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Evidence-based genomic diagnosis characterized
chromosomal and cryptic imbalances in 30
elderly patients with myelodysplastic syndrome
and acute myeloid leukemia
Renu Bajaj1,3, Fang Xu1, Bixia Xiang1,4, Katherine Wilcox1, Autumn J DiAdamo1, Rachana Kumar1,
Alexandra Pietraszkiewicz1, Stephanie Halene2, Peining Li1*

Abstract

Background: To evaluate the clinical validity of genome-wide oligonucleotide array comparative genomic
hybridization (aCGH) for detecting somatic abnormalities, we have applied this genomic analysis to 30 cases (13 MDS
and 17 AML) with clonal chromosomal abnormalities detected in more than 50% of analyzed metaphase cells.

Results: The aCGH detected all numerical chromosomal gains and losses from the mainline clones and 113 copy
number alterations (CNAs) ranging from 0.257 to 102.519 megabases (Mb). Clinically significant recurrent deletions
of 5q (involving the RPS14 gene), 12p12.3 (ETV6 gene), 17p13 (TP53 gene), 17q11.2 (NF1 gene) and 20q, double
minutes containing the MYC gene and segmental amplification involving the MLL gene were further characterized
with defined breakpoints and gene contents. Genomic features of microdeletions at 17q11.2 were confirmed by
FISH using targeted BAC clones. The aCGH also defined break points in a derivative chromosome 6, der(6)t(3;6)
(q21.3;p22.2), and an isodicentric X chromosome. However, chromosomally observed sideline clonal abnormalities
in five cases were not detected by aCGH.

Conclusions: Our data indicated that an integrated cytogenomic analysis will be a better diagnostic scheme to
delineate genomic contents of chromosomal and cryptic abnormalities in patients with MDS and AML. An
evidence-based approach to interpret somatic genomic findings was proposed.

Introduction
The identification of recurrent chromosomal abnormal-
ities in various leukemias and the understanding of mole-
cular defects and pathogenic mechanisms underlying
these abnormalities have made cytogenetic analysis valu-
able in providing diagnostic and prognostic parameters
for disease stratification and treatment evaluation [1].
With an average resolution of 6-10 megabases (Mb) on a
300-500 G-band level, conventional karyotyping has been
the current standard for screening chromosomal
abnormalities on metaphases from direct and cultured
bone marrow (BM) and leukemic blood (LB) cells. This
approach requires mitotic active cells and frequently

encounters difficulties due to the low mitotic index and
poor chromosome morphology of leukemic cells. Fluor-
escence in situ hybridization (FISH) tests using targeted
probes to detect gene/locus-specific rearrangements have
enhanced the analytical resolution to 300-800 kilobases
(Kb) and extended conventional metaphase analysis into
interphase cells. Current cytogenetic analysis for patients
with myelodysplastic syndrome (MDS) and acute myeloid
leukemia (AML) involves cell-based conventional chro-
mosomal analysis and FISH assays using a panel of
targeted probes [2,3]. We have previously validated a
DNA-based genome-wide oligonucleotide array com-
parative genomic hybridization (aCGH) for clinical diag-
nosis of constitutional chromosomal abnormalities and
genomic disorders in pediatric patients with mental
retardation and developmental delay [4]. The clinical
utility of this aCGH based on Agilent’s 44K design
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(CGH4410B) has demonstrated an average analytical
resolution of 300-500 Kb and an improved abnormal
detection rate from 5-7% by conventional chromosome
and FISH analyses to 12% by aCGH [5]. Evidence-based
guidelines to interpret genomic findings in the pediatric
patients have been proposed [6,7]. Recently, genome-
wide analyses using BAC-clone aCGH, oligonucleotide
aCGH and SNP array have been applied in a research or
an exploratory setting to profile the genomic alterations
in patients with MDS and AML [8-15]. To evaluate the
diagnostic value of aCGH in detecting somatic chromo-
somal and segmental copy number alterations (CNAs),
we have performed aCGH analysis on 30 MDS and AML
cases with different clonal abnormalities. The results
further characterized the genomic complexity of recur-
rent chromosomal deletions, duplications, amplifications
and cryptic aberrations. Despite its inherent limitation in
detecting recurrent balanced reciprocal translocations
and low level secondary clonal abnormalities, the aCGH
analysis provides detailed genomic features of simple and
complex chromosomal abnormalities and cryptic aberra-
tions otherwise not detectable by conventional G-band
and FISH assays. Integrated chromosome and genomic
analyses and evidence-based interpretation should be a
standardized cytogenomic procedure for patients with
MDS and AML.

Materials and methods
Patient Samples
The Yale cytogenetics laboratory is CLIA-approved and
provides diagnostic services to patients with various
hematopoietic disorders and solid tumors. Follow up
aCGH analyses had been performed on 30 MDS (n =
13) and AML (n = 17) patients with clonal chromoso-
mal abnormalities detected in > 50% of BM or LB cells.
All except one (case #17) were elderly patients with ages
ranging from 51 to 93 years (average 67 years, Table 1).
The criteria regarding the technical feasibility and medi-
cal necessity for pursuing diagnostic aCGH was: 1) suffi-
cient residual BM or LB sample available for DNA
extraction and clonal chromosomal abnormality
detected in > 50% of BM or LB cells analyzed by con-
ventional cytogenetics, 2) presence of chromosomally
unresolved complex rearrangement or marker chromo-
some of unknown origin, and 3) genomic aberrations
suspected in addition to the age-related Y chromosome
loss and other simple chromosomal abnormalities.
Informed consent was obtained from patients for use of
residual materials on further genomic diagnosis.

Conventional Karyotyping and FISH Testing
Conventional chromosome analysis was performed on
submitted BM and LB specimens using our laboratory’s
standardized protocols. Routine FISH tests were

performed using a MDS/AML panel of commercial
probes for the 5q (EGR1 gene at 5q31), 7q (D7S486 at
7q31), 8q (MYC at 8q24) and 20q (D20S108 at 20q12)
loci and for the RUNX1T1 (ETO, 8q21.3), ETV6 (TEL,
12p13.2), RUNX1 (AML1, 21q22), MLL (11q23.3), PML
(15q22), RARA (17q21.1), CBFB (16q22) genes and
other relevant loci (Abbott Molecular, Des Plaines, IL).
To confirm significant cryptic genomic aberrations,
DNA samples from two BAC clones, RP11-1107G21
(NF1 gene at 17q11.2, chr17:26,415,260-26,627,398,
sequence designation per NCBI36/hg18 assembly of the
UCSC Human Genome browser http://genome.ucsc.
edu/ and RP11-55J8 (RHOT1 gene at 17q11.2,
chr17:27,462,203-27,654,151), were purchased from Ros-
well Park Cancer Institute (Buffalo, NY). The labeling of
BAC DNA with fluorescent nucleotides by nick transla-
tion, the hybridization and the image analysis were per-
formed as previously described [4,16].

The aCGH Analysis and Data Analysis
Genomic DNAs were extracted from the residual BM or
LB specimens using Puregene Kit by following manufac-
turer’s instruction (Qiagen Inc., Valencia, CA). DNA
concentration was measured using a NanoDrop spectro-
photometer (ND-1000, Thermo Fisher Scientific Inc.,
Waltham, MA) and high molecular weight DNA quality
was verified by agarose gel electrophoresis. For each
aCGH analysis, 2.5 ug of test genomic DNA from the
patient and 2.5 ug of control DNA from a sex-matched
or -mismatched healthy individual were used following
the manufacturer’s protocol for the Agilent Human
Genome aCGH microarray 44K kit (Agilent Technolo-
gies Inc., Santa Clara, CA). This laboratory has validated
the aCGH procedure to offer 99% sensitivity and 99%
specificity with an average analytical resolution of
300-500 Kb using the log2 ratio from five to seven
contiguous probes, and also demonstrated its capacity in
detecting 25%, 33% and 50% level of mosaicism [4].
The differential labeling of test and control DNAs, com-
parative hybridization onto 4x44K Agilent slides, post-
hybridization wash, slide scanning, image feature extrac-
tion were processed as previously described [4,16]. Data
was analyzed using Agilent’s DNA Analytical (version
4.0) with the built-in ADM-2 algorithm set at threshold
value of 6, a cut off value of 0.25, and a filter of six
probes. All CNAs except the recognized copy number
variants from the Database of Genomic Variants http://
projects.tcag.ca/variation/ were recorded. The base pair
designations from the Agilent 44K array are according
to the March 2006 Assembly (NCBI36/hg18) on the
UCSC Human Genome browser http://genome.ucsc.
edu/. The aCGH finding from each case was compared
with the chromosomally detected clonal abnormality to
further define the breakpoint and the gene content
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involved. Raw data from the 30 cases were loaded onto
the Nexus5 Software (BioDiscovery, Los Angles) to eval-
uate the genome-wide distribution and relative fre-
quency of chromosomal and genomic alterations.

Results
The detected clonal chromosomal abnormalities of the
30 patients were listed in Table 1. All recurrent chromo-
somal deletions and translocations were confirmed by
FISH tests using targeted probes. The aCGH analysis
detected all main clone numerical chromosomal
abnormalities and chromosomally-observed segmental
deletions and duplications. The observed numerical
abnormalities included gains of chromosomes 1, 4, 5, 6,

7, 8, 9, 11, 13, 14, 18, 19, 20 and 22, and losses of chro-
mosomes Y, 5, 7, 13 and 18. No genomic aberration was
noted in two patients with a balanced translocation
(cases #10 and #21, Table 1). In five cases (cases #21,
#26-27, #29-30, Table 1), sideline clones with unba-
lanced chromosomal abnormalities were not detected by
aCGH. A total of 113 CNAs with size ranging from
0.257 to 102.519 Mb were found in 23 patients (an aver-
age of 4.8 CNAs per case and of 20.241 Mb per CNA,
see Additional file 1, Table S1). The genome-wide distri-
bution of chromosomal and genomic copy number
alterations was plotted using the Nexus5 software
(Figure 1). Cases sharing similar cytogenetic abnormal-
ities, such as the 5q deletion or monosomy 5 (n = 9), 7q

Table 1 Recognized chromosomal abnormalities in the 30 patients with MDS and AML

Case# Age(yr) Sample Type Chromosome/FISH Results*

1 71 BM AML 45,XY,del(5)(q11.1q35.1),-11,-12,add(17)(p11.2),i(22)(q10)add(q13),+3mar[13]

2 74 BM MDS 46,X,t(X;3)(p21;p14),del(5)(q21q33)[20]

3 86 LC MDS 50-55,XX,+1,del(5)(q23q34),+9,+11,+13,+14,dup(22)(q11q13),+3mar[cp20]

4 73 BM AML 44,XX,der(5)t(5;17)(q35;q12)del(5)(q14q34),del(7)(p11.2),del(9)(p23p23),-17,-18,t(22;22)(q13.3q11.2)dup(22)
(q11.2q12.3)[15]

5 77 LC AML 42,XX,del(5)(q12q33),-7,idic(8)(p12),dic(12:16)(p13;p13.3),-18,-20,-21,+mar[20]

6 68 BM AML 45,XX,t(1;11)(p22;q22),del(2)(p13p23),del(4)(q11.2q13.3),del(5)(q14q33),del(7)(q22q36),-12,del(13)(q14q34)[14]

7 51 BM MDS 46,XX,del(5)(q14q33)[5]/45,idem,dic(17;20)(p11.2;q11.2)[9]

8 53 BM MDS 44,XX,del(4)(q13q28),-5,t(7;9)(q32;p13),del(12)(p11.2p13),der(17)t(5;17)(p11;p11)[18]

9 61 LC MDS 44,XY,-5,der(7)t(7;12)(p22;q13),r(9),der(10)t(5;10)(p13;p15),add(11)(q23),-12,-13,add(21)(p11),+1-2mar[cp14]

10 55 LC AML 46,XY,t(6;6)(p23;q16)[11]

11 63 LC AML 45,XY,-7[19]

12 63 BM MDS 46,XY,der(6)t(3;6)(q21.3;p22.2),del(7)(q21.13q31.33)[16]

13 78 BM AML 46,XX,del(1)(q12),+del(1),der(2)t(2;3)(p21;p21),del(2)(q31q37),add(5)(q35),del(7)(q22q36),trp(11)(q13q25),
add(17)(q25),+mar[cp19]

14 63 LC AML 47,XY,+8[20]

15 71 BM MDS 46,XY,t(3;21)(q26;q22),+8[17]

16 93 LC AML 50,X,-Y,+4,+5,+7,+8,+8[cp20]

17 20 LC AML 44,XY,der(8)t(8;17)(p11.2;q11.2),-17,-19,-21,+mar[cp20]

18 88 BM MDS 46,XY,del(9)(q12q31)[20]

19 74 BM MDS 47,XX,del(9)(q13q31),+18,4-50dmin[20]

20 78 BM MDS 47,XY,+11[18]

21 66 BM AML 46,XY,t(11;19)(q23;p13.1)[14]/46,idem,del(9)(q21q32)[6]

22 60 BM AML 50,XX,+der(1)t(1;13)(q10;q10),+6,+8,t(8:16)(q22;p13),t(11;19)(q23;p13.1),+19,+20[20]

23 51 LC AML 47,XX,t(15;17)(q22;q21.1),+mar[20]

24 73 BM MDS 46,XY,der(17)t(9;17)(p21.1;q25.1)[18]

25 63 BM AML 46,XY,del(20)(q11.2)[16]

26 51 BM MDS 46,XX,del(20)(q11.2)[10]/47,XX,+8[7]

27 79 BM AML 47-48,X,idic(X)(q13),+idic(X)[10]/47,idem,+8[3]

28 61 BM AML 45,X,-Y[20]

29 69 LC AML 45,X,-Y[10]/47,XY,+der(1)t(1;19)(p13;p13),t(16;20)(q21;q12)[10]

30 79 BM MDS 45,X,-Y[17]/50,idem,+X,+15,+20,-22,+3mar[4]

* bold for most significant chromosomal abnormality in each case.
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deletion or monosomy 7 (n = 3), trisomy 8 (n = 3), 20q
deletion (n = 2), loss of Y (n = 3) and other abnormal-
ities (n = 10), were grouped together to estimate the fre-
quency of other associated aberrations. It was noted that
5q deletions showed many associated recurrent aberra-
tions, especially the 12p deletion (5/9 cases), 17p dele-
tion (3/9) and 17q deletion (2/9). The size distribution
and percentage of detected CNAs listed in Table 2 indi-
cated that conventional chromosome analysis with a
resolution of 5~10 Mb can miss a significant proportion
(44%, 50 CNAs < 10 Mb out of 113 CNAs) of genomic
aberrations.
The comparison between chromosomal abnormalities
and genomic CNAs further delineated the breakpoints
and gene contents involved in both simple and complex
chromosomal rearrangements. For example, of the com-
plex karyotype of case #4, the chromosomally observed
5q deletion was actually a result of an 80.5474 Mb dele-
tion of 5q14.3-q34 followed by a fusion of structurally
rearranged 17q (segmental deletions and duplication);
the 7p deletion was a result of a 20.596 Mb deletion of
7p14.3-p11.2 and a 17.391 Mb deletion of 7p22.1-p15.3;
the 9p had a 3.050 Mb microdeletion of 9p23; and what

was denoted as additional material onto a 22q and a
marker chromosome was most likely a result of a 22q/
22q translocation with a 15.235 Mb duplication and a
11.694 Mb triplication of 22q11.2-q12.3 and a 5.199 Mb
deletion of 22q13.31-q13.33 (Figure 2A, Additional file
1, Table S1). The case-by-case comparison of chromoso-
mal and genomic findings not only defined the

5q-(9)

7q-(3)7q (3)

+8(3)

20q-(2)

-Y(3)

Others(10)

Figure 1 Genome-wide incidence map of abnormal findings from the 30 MDS and AML cases. Complied deletions (red) and duplications
(green) from all cases are shown in the top panel and from subgroups based on the major chromosomal abnormalities of 5q deletion (n = 9),
7q deletion (n = 3), trisomy 8 (n = 3), 20q deletion (n = 2), loss of Y chromosome (n = 3) and others (n = 10) are shown in the bottom panel.

Table 2 Size distribution of genomic imbalances

Size No. of Imbalances Percentage

< 1 Mb 5 3.5

1~5 Mb 30 20.8

5~10 Mb 15 10.4

10~20 Mb 23 16

> 20 Mb 40 27.8

Chr. Gain/Loss 31 21.5

Total 144 100

No. Imbalances per case No. Of Cases Percentage

0 2 6.7

1~5 19 63.3

5~10 4 13.3

> 10 5 16.7
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A.

BB.

Figure 2 Genomic features of chromosomal abnormalities and cryptic alterations. A) Genome and chromosome views and correlated
chromosomal rearrangements for case #4 show large deletion in 5q, truncated deletions in 7p, cryptic deletions in 9p23 and 17q11 (arrows),
large duplication and deletion in 17q, a loss of a chromosome 18, segmental duplication and deletion in 22q. The 17q12-q21.31 duplication and
17q21.31-q24.1 deletion may be translocated onto the deleted 5q, and the 22q11.21-q12.3 duplication and 22q13.31-qter deletion may be
initiated from a 22q/22q translocation. B) Left panel shows a cryptic genomic deletion of 17q11 in case #22 and FISH using probes for the NF1
and RHOT1 genes confirmed the NF1 gene deletion. Middle panel shows a deletion of 17q11.2 including the NF1 and RHOT1 genes in case #5
and a 17q11.2 deletion distal to the NF1 gene in case #13. Right panel shows complex 11q deletion and amplification involving the MLL gene at
11q23.3 in case #1.
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chromosomal abnormalities, but also demonstrated the
genomic heterogeneity of recurrent chromosomal
abnormalities. Chromosomally observed recurrent dele-
tions of 5q, 7q, 9q, 12p, and 20q were all characterized
by aCGH and confirmed in ten, three, two, six, and
three cases, respectively. Of the 10 cases (cases #1~9
and #13 in Table 1) with a 5q deletion or monosomy 5,
a simple deletion of various sizes was seen in seven
cases and compound deletions of two or three segments
were found in three cases (Additional file 1, Table S1).
The deletion of the ETV6 gene at 12p13.2, a gene essential
in hematopoiesis and frequently encountered in transloca-
tions in acute leukemias and MDS, was noted in five of
the six cases with the 12p deletion, including in case #13 a
microdeletion of 1.154 Mb confirmed by FISH using the
ETV6 probe. Segmental rearrangements involving the
TP53 gene by either the whole arm loss or a large deletion
of 17p were noted in four cases (#1, #7-8 and #17). A
chromosomally undetected deletion of 10.981 Mb at
9p21.3-p21.1 involving the CDKN2A and CDKN2B genes
was noted in case #16. Chromosomal analysis recognized
two unrelated clones in case #26 featuring a 20q deletion
and trisomy 8, respectively. The aCGH detected a 14.920
Mb deletion of 1p36.21-p35.3 and a 20.202 Mb deletion of
20q11.23-q13.3 but not the unrelated clone with trisomy
8. This result suggested that the 1p deletion region may
harbor haploinsufficient candidate genes relevant to the
etiology or evolution of MDS and AML.
Microdeletions of 1.510 to 3.615 Mb encompassing

the NF1 gene at 17q11.2 were found in three cases
(cases #4, #5 and #22). FISH analysis using BAC clone
probes for the NF1 and RHOT1 genes confirmed these
deletions (Figure 2B). It was interesting to observe a
transition pattern in case #4 with deletions of NF1
alone, NF1 and RHOT1, and RHOT1 alone in 11%,
12.5% and 34% of cells, respectively. In case #13, a dele-
tion involving the RHOT1 gene but not the NF1 gene
was noted and confirmed by FISH. These results sug-
gested that the 17q11.2 region may contain hot spots
for initiating deletions from either one or both proximal
and distal orientations.
The dmin chromosomes observed in case #19 were

further defined as a 4.277 Mb amplification of 8q24.13-
q24.21 containing genes TRIB1, MYC and CCDC26.
From the log2 ratio of 2.53 for this amplified region, it
was estimated that there were average four dmin chro-
mosomes in each leukemic cell. Compound deletions,
triplications or quadruplications for 11q were noted in
cases #1 and #13, which resulted in complex intrachro-
mosomal rearrangements carrying amplified segments of
the MLL gene (Figure 2B). The derivative chromosome
6, der(6)t(3;6)(q21.3;p22.2), in case #12 was further
defined with breakpoints involving the RAB43 gene at
3q21.3 and the KIAA0319 gene at 6p22.2; and the

isodicentric chromosome of Xp in case #27 was resulted
from break and fusion distal to the PHKA1 gene at
Xq13.1 (Additional file 1, Table S1).

Discussion
Cytogenetics has played a major role in both diagnosis
and prognosis in patients with hematological malignan-
cies. The newly revised WHO classification of acute
myeloid leukemias categorizes AML into subgroups
with recurrent genetic abnormalities, with MDS features,
treatment related and “not otherwise specified"; the last
one is by far the largest category [1]. Cytogenetics is key
components of both the international prognostic scoring
(IPSS) and the WHO classification-based prognostic
scoring systems (WPSS) for the myelodysplastic syn-
dromes [17,18]. However, within all categories prognos-
tic variation is observed, likely among others due to low
sensitivity of conventional cytogenetics [12]. Our data
demonstrated that aCGH can detect chromosomal, seg-
mental and cryptic aberrations in LB and BM cells from
MDS and AML patients. As summarized in Table 2, the
aCGH detected an average of 4.8 CNAs per case ranging
from 0 to 22, of which an approximately 44% were less
than 10 Mb and not evident by conventional cytogenetic
analysis. It is noteworthy while on one hand some rela-
tively large deletions and duplications (> 10 Mb) were
missed or unresolved by conventional chromosomal
analysis, on the other hand chromosomally detected
sideline clones were missed by aCGH. Therefore, an
integrated cytogenomic approach using chromosome
analysis, FISH assay and aCGH would definitely improve
the analytical resolution and abnormality detection rate
for MDS and AML patients.
The interpretation of the clinical significance of

somatic CNAs has been challenge especially for cases
with numerous genomic aberrations. An evidence-based
approach for interpreting constitutional genomic aberra-
tions could be adopted for somatic CNAs with the clas-
sification of research evidence into four levels [6,7].
Level I evidence is derived from recognized disease-
causing clonal chromosomal abnormalities in the WHO
classification [1] or from well-designed systematic stu-
dies; level II evidence comes from series of diagnostic
studies; level III evidence is derived from cohort design
observational studies or basic research of gene functions
and disease mechanisms on in-vitro systems and/or
model animals, and level IV is based on case reports or
expert’s opinions. Genomic findings without evidence
were documented as unknown significance and uninter-
pretable in the laboratory’s database but not presented
in the diagnostic report. We propose a workflow chart
to illustrate the integration of chromosome, FISH and
aCGH procedures and the algorithm for interpreting
results (Figure 3).
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Several systematic genomic studies of MDS and AML
patients have revealed recurrent and hidden CNAs and
provided level I or II evidence for diagnostic interpreta-
tion of genomic findings [8-15]. Rucker FG et al. [8]
performed 2.8 K (2,799 BAC/PAC clones) aCGH analy-
sis of 60 AML cases with complex karyotypes and found
that the most frequent losses were of 5q (77%), 17p
(55%) and 7q (45%) as well as the most frequent gains
of 11q (40%) and 8q (38%). Suela J et al. [9] used the
44K oligonucleotide aCGH to study 100 consecutive de
novo AML cases and noted most recurrent changes of
losses of chromosomes 5, 7, 17 and 20 and gain of chro-
mosome 8. Tyybakinoja et al.[10] used the same 44K
oligonucleotide aCGH to analyze 26 AML patients with
a normal karyotype and detected deletions of 8q24.3,
12p12.3, 1q41, 18q21.32 12p13.2 and duplications of
3p21.3 and 8q24 in four cases. Akagi T et al.[11] used
SNP chip on 38 AML/MDS patients with a normal kar-
yotype and detected CNAs of 3p, 5p, 5q, 7q, 11q, 17p
and 17q as well as trisomies of chromosomes 8, 21 and
22. Starczynowski DT et al.[12] used 32K (32,433 BAC
clones) tiling aCGH on CD34+ cells from 44 MDS
patients and observed that frequent cryptic alterations
included gains of 11q and 17q and losses at 2q and 5q.
Walter MJ et al.[13] reported that, of 86 adult patients
with de novo AML analyzed by SNP array, 40% of

patients with an abnormal karyotype also had additional
CNAs and 24% of patients with normal cytogenetics had
CNAs. Interestingly, similar analysis performed on 111
children with de novo AML noted a low burden of
genomic alterations [14]. A recent exploratory study on
30 cases of MDS, myeloproliferative neoplasia (MPN) or
AML detected genomic aberrations in 24 cases with
concordant aCGH/chromosome results in 83% of sam-
ples and new CNAs in 47% of cases; and normal aCGH
results were noted in four cases with low percentage
clonal abnormality (0.7~5%) detected by chromosome
analysis [15]. The recurrent genomic alterations and
some known genes within the alterations from these
studies were summarized in Table 3. These studies and
our data indicated that genomic analysis can detect
CNAs in 15-40% of AML cases with a normal karyo-
type, in 40-90% of MDS/AML cases with abnormal
clones and in almost 100% of cases with complex chro-
mosomal findings.
Basic researches toward the understanding of gene

functions and disease-causing mechanisms or case
reports with unique clinical and genomic findings could
provide level III and IV evidence for reporting genomic
alterations. Detailed genomic analyses of the malignant
cells in MDS and AML patients is likely to yield specific
types or regions of recurrent chromosomal and genomic
abnormalities providing further evidence for disease
association and allowing identification of to date
unknown candidate genes. Eventually, further classifica-
tion of disease and targeted treatment can potentially
result from such knowledge. The 5q deletion is possibly
the best understood recurrent chromosomal deletion in
myeloid malignancies. Two common deletion regions
(CDR) have been identified conferring either a good
(CDR1) or a poor (CDR2) prognosis, but usually
changes are more complex [19]. All 5q deletions in our
10 cases and in another study of 12 MDS cases with an
isolated 5q deletion by Evers C et al. [20] involved the
loss of the RPS14 gene at 5q33.1, which support the
causal role of RPS14 haploinsufficiency and were speci-
fied in the diagnostic reports [21]. Other haploinsuffi-
ciency genes or miR-145 and miR146a at 5q could also
have causal or modifying effects [22-24], and should
also be referred in the report. A der(6)t(3;6)(q21;p22) in
a patient with AML at relapse and a t(1;6)(q21;p22) in
another patient were reported [25]. We reported here a
der(6)t(3;6)(q21.3;p22.2) likely caused by fusion of the
RAB43 gene at 3q21.3 and the KIAA0319 gene at
6p22.2. Analysis of additional cases with similar 6p22
translocations could clarify if this is a recurrent primary
or secondary rearrangement in AML. Monosomy 7 and
7q deletions portend a particularly poor prognosis in
myeloid malignancies. The candidate genes within the
recurrent 7q deletion are still under investigation and a

MDS/AML

Ch /FISHChr/FISH

NL AbnNL Abn

• >20% blast cells
• Complex chr abn
• CNAs suspected

aCGHYes

No

NL Abn

Evidence basedNo

Report

Evidence-based
(Level I, II, III, IV)

Yes

(uninterpretable)

Figure 3 Integrated cytogenomic workflow and proposed
algorithm for interpreting and reporting clinically significant
genomic findings.
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recent study suggested that the SAMD9, SAMD9L and
Miki (LOC253012) as the candidate genes for 7q21.3
[26]. Two out of the three cases with 7q deletions in
our patients had the 7q21.3 deletion. As reported in the
literature [16,27,28] and also shown from our cases #1,
#13, # 19 and #23, genomic analysis has been used
effectively to define dmin chromosomes of 8q24 and
complex 11q rearrangements with or without the MLL
gene amplification in simple or complex karyotype. The
presence of cytogenetic unresolved marker chromosome
in our case #23 and the reported hidden abnormalities
associated with t(15;17) justified further genomic analy-
sis for this obvious balanced rearrangements [29,30].
Microdeletions at 17q11.2 involving the NF1 gene are
considered to be recurrent cryptic alterations in three of
our cases (#4, #5 and #22) and also documented in sev-
eral reports [9,11-13,31]. The presence of clustered
flanking repetitive sequences of the NF1 locus is a likely
explanation for recurrence of both constitutional and
the somatic deletions [32]; further characterization of
the noted transition pattern for the somatic 17q11.2
deletion could lead to better understanding of its muta-
genesis mechanism.
In conclusion, our current diagnostic application of

aCGH and accumulated evidence from previous studies

support an integrated cytogenomic approach with evi-
dence-based interpretation in MDS and AML patients
with 1) > 20% blast cells with or without clonal chromo-
somal abnormality, 2) with complex chromosomal
abnormalities, and 3) with simple and balanced rearran-
gements or a normal karyotyope but suspected cryptic
abnormalities. This cytogenomic approach may not only
provide a better diagnostic scheme to delineate break-
points and gene contents of chromosomal and cryptic
abnormalities in patients with MDS and AML, but
hopefully allow identification of disease-causing or mod-
ifying candidate genes, and eventually lead to improved
prognostification and treatment of patients with MDS
and AML.

Additional material

Additional file 1: Table S1. Segemental copy number alterations
detected in the 30 MDS/AML patients.
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Table 3 Representative studies showing evidence for relevant genomic alterations in MDS and AML

Patients Case# Methods ADR* Significance Genomic Findings EL* Refs

AML with complex
karyotype

60 2.8K BAC/PAC aCGH 100% Frequent losses of 5q(77%), 17p(55%), 7q(45%), 16q, 18q, 17q, 3p, 12q,
20q, 12p, 18p, 13q, 11q; gains/amplifications of 11q(40%), 8q(38%), 21q,
1p, 9p, 22q, 13q, 6p, 19p

II 8

de novo AML 100 44K oligo-aCGH
(Agilent)

74% Five smallest overlapping regions of imblances: 5q31.3, 16q23.1, 16q24.2,
17q11.2(NF1), 18p11.2

I 9

AML with normal
karyotype

26 44K oligo-aCGH
(Agilent)

15% Cryptic losses of 8q24.11, 12p12.3, 1q41, 18q21,32, 12p13.2(ETV6), gain
3p21.3, dmin 8q24.13-q24.21(MYC)

II 10

MDS/AML with
normal karyotype

38 SNP-chip (Affymetrix) 49% CNN-LOH of 1p, 6p, 8q, 13q, 19p, 5q, 12q, 21q, 9p; losses of 17q11.2(NF1),
12p13.31p13.2(ETV6), 2q36.2, 4q24, 9p21.3p21.2(CDKN2A), 3p26.3, 14q21.2,
21q21.2, 8p23.2, 2p23.1; gains of 1q43, 18q21.2, 8q24.13q24.21(MYC)

II 11

Low risk MDS (CD34+
cells)

44 32K BAC tiling array 82% Recurring common regions: losses of 2p23.1, 2q33.1-q33.2, 4p14,
5q13.1q13.2, 5q14.3q33, 5q33.3, 6p23, 10q21.3, 14q12, 19p12p13.2,
20q11.21q13.13, 22q13.1q13.2; gains of 7q34, 11q12.2, 11q24.2qter,
17q11.2, 17q12

II 12

Adult de novo AML 86 SNP 6.0 genechip
(Affymetrix)

40% 12 recurring alterations found from 201 CNAs: losses of 3p14.1(FHIT),
5q31.1(CTNNA1), 7q31.31, 12p12.3(ETV6), 16q22.1(CEFB), 17p13.1(TP53),
17q11.2(NF1), 18p11.31; amplifications of 8q23.2(MYC), 11q23.3(MLL),
19q13.43, 21q22.2(ETS2)

I 13

Pediatric de novo
AML

111 SNP-chips (Affymetrix) Low# Signficant losses of 5p15.33, 7p21.3, 7q36.1, 8q21.3 (RUNX1T1), 9p21.3
(CDKN2A), 9p21.2(TUSC1), 9p22.33(XPA), 11p14.1, 11q23.3(MLL), 12p13.31,
16p13.11(MYH11), 16q22.1(CBFB), 18p11.21; amplifications of 8q24.21
(CCDC26), 13q32.1(ABCC4), 19p13.2), 21q22.2(ERG, TMPRSS2), 22q12.3.

I 14

MDS/MPN/AML
with abnormal
karyotype

30 SignatureChipWGBAC
(v1.01)

80% Cryptic RUNX1 deletions, hidden deletions of 3q26.2(EVI1), 5q22
(APC),5q32(TCERG1), 12p13.1(EMP1), 12q21.3(KITLG), 17q11.2(NF1), gains of
12p13.32(CCND2)

II 15

MDS/AML with
abnormal karyotype

30 44K oligo-aCGH
(Agilent)

93% Recurring alterations: losses of 5q(RPS14), 12p12.3(ETV6), 17p13(TP53),
17q11.2(NF1), 20q; gains of 8q24(MYC),11q23.2(MLL).

II this
report

*ADR: abnormality detection rate, EL. evidence level, #percentage not specified.
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