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Abstract: Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent software or 
system based on big data information, machine learning and deep learning technologies. The rapid development of science and 
technology as well as internet communication has enabled AI and big data to gradually apply to many fields of health care. The 
modern imaging medicine is one of the first areas where AI can play an important role and applications.  As cross-sectional 
imaging, ultrasound (US) is well suitable for AI technology to standardize imaging protocols and improve diagnostic accuracy. 
This article reviews current AI technology and related clinical applications in the fields of thyroid, breast and liver US.
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Artificial Intelligence (AI) has attracted more 
and more attention not only from professional 
fields but also from the general public in recent 

years. Kaplan and Haenlein define AI as “a system’s 
ability to correctly interpret external data, to learn from 
such data, and to use those learnings to achieve specific 
goals and tasks through flexible adaptation” [1]. Thus, 
AI represents an approach to assist or even replace 
humans in a variety of tasks. In radiology, the induction 
of AI is less than a decade, but the expenses on AI have 
increased exponentially as well as its profound impacts 
on diagnostic accuracy, improved safety standards 
and increased time efficiency. Machine learning is an 
essential element that drives AI’s explosion and it has 
been widely applied in radiology. Whereas advanced 
technology is developed, machine learning is intended 
to be replaced by deep learning so that more complex 
radiological tasks can be accomplished. US imaging, a 
noninvasive, cost-effective and nonionizing technique, 
however, has limited AI applications compare to 
other imaging technologies in radiology. Thus, the 
development, technique, applications, and current 
performance of AI in US imaging are introduced and 

summarized in this review paper.

Traditional CAD Systems and Deep Learning 
in US Imaging

With development of computer technology, the 
traditional Computer-Aided Diagnostic (CAD) System 
was developed in 1960s and helped radiologists to 
diagnose breast tumor from both their perspective and 
the computer’s perspective [2]. The traditional CAD 
system showed its usefulness by increasing diagnostic 
accuracy, keeping consistency of radiologic diagnosis, 
decreasing the load of radiologists and reducing image-
read time consumption [3]. The traditional CAD system 
followed two main steps: detection and diagnosis [4]. 
Detection segmented lesions from healthy tissues and 
diagnosis examined lesions to provide diagnosis. There 
are four phases in traditional CAD system: image 
preprocessing, image segmentation, feature extraction, 
and lesion classification [5]. The most important and 
difficult phase is feature extraction since it is hard for 
a traditional CAD system to acquire data, and if the 
dimension of the feature is larger than the dataset, 
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“curse of dimensionality” will occur and the systom will 
became unreliable [6]. 

Thus, feature selection is crucial for the traditional 
CAD system and appropriate features can increase the 

system’s accuracy and lower the system’s computational 
complexity. The categories that are utilized for feature 
selection in the traditional CAD system are shown in 
Table 1. Importantly, all these features are artificial.

Table 1  Categories for feature selections in traditional CAD system.

Categories Description Algorithms/ Methods

Texture Reflects the surface characteristics of a lesion and it is 
frequently used in traditional CAD system.

• Laws Texture Energy (LTE) [7]

• Contrast of Gray Level Values [5]

• Gray Level Cooccurrence Matrix (GLCM) [5]

• Local Binary Pattern (LBP) [8]

• Wavelet Features [5]

Morphology More focus on lesion itself. Such as smoothness of lesion 
margin, length and width ratio of lesion and so on.

• Speculation
• Depth-to-Width Ration
• Elliptic-Normalized Circumference (ENC) [9]

• Elliptic-Normalized Skeleton (ENS) [9]

• Long Axis-to-Short Axis Ratio (L: S) [9]

sModel-based Statistical model of the backscattered echo that can indicates the 
character of backscattered echo from tissues.

• Nakagami model-based features
• K-Distribution model-based features

Descriptor features Different applications (diseases) create different descriptor 
features and features are generated by radiologist base on their 
experience.

• Shape
• Calcifications
• Posterior shadow or posterior echo
• Echo characteristic

The lesion classification is the last phase in the 
CAD system, and provides a diagnosis following the 
lesion extraction phase.  Numerous classifiers have 
been produced to classify lesions and each of them has 
their own advantages and limitations. Most classifiers 

are designed to classify the lesion such as the breast 
tumor, liver fibrosis, and thyroid nodules [5]. Table 2 as 
shown below provides descriptions of characteristic on 
frequently used classifiers in the field.

Table 2  Frequently utilized classifiers to classify lesions.

Classifiers Descriptions of characteristic 

Linear Classifier Linear discrimination analysis and logistic regression are two linear classifiers and reliable only with linear data.

Bayesian Classifier It is involved in machine learning and it predicts posterior information base on analyzing previous data points.

Support Vector Machine Kernel functions are utilized to find decision hyperplanes by computing the original data into the higher dimensional 
space. The complexity increases as dataset increases.

Decision Tree Its structure is a flowchart and it computes classification rules from disordered data. The size of data and feature values 
affect the complexity of the decision structure.

Artificial Neural Network It is a machine learning model base on human nervine system. The complexity of the network affects the training time.

AdaBoost Integrating several weak classifiers and building a strong classifier based on prediction voting from weak classifiers.

The artificial neural network is a machine-learning 
model but it is directly related to the deep learning 
model since it is built according to the human nervous 
system and its appearance revealed the application of 
deep learning in US imaging fields and a more advanced 
approach for the CAD system [5].

The idea of deep learning was generated two decades 
ago, but it was firstly explained and modeled by Hinton 
et al. [10]. The deep learning system represented a multi-
layer machine learning system. The machine learning 
system contained an algorithm to parse and learn data, 

then it can make decisions based on what is learned. 
Deep learning systems will generate algorithms in layers 
to construct an artificial neural network then learn and 
make intelligent decisions by itself [11]. With advanced 
development in deep learning, image recognition, 
semantic analysis, and disease detection can be achieved 
precisely and efficiently. All these applications are 
closely related to the function of an US CAD system so 
that deep learning system will be a powerful tool to assist 
diagnostic US imaging [5]. Figure 1 represented a lesion 
recognition by both deep learning system and human 
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detection [12].
The most applicable deep learning algorithms to 

radiological imaging are called convolutional neural 
networks (CNNs) as these are very efficiently applied 
to image segmentation and classification [13]. A 
convolutional neural network (CNN, or ConvNet) is a 
class of deep, feed-forward artificial neural networks 
that explicitly assumed that the inputs are images, 
which encode certain properties into the architecture. 
The components of a CNN included an input layer, 
an output layer and one or more hidden layers. What 
makes CNN different from a regular neural network is 
that the neurons in the layers are in three dimensions, 
including height, width and depth. This permitted the 
CNN to process and transform an input volume in three 
dimensions to an output volume. The hidden layers are 
crucial for the ability and efficacy of feature extraction 
and classification for CNN [14]. The hidden layers are 
combined with convolutional layers, pooling layers, 
normalization layers and fully connect layers (Fig. 2). 
Convolutional layers are used to create feature maps 
from input images, then pooling layers subsampled from 
the feature maps. This reduces the memory consumption 

of the neural network so that more convolutional layers 
can be used. Meanwhile, the pooling layers can limit 
translation and rotation invariance to enhance the ability 
to detect unusually placed objects. The normalization 
layers normalize all layer inputs to a mean of zero and 
variance of one. The fully connected layers connect all 
features that are generated from previous layers then 
allowed the classification [14].

Figure 1  (A) The original US image contains an irregular shaped lesion; 
(B) red outline represents a manually segmented lesion, while blue, green 
and cyan outlines represent deep learning system with lesion segmentations 
(Reprinted with permission from [12]).

Figure 2  An example of showing that an input image is filtered by convolutional layer then creates 4 feature maps. Max pooling is utilized to subsampling 
these feature maps. Then the process ran again from convolutional layer and finally all generated features are combined in fully connected layer for 
classification. (Reprinted with permission from [14])
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The main difference between the deep learning US 
CAD system and traditional US CAD system is that 
the features that are employed by the deep learning US 
CAD system are not artificial features. As mentioned 
before, the traditional US CAD utilized man-crafted 
features, such as gray features and texture features. As 
an alternative, deep learning techniques developed and 
applied to CAD system use features that are extracted by 
the deep neural network. This approach has been shown 

to be more effective than the feature designed by the 
human [5].

Breast Cancer
Breast cancer is one of the most common cancers in 

women. About 1 in 8 U.S. women (about 12.4%) will 
develop invasive breast cancer over the course of her 
lifetime. In 2018, an estimated 266,120 new cases of 
invasive breast cancer are expected to be diagnosed in 
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women in the U.S., along with 63,960 new cases of non-
invasive breast cancer [15]. Utilizing US imaging is a 
safe, inexpensive and time-effective method to detect 
and characterize breast cancer [16] and early detection 
can significantly decrease the mortality rate of the breast 
cancer [17]. 

Deep learning techniques have been utilized by 
radiologist research teams to help them detect and 
evaluate breast tumors. Byra et al. classified breast tumor 
mass by employing several transfer learning techniques 
along with a matching layer and color conversion. The 
area under curve (AUC) is 0.936 with matching layer 
involvement and radiologists reading on same set of 
data is ranged from 0.806 to 0.882 [18]. Drukker et 
al. utilized gray-values to generate features for CAD 
systems and obtained an AUC of 0.90 and 100% 
sensitivity at 30% specificity [19]. Zhang et al. utilized 
the point-wise gated Boltzmann machine (PGBM) to 
extract the feature from shear-wave elastography (SWE) 
to classify the breast tumor. The deep learning feature 
reached 93.4% accuracy [20]. Cheng et al. utilized 
stacked denoising autoencoder (SDAE) technology to 
encode the US image and employed the softmax layer 
to classify the breast lesion [21] (Fig. 3 and 4). Shi et 
al. employed the deep polynomial network to extract 
the textural feature from the US image and reach the 
accuracy of 90.40% [22]. Gruszauskas et al. tested 
the performance of CAD system using a Bayesian 
neural network-based classifier. The result showed that 

the differences in the area under the ROC curves are 
never more than 0.02 for the primary protocols and 
non-inferiority is demonstrated [23]. Ruey-Feng et 
al. built a learning vector quantization model with 24 
autocorrelation texture features to classify tumors and 
reached 90% accuracy; sensitivity, 96.67%; specificity, 
86.67%; positive predictive value, 78.38%; and 
negative predictive value, 98.11%. The performance of 
the CAD system is better than the radiologist with an 
accuracy of 86.67%, sensitivity of 86.67%, specificity 
of 86.67%, positive predictive value of 76.47%m and 
negative predictive value of 92.86% [24]. Han et al. 
utilized the GoogLeNet to classify the breast image and 
reached 90% accuracy [25]. Hu et al. computed a novel 
automatic tumor segmentation model by combing dilated 
fully convolutional network (DFCN) with a phase-
based active contour (PBAC) model. Then the model 
is compared with three existing state-of-art networks. 
The testing results gave a Dice Similarity coefficient of 
88.97 ± 10.01%, a Hausdorff distance (HD) of 35.54 
± 29.70 pixels, a mean absolute deviation (MAD) of 
7.67 ± 6.67 pixels, and an AUC of 0.795 [26]. These 
data indicate the best segmentation performance that is 
close to manually segmentation [26]. These examples of 
deep learning in breast US show the potential of AI for 
improving breast cancer detection and characterization. 
In addition, the improving performance of deep learning 
CAD systems demonstrate a reliable future of automated 
diagnosis in US imaging.

Figure 3  Stacked denoising autoencoder (SDAE) technology is used to encode US image of breast lesions in US images. (Reprinted with permission 
from [21])

Benign US Breast Lesion

Malignant US Breast Lesion
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Thyroid Cancer
Thyroid cancer is a common disease worldwide. 

In 2018, it is expected that there are 53,990 new cases 
of thyroid cancer (40,900 in women, and 13,090 in 
men) and around 2,060 deaths (1,100 women and 960 
men) [27]. Thyroid ultrasound is the main examination 
used for both detection and characterization of thyroid 
nodules [28]. In order to support radiologists to diagnose 
thyroid nodules with high accuracy and efficiency, 
deep learning CAD systems have been proposed. Ko 
et al. designed a deep convolutional neural network to 
examine malignancy of thyroid nodules and compared 
the testing results with experienced radiologists. The 
AUC for radiologists is 0.805-0.86 and the network 
achieved an AUC ranged 0.835-0.85. Thus, there 
is no significant differences between radiologists 
and the network (Fig. 5) [29]. Wang et al. utilized 
YOLOv2 neural network to achieve automatic thyroid 
nodule recognition and diagnosis. The performance of 

YOLOv2 is compared with experienced radiologists. 
(TOLO?)YOLOv2 achieved a higher AUC (0.902) than 
radiologists (0.802), and the sensitivity (90.5%), positive 
predictive value (95.22%), negative predictive value 
(80.99%), and accuracy (90.31%) of YOLOv2 had no 
significant difference with radiologists but it had a higher 
specificity (89.91% vs 77.98%) [30]. Zuo et al. combined 
two improved methods, corresponding anti-pooling 
(unpooling) and deconvolution layers (deconv2D), 
with Alexnet convolutional neural network to extract 
calcification from US images of thyroid nodule. The 
approach achieved an extraction accuracy of 86% 
and much higher than traditional method [31]. Young 
et al. integrated AI (S-Detect for Thyroid; Samsung 
Medison Co.) into CAD US and examined 102 thyroid 
nodules from 89 patients. The CAD system showed a 
similar sensitivity as the experienced radiologist (90.7% 
vs. 88.4%, P > 0.99), but a lower specificity and a 
lower AUC (specificity: 74.6% vs. 94.9%, P = 0.002; 

Figure 4  Flow-chart of the deep-learning-based CADx training framework. The pixels of resized (the region of interest) ROIs are fed into the network 
architecture at the pre-training step. The pre-trained network is then refined with the supervised training by adding three neurons carrying aspect ratio of 
the original ROI and also the resizing factors at the input layer. The final identification result can be made with the softmax classification. (Reprinted with 
permission from [21])

Wang et al. Artificial intelligence in ultrasound imaging

AUDT 2019;03:053–061
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AUC: 0.83 vs. 0.92, P = 0.021) (Fig. 6) [32]. Ma et al. 
employed a system that included two CNNs into a single 
CAD system. The first CNN segmented thyroid nodules 
from processed US images and then the second CNN 

classified the thyroid nodules. This method presented  
better performance than traditional deep learning systems 
but since the system required two CNNs, the training 
time lasted more than 106 hours [33].

Figure 5  Implementation framework of convolutional neural network (CNN). (A) The region of interest (ROI) is drawn by a radiologist and (B) The 
position information of ROI is collected; (C) By using the position information, ROI is extracted; (D and E) The extracted ROIs are used either in training 
or testing deep CNNs. (Reprinted with permission from [29])

A                           B               C                      D

Figure 6  (A and B) US system RS80A (Samsung Medical) equipped with S-Detect function has used the ACR BI-RADS and TI-RADS classifications for 
the standardized analysis of suspected breast and thyroid lesions. (Provided by Samsung with permission)

A

B
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Liver diseases
Liver disease has become a major concern worldwide. 

Approximately 31,000 people in the United States die 
each year from cirrhosis and other chronic liver diseases 
[34]. US imaging is an effective approach to detect liver 
cancer. With an increased demand, more time-effective 
and accurate methods with deep learning application 
into CAD systems has been proposed by researchers. 
Hassan et al. utilized the sparse autoencoder to acquire 
the representation of the liver US image and utilized the 
softmax layer to distinguish different focal liver diseases 
and their method reached a higher accuracy than support 
vector machines method [35]. Liver fibrosis classification 
is also a high priority. Meng et al. utilized the VGGNet 
and fully connected network (FCN) to differentiate the 
level of liver fibrosis [36]. To address the shortage of 
samples, Meng et al. employed the transfer learning (TL) 
technology. The group then divided the liver fibrosis 
level into three phases: normal, early stage fibrosis (S1–

A

B

S3), and late-stage fibrosis (S4). The accuracy of their 
method reached 93.90%. Similar to Meng et al., Liu et al. 
utilized deep learning technology to diagnose cirrhosis 
[37]. In this study CNN is employed as a tool to generate 
features from US images. The researchers adopted the 
SVM as the classifier to distinguish the normal liver 
and the diseased liver, and the accuracy of the proposed 
method reached 96.8% which is much higher than 
the accuracy of low-level features. Byra et al. utilized 
Inception-ResNet-v2 deep convolutional neural network 
to generate liver steatosis assessment, while comparing 
with hepatorenal index technique and the gray-level co-
occurrence matrix algorithm. The network obtained an 
AUC of 0.977 and it is higher than hepatorenal (0.959) 
and much higher than gray (0.893). The Spearman 
correlation coefficient for network, hepatorenal and 
gray were 0.78, 0.80 and 0.39. The Inception-ResNet-v2 
network showed the best performance among the three 
approaches (Fig. 7) [39].

Figure 7  Liver B-mode images and the region of interest (ROIs) selected for hepatorenal sonographic index (HI) calculation, (A) steatosis level of 3% 
and (B) 25%, respectively. (Reprinted with permission from [38]).

Wang et al. Artificial intelligence in ultrasound imaging
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Limitations
Even though the deep learning CAD system in US 

had shown promising performance, further improvement 
is expected. The current deep learning system can not 
only accomplish tasks that are impossible for radiologists 
but may also can make mistakes that a radiologist will 
not [39]. For instance, if radiologists make imperceptible 
alterations to the input data, these changes may not 
be detectable to human eyes, but still affect the result 
of classification from a deep learning system [13]. In 
other words, a small difference can cause a different 
determination or conclusion from a deep learning system.

In order to train deep learning CAD systems, a 
certain amount of consistent and standardized data 
with authenticated reference standard is needed for 
developers. Performing this via retrospective studies may 
create problems with annotated images. Meanwhile, the 
datasets are often not easy to obtain since the companies 
owned them will keep datasets as their proprietary and 
protect their intellectual properties [13]. The validation 
of a deep learning CAD system in the clinic can also 
be a challenge since it often required multi-institutional 
collaboration and effective communication between deep 
learning developers and radiologists [13]. In addition, 
validating a deep learning CAD system is both costly and 
time consuming. Finally, ethical and legal issues may be 
raised when large patient datasets are involved.

Conclusion
Prior efforts on the development of deep learning 

implantation into CAD systems for US have shown 
great potential to eventually become an intelligent tool 
that can surpass human performance. Although there 
are limitations with current deep learning systems, the 
benefits to date are encouraging. In the future, more 
US studies are needed to prove the functionality of 
applying AI. This includes development of improved AI 
models, creation of large, validated imaging data sets 
with reliable reference standards, and the validation of 
systems in prospective fashion. However, it is clear that 
US imaging and radiology as a whole is greatly altered 
following the refinement of these approaches.
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