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Lymph Node but Not Intradermal Injection Site Macrophages Are
Critical for Germinal Center Formation and Antibody Responses to
Rabies Vaccination

Andrew G. Lytle,a Shixue Shen,a James P. McGettigana,b

Department of Microbiology and Immunologya and Jefferson Vaccine Center,b Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,
USA

ABSTRACT

Replication-deficient rabies virus (RABV)-based vaccines induce rapid and potent antibody responses via T cell-independent
and T cell-dependent mechanisms. To further investigate early events in vaccine-induced antibody responses against RABV in-
fections, we studied the role of macrophages as mediators of RABV-based vaccine immunogenicity. In this report, we show that a
recombinant matrix gene-deleted RABV-based vaccine (rRABV-�M) infects and activates primary murine macrophages in
vitro. Immunization of mice with live RABV-based vaccines results in accumulation of macrophages at the site of immunization,
which suggests that macrophages in tissues support the development of effective anti-RABV B cell responses. However, we show
that draining lymph node macrophages, but not macrophages at the site of immunization, are essential for the generation of ger-
minal center B cells, follicular T helper cells, and RABV-specific antibodies. Our findings have implications for the design of new
RABV-based vaccines for which early immunological events are important for the protection against RABV in postexposure set-
tings.

IMPORTANCE

More than two-thirds of the world’s population live in regions where rabies is endemic. Postexposure prophylaxis is the primary
means of treating humans. Identifying immunological principles that guide the development of rapid and potent antibody re-
sponses against rabies infections will greatly increase our ability to produce more-effective rabies vaccines. Here we report that
macrophages in the draining lymph node, but not in the tissue at the site of immunization are important for vaccine-induced
antibody responses to rabies. Information gleaned from this study may help guide the development of a single-dose vaccine
against rabies infections.

Rabies is a zoonotic viral encephalitis responsible for more than
55,000 human deaths annually (1). Rabies exposure is treated

with postexposure prophylaxis (PEP), consisting of antirabies im-
munoglobulin and inactivated rabies virus (RABV) vaccine over
the course of several weeks (2). While safe and effective, this pro-
tocol is costly and cumbersome for use in developing countries
where rabies remains endemic (3).

Our lab has developed a live replication-deficient RABV-based
vaccine, rRABV-�M, which lacks the matrix (M) gene (4). A sin-
gle immunization with rRABV-�M quickly induces high titers of
protective anti-RABV antibodies in mice, dogs, and nonhuman
primates (4, 5). We have also used rRABV-�M to delineate host
anti-RABV immunity, demonstrating that rRABV-�M induces
both a potent germinal center (GC) response and a T cell-inde-
pendent antibody response (6) that includes early titers of anti-
RABV IgM that contribute to host protection (7). rRABV-�M
also infects and activates primary B cells in vitro, inducing an an-
tigen-presenting cell (APC) phenotype (8, 9).

Macrophages are phagocytic cells of the innate immune system
that mediate a range of physiologic and immune functions and are
ubiquitous within peripheral tissues and secondary lymphoid or-
gans (10, 11). Resident tissue macrophages are abundant in mus-
cle as well as the dermis, where they perform vital immune sur-
veillance and muscle/connective tissue remodeling functions (10).
These macrophages are derived from embryonic precursor cells,
and under normal homeostasis, they undergo a low level of repli-
cation to sustain the population without the need for replenish-

ment from bloodstream monocytes. Upon mechanical injury or
microbial infection, fibroblasts and resident immune cells release
chemokines such as CCL2 (chemokine C-C motif ligand 2) that
recruits monocytes from the circulating blood to the site of dam-
age (11, 12). Depending on the balance of chemical signals such as
conserved pathogen markers (lipopolysaccharide and viral RNA/
DNA), inflammatory cytokines (alpha/beta interferon [IFN-�/�]
and interleukin 1 [IL-1]), and tissue growth factors (fibroblast
growth factor [FGF] and vascular endothelial growth factor
[VEGF]), activated resident and recruited macrophages can be
polarized into the broadly characterized proinflammatory M1
phenotype or the wound-healing M2 phenotype (12–15). M1 po-
larization is characterized by inducible expression of proinflam-
matory cytokines such as tumor necrosis factor alpha (TNF-�)
and activation toward potent phagocytosis and an antigen-pre-
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senting phenotype, which may induce migration of activated mac-
rophages to the draining lymph node (LN) to participate in the
development of the adaptive antibody and T-helper responses (11,
16). M2 polarization is characterized by induction of arginase and
inducible nitric oxide synthase (iNOS) intracellular expression
and activation toward anti-inflammatory functions that promote
tissue regeneration and remodeling by fibroblasts (16). While M1
type activation may directly contribute to the antibody response
in the draining LN, M2 activation can be physiologically impor-
tant in the repair of tissues providing physical barriers to further
infection (11, 13, 14, 16).

Resident macrophages of the LN include medullary macro-
phages in the medullary cords of the LN and subcapsular sinus
(SCS) macrophages, which line the surface of the follicle, facing
the antigen-rich lymph-filled outer sinus of the efferent lymphatic
drainage system (11). While medullary macrophages serve to
phagocytose and degrade excess particulate antigens that have
flowed through the LN cortex, the subcapsular sinus macrophages
are of particular interest in the early LN immune response as they
receive first contact with lymph-borne antigen reaching the LN
from the site of immunization (11). Possessing a lower phagocytic
rate than medullary and other tissue macrophages, macrophages
lining the subcapsular sinus are specialized for the trapping and
translocation of lymph-borne antigens from the sinus lumen to
the B cell-rich follicles underlying the basal surface (11, 17). As
such, they have been found to be critical in mouse models for the
trapping of vesicular stomatitis virus (VSV) in the draining LN
and presentation of viral antigens to B cells (18). Their depletion
results in the death of the mouse from what is in wild-type mice a
nonlethal dose of VSV due to the systemic spread of virus from the
skin inoculation site (19).

Previous studies have demonstrated that bone marrow-de-
rived macrophage cell lines are infected by attenuated RABV in
vitro. RABV establishes a productive, long-term in vitro infection
in murine bone marrow-derived monocytes, which stimulates the
development of an antiviral state in the cells and expression of
markers of antigen presentation such as CD86 (20, 21). However,
no studies have examined the response of primary macrophages to
RABV or the role macrophages play in B cell responses to RABV
vaccination in vivo.

The susceptibility of bone marrow-derived and cell line
macrophages to RABV infection, coupled with their varied and
important functions at both the sites of intramuscular (i.m.) or
intradermal (i.d.) immunization and the draining LN, makes
macrophages a cell type likely to be implicated in promoting the
generation of a protective response to RABV-based vaccines. We
hypothesized that LN macrophage subsets are significant contrib-
utors to the early and potent antibody response observed with
rRABV-�M due to their proximity to B cell zones and their ability
to influence B cell antigen exposure. We aimed to test this hypoth-
esis using the well-described clodronate-loaded liposome (CLL)
macrophage depletion technique. Liposomal encapsulation of
clodronate targets the drug to macrophage populations, inducing
rapid and highly specific apoptosis while leaving other immune
cell types, including dendritic cells, intact (22). This protocol en-
ables site-specific transient depletion of macrophage subsets,
which we used to target immunization site and/or LN-resident
macrophages during the early stages of the immune response to
rRABV-�M immunization. Using this method, we show that
macrophages in the LN, but not in the immunization site tissue,

are essential to the development of germinal center B cells, follic-
ular T helper cells, and anti-RABV antibody responses.

MATERIALS AND METHODS
In vitro macrophage infections and flow cytometry. Spleens were
collected from 6- to 10-week-old C57BL/6 mice (NCI), homogenized,
and cultured in RPMI-based splenocyte medium (9) for 2 days with
rRABV-�M or UV-inactivated rRABV (UV-rRABV) at a multiplicity
of infection (MOI) of 5 or mock infected (8). Cells were harvested,
blocked with CD16/32 Fc block (BD Biosciences) in phosphate-buff-
ered saline (PBS) buffer containing 2% fetal bovine serum (FBS)
(fluorescence-activated cell sorting [FACS] buffer), and then stained
for markers, including RABV nucleoprotein (RABV-N)–fluorescein
isothiocyanate (FITC) (Fujirebio Diagnostics), F4/80-peridinin chlo-
rophyll protein (PerCP)-Cy5.5, CD11b-allophycocyanin, major histo-
compatibility complex class II (MHCII)-Alexa Fluor 700, and CD80-
phycoerythrin (PE). Samples were fixed in 3% paraformaldehyde and
immediately analyzed on a BD LSRII flow cytometer. Data were ana-
lyzed using FlowJo (Treesoft) and Prism 5 (Graphpad) software.

Mouse immunizations and tissue macrophage staining. Six- to 10-
week-old female C57BL/6 mice were immunized in the hind leg medial
quadriceps or hind leg footpads with 107 focus-forming units (FFU) of
rRABV-�M or PBS. Two days later, muscle and footpad samples were
collected on ice, minced into small pieces, and digested with Pronase
(Calbiochem) (1,000 U/ml) for 1 h at 37°C, with trituration every 15 min
to aid digestion. Digested tissue was filtered through a 100-�m cell
strainer, and the filtrate was dissolved in 5 ml of 30% Percoll in PBS
(Sigma), which was layered over 5 ml of 70% Percoll in PBS. Percoll
gradients were centrifuged at 1,000 � g for 20 min, and cells at the 30%/
70% Percoll interface were collected (protocol adapted from references 19
and 21). The cells were then stained for CD11b and F4/80 as described
above, and samples were analyzed on a BD LSRII flow cytometer before
being analyzed using FlowJo (Treesoft) and Prism 5 (Graphpad) software.

Macrophage depletion with clodronate liposomes. Clodronate-
loaded liposomes (CLLs) (Clodrosomes; Encapsula Nano Sciences) (5
mg/ml clodronate), or sham PBS injections, were administered to female
C57BL/6 mice aged 6 to 10 weeks by intravenous (i.v.) retro-orbital (150
�l) and i.d. footpad (50 �l) routes on days �3, �1, �1, and �3 relative to
immunization on day 0 with 103 FFU rRABV-�M or 50 �l PBS. Depletion
was verified on days 0 to �4 by staining spleen, popliteal LN, or footpad
skin samples for CD11b and F4/80, and samples were analyzed by flow cy-
tometry as described above. Blood was collected by intraorbital puncture on
days 5, 7, and 10 postimmunization, and serum antibodies to RABV glyco-
protein (RABV-G) were measured by an enzyme-linked immunosorbent
assay (ELISA) as described in reference 23. On day 10 postimmunization,
draining popliteal LNs were collected, homogenized, and stained with
B220-PerCP, Fas-PE-Cy7, GL7-FITC, CD3ε-Alexa Fluor 450, CD4-allo-
phycocyanin, chemokine (C-X-C motif) receptor 5 (CXCR5)–PerCP–
Cy5.5, and PD-1–PE as described in references 6 and 24. Samples were run
on a BD LSRII flow cytometer and analyzed using FlowJo (Treesoft) and
Prism 5 (Graphpad) software.

This work was approved and completed in compliance with
Thomas Jefferson University Institutional Animal Care and Use Com-
mittee (IACUC).

RESULTS
Live RABV-based vaccines infect and activate primary murine
macrophages. As previously published by our research group (8,
9), a small population of non-B cells from primary cultures of
mouse splenocytes are infected by RABV-based vaccines. To de-
lineate whether primary murine macrophages are infected and
activated by live RABV-based vaccines, naive mouse splenocytes
were cultured in vitro for 2 days with rRABV-�M or UV-inacti-
vated recombinant RABV (UV-rRABV) at a multiplicity of infec-
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tion (MOI) of 5 or mock infected (8). Significant infection of
primary macrophages (CD11bhi F4/80hi as described in reference
25) was observed with rRABV-�M compared to mock infection
or UV-rRABV treatment (Fig. 1B and E), as determined by intra-
cellular staining for RABV nucleoprotein (RABV-N). RABV-in-
fected macrophages upregulated expression of MHCII (Fig. 1C
and F) and, to a lesser but still significant extent, the costimulatory
receptor CD80 (Fig. 1D and G), suggesting activation to an APC
phenotype (12). Macrophages from splenocyte cultures contain-
ing UV-rRABV showed no significant elevation of RABV-N stain-
ing nor any significant upregulation of MHCII or CD80 compared
to macrophages from mock-infected splenocyte cultures. In our in
vitro infection system, splenic macrophages thus respond to live
but not inactivated RABV.

Live RABV-based vaccines induce the accumulation of mac-
rophages at the site of immunization. Macrophages are the most
abundant type of immune cell present in muscle (14, 15), the most
common site of RABV immunization, and are also present in the
dermis of skin, which serves as an alternate site of immunization for
RABV (2). Therefore, having demonstrated that rRABV-�M infects
and activates primary macrophages in vitro, we examined the in vivo
response of tissue macrophages to inoculation by rRABV-based vac-
cines. Two days following an intramuscular hind leg injection of 107

FFU of rRABV-�M or a mock immunization with 50 �l of PBS,
muscle was collected and stained for CD11b and F4/80. Macrophages
were more numerous in hind leg muscle immunized with
rRABV-�M than in muscle given a sham immunization (Fig. 2A to
C). Foreleg muscles of mice immunized in the hind leg showed no
increase in macrophage populations (data not shown), suggesting a
local effect of RABV at the immunization site. Repeating this protocol
with hind footpad skin demonstrated a similar elevation of local der-
mal macrophage populations 2 days following intradermal
rRABV-�M immunization (Fig. 2D).

LN-resident, but not immunization site macrophages, are
critical for anti-RABV B cell responses. We next aimed to deter-
mine a functional role for these elevated macrophage populations

at the immunization site compared to lymph node-resident mac-
rophages, in driving the immune response to rRABV-based vac-
cines. Clodronate-loaded liposomes (CLLs) (22) were adminis-
tered both retro-orbitally and intradermally, routes that allowed

FIG 1 In vitro infection of primary mouse splenic macrophages by rRABV-�M. Primary murine splenocytes were infected for 2 days with rRABV-�M or
UV-inactivated RABV (UV-RABV) at an MOI of 5 and then analyzed for macrophage infection and activation. (A) Example of CD11b� F4/80� macrophage
population flow cytometry gating strategy in a sample of primary splenocytes. (B to D) Overlaid histograms of RABV nucleoprotein (RABV-N) (B), MHCII (C),
and CD80 (D) staining. The percentage of the maximum is shown on the y axes in panels B to D. (E to G) Percent RABV-N-positive (RABV-N�) (E) and mean
fluorescence intensity (MFI) of MHCII (F) and CD80 (G) expression of CD11b� F4/80� cells by in vitro treatment. There were six mice per group for all groups.
Values that are significantly different (P 	 0.001) by unpaired, two-tailed Student’s t test are indicated by a bar and asterisks (***).

FIG 2 Immunization of mouse hind leg muscle and footpad skin with live RABV-
based vaccines induces the accumulation of macrophages at the inoculation site.
C57BL/6 mice were immunized intramuscularly or intradermally (footpad) with
107 FFU of rRABV-�M or mock immunized with PBS alone. Two days postim-
munization, samples of muscle or footpad skin were collected and analyzed for the
presence of macrophage population by flow cytometry analyses. (A and B) Rep-
resentative contour plots of CD11b� F4/80� cells collected from processed muscle
samples of mice infected with rRABV-�M (A) or mock infected with PBS (B). (C)
Percent macrophage composition of processed muscle tissue from mice immu-
nized with the indicated vector (n 
 8). (D) Percent macrophage composition of
processed footpad skin from mice immunized with rRABV-�M versus mice im-
munized with PBS (n 
 3). Values that are significantly different (P 	 0.001) by
unpaired, two-tailed Student’s t test are indicated by a bar and asterisks (***).
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us to deplete systemic reservoir, draining LN, and immunization
site macrophage populations from mice prior to immunization
(13, 22, 26). Macrophage depletions were verified in spleen, pop-
liteal LNs, and footpad on days 0 to �4 by verifying the specific
absence of CD11bhi F4/80hi macrophages and the continued pres-
ence of CD11bhi CD11chi dendritic cells (Fig. 3A and data not
shown). Sham-depleted control mice demonstrated robust germi-
nal center (GC) B cell (Fig. 3B and C) and T follicular helper (Tfh)
cell (Fig. 3D and E) responses and antibody responses (Fig. 4) to

rRABV-�M immunization, responses that were ablated in mice
depleted of macrophages, with the exception of a very limited,
highly suppressed GC B cell response. Thus, macrophages play a
role in mediating the response to rRABV immunization as dem-
onstrated by the absence of an antibody response in mice system-
ically depleted of macrophages.

The contributions of immunization site- and draining LN-
based macrophages to vaccine-induced immunity can be sepa-
rated by targeting CLL-mediated depletion to specific tissues (13).
Female C57BL/6 mice aged 6 to 10 weeks were depleted of mac-
rophages by CLL injections via an i.m. route (gastrocnemius, 50
�l) to target popliteal LN macrophages alone (26) or via i.v. plus
i.d. routes (as in Fig. 3) to target footpad, popliteal LN, and sys-
temic reservoir macrophage populations. The CLL treatment, im-
munization schedule, macrophage depletion verification, and
sample collection and analysis were performed as described in the
legend to Fig. 3, and the specific absence of macrophages from the
popliteal lymph node was confirmed (Fig. 5A). “LN Depleted”
mice with intact footpad and systemic macrophage populations
but depleted of LN macrophages lacked GC B cell and Tfh re-
sponses, as well as RABV-specific antibodies, to i.d. immunization
with 103 FFU of rRABV-�M, similar to “Full Depleted” mice lack-
ing macrophages at all sites (Fig. 5). Therefore, draining LN mac-
rophages are essential mediators of the immune response to intra-
dermal footpad rRABV immunization, while macrophages at the
immunization site are not sufficient to drive the early antibody
and germinal center responses.

DISCUSSION

In this report, we demonstrated the in vitro infection and activation of
macrophages by an rRABV-�M vaccine, as well as the role macro-
phages play in the in vivo response to rRABV-�M immunization.
Although macrophages accumulate at the site of rRABV-�M immu-
nization, we found that LN macrophages alone are essential for the
early antibody and germinal center responses to rRABV immuniza-
tion.

Splenic macrophages infected in vitro by rRABV-�M are acti-
vated toward an antigen presentation phenotype, as demonstrated
by the elevation of the markers MHCII and CD80. These data
are in line with our previous studies on in vitro infection of B
cells, which displayed a similar activation marker profile upon
infection with rRABV-�M. However, while B cells cultured
with rRABV-UV in vitro (described in reference 8) displayed
modest increases in RABV-N and activation marker staining,
splenic macrophages cultured under the same conditions re-

FIG 3 CLL-mediated depletion profoundly suppresses the development of
GC B cells and Tfh cells in response to 103 FFU rRABV-�M. Mice were treated
with clodronate-loaded liposomes (CLL) retro-orbitally and intradermally to
deplete macrophages from systemic reservoirs, popliteal LNs, and footpad
prior to immunization with 103 FFU rRABV-�M or mock immunized with
PBS. (A) Representative contour plots demonstrating depletion of CD11b�

F4/80� macrophages by CLL treatment in spleen, popliteal LNs, and footpad
skin on day 1 postimmunization. (B) Representative gating strategies for pop-
liteal LN GC B cells (B220� Fashi GL7hi). (C) Percent popliteal LN GC B cells
out of total B220� B cells. (D) Representative gating strategy for popliteal LN
Tfh cells (CD3ε� CD4� CXCR5hi PD-1hi). (E) Percent popliteal LN Tfh cells
out of total CD4� T cells in macrophage-depleted versus non-macrophage-
depleted (nondepleted) mice (n 
 8), immunized with either rRABV-�M or
PBS. Values that are significantly different are indicated by a bar and asterisks
as follows: *, P 	 0.05; **, P 	 0.01; ***, P 	 0.001.

FIG 4 CLL-mediated depletion of macrophages eliminates the antibody re-
sponses to 103 FFU of rRABV-�M. Blood was collected as a source of serum
from the mice described in the legend to Fig. 3. (A and B) Anti-RABV-G IgM
(A) or IgG (B) antibody titers were measured by ELISA from macrophage-
depleted versus non-macrophage-depleted mice immunized with rRABV-�M
or PBS (n 
 8). Values that are significantly different (P 	 0.001) are indicated
by a bar and asterisks (***).
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sponded only to live rRABV infection. Although macrophages are
more potent antigen-presenting cells than B cells, it is clear from
our data that not all infected macrophages display elevated levels
of MHCII and CD80 on day 2 of culture. Explanations for this
include the possibility that by choosing a single time point to
analyze, we miss activation marker upregulation on infected mac-
rophages both before and after day 2 of in vitro culture. Our stud-
ies of infected B cells show that infection begins as early as day 1 of
culture and continues to increase until at least day 4, while activa-
tion marker upregulation does not follow such a pattern of accu-
mulation. Thus, it is possible that some of the infected macro-
phages we detect on day 2 include cells that have already
downregulated or that have yet to upregulate activation marker
expression in response to infection. On the basis of this data, we
conclude that infected macrophages have the ability to become
activated in the presence of live RABV-based vaccination.

Our in vivo studies provide clear demonstration of the essential
role that LN macrophages play in the early response to rabies-
based vaccines. The importance of mouse splenic macrophages to

the GC response to keyhole limpet hemocyanin immunization
was previously demonstrated (27), but limited investigation has
been made into the role of immunization site tissue and LN mac-
rophages in promoting effective viral immunization. With a high
dose (106 FFU) of rRABV-�M, LN macrophage depletion im-
pacted the strength of the GC response but not titers of RABV-
specific antibodies (data not shown), perhaps due to alternative B
cell activation and antibody production mechanisms that func-
tion only at higher antigen concentrations, implying a dose-de-
pendent requirement for macrophages in RABV vaccine-induced
immunity.

The interface between LN macrophages and B cells presents a
particularly intriguing setting for a model of immune activation
by RABV-based vaccine immunization. A layer of subcapsular
sinus (SCS) macrophages coats the LN follicles, separating the B
cell zone from the efferent lymph. SCS macrophages have been
implicated as an important target for lymph-borne viruses and
antigen (11, 17). The phagocytic capacity of SCS macrophages is
less than connective tissue or medullary macrophage subsets, en-

FIG 5 LN macrophages are essential for the antibody and germinal center responses to 103 FFU of rRABV-�M. Mice were treated with CLLs. The CLLs were
injected intramuscularly to deplete popliteal LN macrophages alone or intravenously and intradermally to target footpad, popliteal LN, and systemic reservoir
macrophage populations. Immunization, macrophage depletion verification, and sample collection were performed as described in the legends to Fig. 3 and 4.
(A) Representative gating strategy verifying depletion of macrophages in the LN but not in the spleen or footpad. (B) Levels of RABV-G-specific IgM from CLLs
injected intramuscularly (LN depletion alone) versus CLLs injected intravenously and intradermally (footpad, LN, and systemic macrophage depletion) versus
PBS-injected (non-macrophage-depleted) mice, immunized with rRABV-�M. (C) Levels of RABV-G-specific IgG. (D) Percent popliteal LN GC B cells out of
total B220� B cells on day 10 postimmunization. (E) Popliteal LN T follicular helper cells as a percentage of total CD4� T cells on day 10 postimmunization. There
were eight mice per group for all groups. Values that are significantly different (P 	 0.001) are indicated by a bar and asterisks (***).
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abling antigen to be transported intact from the outer surface to
the inner surface of the subcapsular lining, where it is presented to
the B cell-rich follicle (11). This occurs via both internal and sur-
face mechanisms that work in concert to polarize the SCS macro-
phage toward efficient presentation of lymph-borne antigens to B
cells (19). Furthermore, cross talk between the SCS macrophages
and B cells works to preserve the structural integrity of the LN
follicle via cytokines such as lymphotoxin � (19). Just as work
using the VSV model has demonstrated the importance of the SCS
macrophage layer to the B cell response to VSV infection (18, 19),
it seems likely that this macrophage population is also responsible
for our observation that LN macrophage populations are neces-
sary for the antibody response to rRABV-based vaccines. A mouse
model linking diphtheria toxin receptor expression to the CD169
gene, a characteristic surface marker of subcapsular sinus macro-
phages, leads to targeted ablation of this macrophage subset fol-
lowing administration of diphtheria toxin (28). This spares med-
ullary LN and peripheral tissue macrophage populations and
would therefore be an ideal model to test our hypothesis of the
importance of subcapsular sinus macrophage-B cell interactions
to the development of an antibody response.

The inability of i.d. tissue macrophages at the immunization
site to promote any significant early primary antibody response in
the absence of LN macrophages was surprising, given the potency
of activated, differentiated macrophages as inflammatory patho-
gen sensors and APCs in draining LNs (12, 14). However, this
finding is consistent with the diverse functions of tissue macro-
phages in tissue repair and regeneration (14, 15), which may be the
purpose of the accumulated macrophages our lab detected at sites
of intramuscular and intradermal high-dose rRABV-�M immu-
nization. Further characterization of these macrophages as tissue-
resident or recent inflammatory recruits from the circulation
could illuminate their role in RABV immunity (29).

Closer studies of the connective tissue macrophage responses
to RABV-based vaccine administration could also enhance our
understanding of rabies pathogenesis. Macrophages have been
implicated as potential reservoirs of RABV virus due to their sus-
ceptibility to RABV infection, their ubiquitous presence in pe-
ripheral tissues, and their ability to enter the lymph and blood
circulatory systems upon activation (21). This has been a cause for
clinical concern in the transplant of solid organs, where organs
harvested from a deceased donor who was not known to have
rabies encephalitis at the time of harvest have subsequently trig-
gered lethal rabies infections in immunosuppressed recipients
(30). Infected macrophages and monocytes are hypothesized to be
responsible for the transmission of infection in these cases (30).
We observed accumulation of macrophages at the site of rabies
immunization, which could be due either to proliferation of resi-
dent skin and muscle tissue macrophages or to recruitment of
circulating monocytes via CCR2 (chemokine C-C motif receptor
2) and CX3CR1 (fractalkine receptor 1) sensing of chemokines
released by infected and damaged tissues (13, 14). Characteriza-
tion and mapping the fate of these populations could provide
insight into the dissemination of RABV via infected macrophages
(14). Although these tissue macrophage populations appeared
dispensable for an antibody response to rRABV-�M immuniza-
tion, infected macrophages could nevertheless be important for
the local immune and repair responses to RABV infection or for
the persistence of RABV in peripheral tissues.

Our work suggests that one of the keys to early immunogenic-

ity of live rRABV vaccines is LN macrophages, and targeting these
macrophages for activation whether by adjuvants or activating
molecules such as ICAM-1 (intercellular adhesion molecule 1) (9)
may further enhance the potent immunogenicity we observe with
rRABV-�M. However, our short-term depletion studies did not
examine the role of macrophage populations in mediating the
long-term memory and plasma cell response to rRABV-based vac-
cines. While immunization site macrophages appear unnecessary
for the early antibody response, they may yet play roles in limiting
the spread of pathogenic rabies or in repairing muscle tissue fol-
lowing the mechanical and inflammatory stress of an injection.

Overall, our work here has demonstrated the contribution of
LN macrophages to the antibody response to rRABV-�M immu-
nization, opening new avenues of research for the understanding
and enhancement of RABV vaccine immunogenicity.
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