5.425 <0.001 0.004 4.470

COMMD10 COMMDomain Containing 10 −1.653 −5.057 <0.001 0.008 3.406

TRO Trophinin −1.644 −5.204 <0.001 0.006 3.831

H4C8 H4ClusteredHistone 8 −1.627 −4.474 <0.001 0.028 1.750

TYW1B TRNA-YWSynthesizing Protein 1

Homolog B

−1.586 −5.689 <0.001 0.003 5.238

Abbreviations: B, log-odds of differential expression; FC, fold-change; t, moderated t statistic.

9 (EBAG9), regenerating family member 1 alpha (REG1A), and LHFPL

tetraspan subfamily member 6 (LHFPL6). The fivemost downregulated

geneswereRNA,U4 small nuclear1 (RNU4-1), COMMdomain contain-

ing 10 (COMMD10), trophinin (TRO), H4 clustered histone 8 (H4C8),

andTRNA-YWsynthesizing protein 1homologB (TYW1B). CathepsinB

(CTSB) and LAMTOR3 exhibited the lowest FDRof anyDEGs (8×10–4).

Fold changes, p-values, andq-values/FDR for the fivemost upregulated

and downregulated genes are displayed in Table 1; the full DEG list is

available in Table S1.

IPA’s canonical pathway analysis indicated five significant pathways

associated with the 77 DEGs: (1) hypoxia signaling in the cardiovas-

cular system, (2) BAG2 signaling pathway, (3) acute phase response

signaling, (4) DNA methylation and transcriptional repression signal-

ing, and (5) S-methyl-5’-thioadenosine degradation II. DEGs associated

with each pathway are listed in Table 2.

Causal network analysis of the 77DEGs identified fivemaster regu-

lators with significant directional effects (Z-scores> |2|). Threemaster

regulatorswere inhibited: cyclinC, proteaseBRCA1associatedprotein

1, and polo like kinase 1. The remaining two regulators were acti-

vated: kinase group calcium/calmodulin-dependent kinases II and IV

and microRNA miR-29b-3p. Causal networks, including master regu-

lators, intermediary regulators, and associated DEGs, are displayed in

Table 3.

3.2 Effects of age on gene expression in
individual brain regions

IndependentDGEanalyses for eachbrain regions yielded743DEGs for

OB, 759 for PC, 623 for WM, and 136 for ITC. The five most upreg-

ulated and downregulated genes in old individuals for each region are

displayed inTable4; fullDEG lists forOB,PC,WM,and ITCareavailable

in Tables S2, S3, S4, and S5, respectively. In independent DGE anal-

yses, only two genes were differentially expressed by age across all

four regions: RNU4-1 and TRO, both of which were downregulated in

old vervets in all four regions. An additional 25 DEGs were shared by

OB, PC, andWM, and are listed in Table S6. Venn diagrams illustrating

overlap in regional DEG lists are shown in Figure 1C andD.

The top canonical pathways associated with each brain region

were: OB, BEX2 signaling pathway; PC, heparan sulfate biosynthesis;

WM, PI3K/AKT signaling; and ITC, superpathway of serine and glycine

biosynthesis I. The top five canonical pathways for each brain region

and associated DEGs are listed in Table 2.

For OB, PC, and WM, we identified 27, 26, and 26 master regula-

tors, respectively, thatwereeither activatedor inhibited.DEGsderived

from ITC did not yield any significant regulators or causal networks.

The master regulators with the highest positive Z-scores (i.e., most

likely activated) forOB, PC, andWMwere the rearrangedduring trans-

fection (RET) kinase, estrogen receptor alpha (ESR1), and tumorprotein

D52 (TPD52), respectively. Master regulators with the most negative

Z-scores (i.e., most likely inhibited) for OB, PC, and WM were FK506

binding protein (FKBP5), mitogen-activated protein kinase kinase 4

(MAP2K4), and ubiquitin C-terminal hydrolase L1 (UCHL1), respec-

tively. Full lists of master regulators and associated DEGs from each

brain region are listed in Table S7.

3.3 Associations of selected DEGs with
AD-associated phenotypes

We previously reported that Aβ plaque counts per unit area as well

as extracted Aβ42, Aβ40, and NE levels were all elevated in the old

compared to the middle-aged vervets.20 Aβ plaque counts were signif-
icantly positively correlated with age (rho = 0.74, p = 0.01), as were

Aβ40 (rho = 0.92; p < 0.001), Aβ42 (rho = 0.68; p = 0.03), and NE

(rho = 0.72, p = 0.02) values measured by ELISA. In the current study,

the 77 DEGs identified in the combined analyses were used to assess

brain region–specific relationships between gene expression and other
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TABLE 2 Canonical biological pathways associated with each brain region

Brain region Ingenuity canonical pathways

−log

(p-value) Ratio Molecules

Pooled (All Four) Hypoxia Signaling in the Cardiovascular System 2.90 0.04 CSNK1D, NFKBIB, UBE2M

BAG2 Signaling Pathway 2.79 0.04 CTSB, PSMC1, PSMF1

Acute Phase Response Signaling 2.72 0.02 ALB, C1S, NFKBIB, VWF

DNAMethylation and Transcriptional

Repression Signaling

2.37 0.06 H4C3, H4C8

S-methyl-5’-thioadenosineDegradation II 2.24 0.50 MTAP

OB BEX2 Signaling Pathway 2.51 0.10 BAD, CCND1, CDKN1A, PGF, PPP2R1B, PPP2R3B,

PTEN, SPP1

3-phosphoinositide Biosynthesis 2.44 0.07 ATP1A2, NUDT12, NUDT9, PIP4K2B, PIP5K1B,

PPM1H, PPP1R12B, PPP1R14A, PPP2R1B,

PPP2R3B, PTEN, PTPN13, SOCS3, TNS3

Melanoma Signaling 2.39 0.12 BAD, CCND1, CDKN1A,MRAS, PTEN, RASD2

Glutathione Redox Reactions II 2.27 0.50 GLRX, GSR

Ferroptosis Signaling Pathway 2.24 0.08 ABCA1, ALOX12, ALOX15, CDKN1A, CTSB, GLS2,

MRAS, NFE2L2, RASD2, SLC1A5

PC Heparan Sulfate Biosynthesis (Late Stages) 3.33 0.14 CHST7, EXT1, EXTL1, HS3ST2, HS3ST5, HS6ST1,

RPE65, SULT4A1

Heparan Sulfate Biosynthesis 3.00 0.12 CHST7, EXT1, EXTL1, HS3ST2, HS3ST5, HS6ST1,

RPE65, SULT4A1

Pregnenolone Biosynthesis 2.79 0.24 CYP26A1, CYP27A1, CYP4X1,MICAL2

Proline Biosynthesis I 2.25 0.50 ALDH18A1, PYCR1

Dermatan Sulfate Biosynthesis (Late Stages) 2.02 0.12 CHST7, HS3ST2, HS3ST5, HS6ST1, SULT4A1

WM PI3K/AKT Signaling 3.77 0.08 BAD, EIF4E, HSP90AA1, IL17RD, IL27RA,MCL1,

NFKBIB, OCRL, PIK3R1, PPP2R2C, PPP2R5D,

PTEN, PTGS2, RAP2B, RHEB

AcuteMyeloid Leukemia Signaling 2.68 0.09 BAD, CSF2RA, IDH1, LEF1,MAP2K3, PIK3R1,

PML, RAP2B

Prostate Cancer Signaling 2.67 0.08 BAD, CCNE1, CREB1, HSP90AA1, LEF1, NFKBIB,

PIK3R1, PTEN, RAP2B

Adipogenesis Pathway 2.66 0.08 ATG7, BMPR1B, DDIT3, EGR2, FZD1, KAT7,

NR2F2, PER2, RPS6KC1, XBP1

Circadian Rhythm Signaling 2.49 0.06 CACNA2D4, CACNG6, CIRBP, CREB1, CRY1,

CSNK1D, EIF4E, GNG11, GRIN2C,MAP2K3,

PER2, PLCD4, PRKAR1A, RAP2B, SOX15

ITC Superpathway of Serine and Glycine

Biosynthesis I

2.32 0.11 NAD, SHMT1

Integrin Signaling 2.26 0.02 ARF1, ARF3, CDC42,MPRIP, PARVB

Folate Transformations I 2.00 0.07 NAD, SHMT1

Colanic Acid Building Blocks Biosynthesis 1.79 0.06 NAD, UGP2

Ethanol Degradation II 1.76 0.05 ADHFE1, NAD

Note: Pathways were identified using Ingenuity Pathway Analysis.

phenotypes associatedwith AD neuropathology (P/T cortex AB plaque

number, ITC Aβ42 and Aβ40, and norepinephrine levels). CTSB exhib-

ited significant positive relationships with AD biomarkers in 9 of 12

tests (Figure 2). Vacuolar protein sorting 4 homolog A (VPS4A), which

was negatively correlated with AD biomarkers, exhibited the second

highest number of significant correlations (7 of 12 correlations), fol-

lowed by DNA polymerase delta interacting protein 3 (POLDIP3, 5

of 12 positive correlations significant) and TYW1B (5 of 12 negative

correlations significant). An additional six DEGs (7.8%) exhibited four

significant correlationswith ADbiomarkers, whereas 34DEGs (44.2%)

exhibited three or fewer total significant correlations, and 33 of the 77

DEGs (42.9%) from the combined analysis were not significantly corre-

lated with any of the AD biomarkers in any of the four brain regions.

Full lists of significant correlations for Aβ plaque counts, Aβ42:Aβ40
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TABLE 3 Causal networks associated with combined data set

Master

regulator Name

Molecule

type Participating regulators

Predicted

activation

Activation

Z-score P-value
Targetmolecules in

dataset

CCNC Cyclin C other CCNC, CDK19, E2F1 Inhibited −2.236 0.010 CGRRF1, CTSB, HCG18,

NFKBIB, OSGIN1

BAP1 BRCA1

Associated

Protein 1

peptidase BAP1, E2F1, EIF2A, Gamma

tubulin, ITPR3, PPARG,

PRKAA

Inhibited −2.236 0.019 ANGPTL4, CTSB, FKBP5,

HCG18, NFKBIB

PLK1 Polo Like Kinase 1 kinase 26s Proteasome, Akt, ESR1,

MYC, NFKBIA, PLK1,

SNCA, TP53, TP63

Inhibited −2.138 0.008 ALB, CSNK1D, CTSB,

FKBP5, FXYD6, GGA2,

H4C3,METAP1,

NFKBIB, OSGIN1,

POLDIP3, REXO4,

SETD5, TAX1BP1

miR-29b-3p

(and other

miRNAs

w/seed

AGCACCA)

mature

microRNA

ERBB2, ERBB3, GATA4,

HIF1A,MAPK1,

miR-29b-3p (and other

miRNAsw/seed

AGCACCA),MYC, NFkB

(complex), PIK3R1,

POU2F2, SP1, STAT1,

STAT3, TP53, TP63

Activated 2.183 0.005 ANGPTL4, C1S, CIRBP,

CSNK1D, CTSB,

FABP5, GGA2, H4C3,

LHFPL6,METAP1,

METTL23, NUP188,

OSGIN1, POLDIP3,

REXO4, SIK1/SIK1B,

VWF

CaMK-II/IV Calcium/

Calmodulin-

Dependent

Kinases II and

IV

group CaMK-II/IV, CAMK2A,

CAMK2D, CAMK2G,

CAMK4, Creb, CREB1,

CREM,myosin-light-chain

kinase, NFkB (complex),

NFKBIA, RARA, RELA,

RHOA, STAT3

Activated 2.828 0.017 ANGPTL4, CTSB, FABP5,

H4C3, NFKBIB,

SETD5, SIK1/SIK1B,

THOP1

Note: Networks were identified using Ingenuity Pathway Analysis.

ratios, and NE are available in Tables S8, S9, and S10, respectively. AD

biomarker values for each vervet are available in Table S11.

4 DISCUSSION

Transcriptional profiles obtained from brain regions involved in the

olfactory pathway were distinct from one another and were signif-

icantly altered by age. Analyses of age effects by region showed

two transcripts that were reduced with age across all four brain

regions: trophinin (TRO) and RNA, U4 small nuclear 1 (RNU4-1). TRO

is expressed in adult mouse brain and appears to play a role in

neurogenesis.28 RNU4-1 is a small nuclear RNA important in brain

development29 and is involved with the spliceosome.

In analyses of the combined expression data across brain regions,

one of the genes exhibiting the largest upregulation in older vervets

was mitochondrial ribosomal protein L17 (MRPL17), a critical com-

ponent of the mitochondrial ribosomal complex. Mitochondrial

changes are associated with aging as well as early AD. Late endoso-

mal/lysosomal adaptor, MAPK and MTOR activator 3 (LAMTOR3),

a gene involved in ERK signaling and the mTOR1 pathway, was also

elevated with age, as was FKBP prolyl isomerase 5 (FKBP5), which

in humans is upregulated with age and associated with a proinflam-

matory immune profile.30 Genes with large fold-change reductions

with age included COMM domain containing 10 (COMMD10), which

inhibits nuclear factor kappaB (NF-kB),31 a central transcription factor

controlling inflammatory gene expression, and TRNA-YW synthesizing

protein 1 homolog B (TYW1B), which is involved in wybutosine synthe-

sis and has been associated with PHF tau by genome-wide association

study (GWAS).32

Despite these similarities across brain regions, independent anal-

yses pinpointed region-specific patterns of pathway enrichment and

regulatory networks. Notably, OB showed a bias toward BEX2 sig-

naling, which regulates mitochondrial apoptosis,33 whereas DEGs

identified in PC were associated with heparan sulfate biosynthesis;

WM, with PI3K/Akt signaling; and ITC, with serine and glycine biosyn-

thesis as well as integrin signaling. It is important to note that all

of these pathways have well-supported links to AD and other neu-

rodegenerative diseases. For instance, age-related changes in heparan

sulfate proteoglycans and glycosaminoglycans play key roles in the

deposition and accumulation of Aβ plaques,34 and Aβ may, in turn,

stimulate integrin-regulated cell death.35 Glycolysis-derived l-serine

impairment in astrocytes drives AD-related cognitive dysfunction in

mice,36 whereas AD is associated with generally decreased activity of

the PI3K/Akt pathway.37 Exploring region-specific associations with

enriched pathways may further explicate mechanisms underlying AD

pathogenesis.

Several biological functions unite the DEGs and regulatory net-

works identified by our analyses. First, several DEGs, pathways, and

regulators have known or hypothesized associations with cell death
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TABLE 4 Differentially expressed genes (DEGs) with the largest fold changes in individual analysis of each brain region

Brain region Direction Gene symbol Name FC t p q (FDR) B

OB Upregulated UBD Ubiquitin D 3.363 4.851 0.000 0.551 −1.533

MRPL17 Mitochondrial Ribosomal Protein L17 3.259 2.748 0.015 0.848 −3.307

TAX1BP1 Tax1 Binding Protein 1 2.814 3.448 0.003 0.840 −2.664

TMA7 TranslationMachinery Associated 7Homolog 2.099 2.339 0.033 0.855 −3.686

NAPEPLD N-Acyl Phosphatidylethanolamine

Phospholipase D

1.861 2.754 0.015 0.848 −3.301

Downregulated PKIA CAMP-Dependent Protein Kinase Inhibitor

Alpha

−2.066 −2.405 0.029 0.855 −3.625

COMMD10 COMMDomain Containing 10 −1.890 −3.963 0.001 0.807 −2.219

SPTLC1 Serine Palmitoyltransferase Long Chain Base

Subunit 1

−1.817 −2.233 0.041 0.864 −3.782

RNU4-1 RNA, U4 Small Nuclear 1 −-1.758 −2.521 0.023 0.855 −3.518

COL1A2 Collagen Type I Alpha 2 Chain −1.709 −2.977 0.009 0.840 −3.094

PC Upregulated MRPL17 Mitochondrial Ribosomal Protein L17 2.498 2.171 0.048 0.762 −3.719

LAMTOR3 Late Endosomal/Lysosomal Adaptor, MAPK

AndMTORActivator 3

2.296 5.301 0.000 0.388 −0.023

CNDP1 Carnosine Dipeptidase 1 2.082 3.560 0.003 0.633 −1.954

TMA7 TranslationMachinery Associated 7Homolog 2.023 2.630 0.020 0.703 −3.141

ACTA2 Actin Alpha 2, SmoothMuscle 1.831 2.259 0.041 0.745 −3.610

Downregulated MAP1S Microtubule Associated Protein 1S −2.193 −3.813 0.002 0.633 −1.643

DBNDD1 Dysbindin Domain Containing 1 −2.106 −3.185 0.007 0.640 −2.427

TRO Trophinin −1.906 −4.244 0.001 0.604 −1.135

VPS4A Vacuolar Protein Sorting 4 Homolog A −1.823 −5.601 0.000 0.388 0.257

RNU4-1 RNA, U4 Small Nuclear 1 −1.766 −2.664 0.019 0.703 −3.098

WM Upregulated MRPL17 Mitochondrial Ribosomal Protein L17 3.294 2.287 0.041 0.998 −4.142

TAX1BP1 Tax1 Binding Protein 1 3.047 3.686 0.003 0.998 −3.616

REG1A Regenerating FamilyMember 1 Alpha 2.877 3.395 0.005 0.998 −3.714

SERPINA3 Serpin Family AMember 3 2.137 2.517 0.027 0.998 −4.049

EBAG9 Estrogen Receptor Binding Site Associated

Antigen 9

1.982 2.797 0.016 0.998 −3.937

Downregulated MSRB2 Methionine Sulfoxide Reductase B2 −3.725 −2.679 0.020 0.998 −3.984

SNORD13 Small Nucleolar RNA, C/D Box 13 −3.079 −2.519 0.026 0.998 −4.048

RNU4-1 RNA, U4 Small Nuclear 1 −2.648 −3.954 0.002 0.998 −3.531

DBNDD1 Dysbindin Domain Containing 1 −2.274 −2.356 0.036 0.998 −4.114

H4C8 H4ClusteredHistone 8 −2.143 −2.912 0.013 0.998 −3.892

ITC Upregulated PARVB Parvin Beta 1.462 3.895 0.002 1.000 −2.412

ISG20 Interferon Stimulated Exonuclease Gene 20 1.387 3.721 0.002 1.000 −2.547

ARHGEF40 RhoGuanine Nucleotide Exchange Factor 40 1.382 3.464 0.004 1.000 −2.753

TRIM66 TripartiteMotif Containing 66 1.329 4.724 0.000 1.000 −1.826

UNC93B1 Unc-93Homolog B1, TLR Signaling Regulator 1.318 4.455 0.001 1.000 −2.005

Downregulated LOC642072 PREDICTED: Similar to HLA class II

histocompatibility antigen

−1.324 −3.731 0.002 1.000 −2.539

ZC4H2 Zinc Finger C4H2-Type Containing −1.324 −4.802 0.000 1.000 −1.776

TMEM108 Transmembrane Protein 108 −1.319 −5.170 0.000 1.000 −1.552

NOC4L Nucleolar Complex Associated 4Homolog −1.319 −2.786 0.015 1.000 −3.328

PORCN PorcupineO-Acyltransferase −1.302 −4.319 0.001 1.000 −2.100

Abbreviations: B, log-odds of differential expression; FC, fold change; t, moderate t statistic.
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F IGURE 2 Cathepsin B ( CTSB ) expression levels by brain region as predictors of AD biomarkers: Aβ plaque counts, Aβ42:Aβ40 ratios, and
norepinephrine levels. Solid lines indicate two-sided p-values<0.05; dashed lines indicate p-values≥0.05.

and the inhibition of cell proliferation, including estrogen receptor

binding site associated antigen 9 (EBAG9),miR-29b-3p, NF-kB, and polo

like kinase 1 (PLK1).38–41 The volume of such targets in our analysis

supports the important role of dysregulation of cell death in aging.42

Second, regulatory roles were suggested for estrogens and estrogen

receptors, given the inclusion of targets such as estrogen receptor 1

(ESR1) and EBAG9. Finally, these analyses implicate regulatory roles for

vascular function. Examples include the differential expression in PC

by age of a key regulator of the arterial system—actin alpha 2, smooth

muscle (ACTA2)43—and the pathwaymost strongly associatedwith our

cross-regional analysis, which was “hypoxia signaling in cardiovascular

system.” Given established links between vascular and brain func-

tion, including prominent disorders such as vascular dementia, these

data support the important role of vascular impacts on brain aging

and neuropathogenesis, and represent a promising area for further

investigation.

The genes most strongly correlated with AD biomarkers in our

data set have been posited to play a role in AD. Notably, CTSB, which

was upregulated in old vervets and most consistently correlated with

AD biomarkers, has been linked to AD-related phenotypes in humans

and nonhuman animal models. CTSB encodes cathepsin B, a lysosomal

protease and key regulator of proteosomal homeostasis. Cathepsin B

levels increase with age in humans44 but are particularly elevated in

association with neurocognitive disorders, including AD.45 Observed

associations between CTSB and AD-associated phenotypes likely

suggest endolysosomal pathway deficits and collapse of proteostasis.

Lysosomal dysfunction is a well-documented component of AD, which

contributes to the accumulation of proteins such as Aβ and tau, which
are neuropathological hallmarks of the disease. Consequently, upreg-

ulation of CTSB in aged vervets with elevated Aβ plaque counts may

represent a compensatory mechanism implemented by lysosomes to

reestablish proteostasis, especially given the evidence that cathepsin

B reduces Aβ deposits.46 An alternative hypothesis, however, is that

cathepsin B plays a causal role in AD development via lysosomal leak-

age, precipitating cell death, and neuroinflammation.45 This hypothesis

is supported by evidence from humans and nonhuman models
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indicating that cathepsin B inhibition alleviates neurocognitive

symptoms of AD.45 These differing—although not necessarily

incompatible—hypotheses on CTSB’s relationship to AD suggest a

productive avenue for future research. Finally, given that both CTSB

and MRPL17 were upregulated across aged vervet brain regions,

and that mitochondrial function may play a role not only in pro-

teostasis generally, but AD-related protein imbalance specifically,47

crosstalk between these genetic targets warrants further

consideration.

Additional genes for which expression was correlated with AD phe-

notypes included VPS4A, DNA polymerase delta interacting protein

3 (POLDIP3), and TYW1B. VPS4A expression, which was negatively

correlated with AD phenotypes, encodes vacuolar protein sorting–

associated protein 4A and likely regulates protein trafficking.48 In a

study of primary skin fibroblasts from 16 mammalian species, VPS4A

upregulation was observed in longer-lived species.49 Critically, in cul-

ture, a variant of VPS4A causes accumulation of both Aβ and tau,50

suggesting a possible causal role in AD. As for POLDIP3 and TYW1B,

bothhavebeen identified previously as directly or indirectly associated

with neurodegenerative diseases.51,52 POLDIP3 (aka SKAR, S6 kinase 1

(S6K1) Aly/REF-like target) mRNA splicing is regulated by transactive

response DNA-binding protein-43 (TDP-43),53 an RNA splicing co-

factor that contributes to regulation of translation and cell size and has

been linked to neurotoxicity, amyotrophic lateral sclerosis, and fron-

totemporal lobar degeneration.54 As noted above, GWASs have shown

an association of TYW1Bwith PHF tau.32

These observations are likely to translate to human healthwith high

fidelity due to the similarity of these NHPs to humans in brain struc-

ture, function, patterns of aging, and age-related neuropathology.18–21

One limitation of NHPs, including vervets,21 is that extensive tauopa-

thy (e.g., neurofibrillary tangles) common to patients with AD is

infrequently documented.55 Although this difference may constrain

direct translation of our results to advanced AD, the model will likely

help glean insights into mechanisms that limit tauopathy in NHPs and

thus promote the identification of new therapeutic targets. An addi-

tional limitation of this study was the relatively small sample size.

However, the small sample is mitigated in part by tight experimen-

tal controls that eliminate confounding due to diet, housing, diurnal

cycles, brain collection while animals were healthy, short and iden-

tical post-mortem intervals, and identical post-mortem handling of

tissue. Due to a lack of older male vervets in the colony, our study

was limited to female vervets. However, females represent an at-risk

population, as women exhibit a higher risk of AD.56 The IHC assess-

ment of plaque burden was carried out previously in both temporal as

well as parietal regions, although we did not assess gene expression in

the parietal region and instead focused on temporal cortex as a region

more likely involved in earlyADpathologies. Future studieswould ben-

efit from region-by-region comparisons of transcriptomic variation and

AD pathology, as well as inclusion of cognitive assessments, olfactory

testing, and neuroimaging to increase our understanding of the func-

tional inter-relationships between these phenotypes. Despite these

limitations, our current observations provide a basis for hypothesis

generation for future studies.

Collectively, our results indicate age-related variation in gene

expression and related biological pathways in several brain regions

associated with the olfactory pathway, and that only a subset of

age-related genes are also associated with AD-relevant phenotypes.

Consequently, our results highlight genes worthy of future investiga-

tion in aging NHP and human brain, and also suggest that the approach

used here may distinguish processes associated with normal brain

aging from those associated with neurodegenerative diseases (i.e.,

those predictive of neuropathological biomarkers). It is notable that

although definitive conclusions cannot be drawn from the patterns

observed here, these observations do provide a basis for hypothesis

generation to focus future NHP and clinical investigations, and also

highlight the value of the vervet model for the study of early AD-like

neuropathology.
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