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ARTICLE

Mutational patterns in chemotherapy resistant
muscle-invasive bladder cancer
David Liu 1,2, Philip Abbosh3, Daniel Keliher1,2, Brendan Reardon1,2, Diana Miao1,2, Kent Mouw1,

Amaro Weiner-Taylor2, Stephanie Wankowicz1,2, Garam Han1,2, Min Yuen Teo4, Catharine Cipolla4, Jaegil Kim2,

Gopa Iyer 4, Hikmat Al-Ahmadie4, Essel Dulaimi3, David Y.T. Chen3, R. Katherine Alpaugh3,

Jean Hoffman-Censits5, Levi A. Garraway1,2, Gad Getz 2, Scott L. Carter1,2, Joaquim Bellmunt1,2,

Elizabeth R. Plimack 3, Jonathan E. Rosenberg4 & Eliezer M. Van Allen 1,2

Despite continued widespread use, the genomic effects of cisplatin-based chemotherapy and

implications for subsequent treatment are incompletely characterized. Here, we analyze

whole exome sequencing of matched pre- and post-neoadjuvant cisplatin-based che-

motherapy primary bladder tumor samples from 30 muscle-invasive bladder cancer patients.

We observe no overall increase in tumor mutational burden post-chemotherapy, though a

significant proportion of subclonal mutations are unique to the matched pre- or post-

treatment tumor, suggesting chemotherapy-induced and/or spatial heterogeneity. We sub-

sequently identify and validate a novel mutational signature in post-treatment tumors con-

sistent with known characteristics of cisplatin damage and repair. We find that post-

treatment tumor heterogeneity predicts worse overall survival, and further observe altera-

tions in cell-cycle and immune checkpoint regulation genes in post-treatment tumors. These

results provide insight into the clinical and genomic dynamics of tumor evolution with

cisplatin-based chemotherapy, suggest mechanisms of clinical resistance, and inform

development of clinically relevant biomarkers and trials of combination therapies.
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C isplatin-based chemotherapy remains a mainstay of
treatment in many cancers1, yet the genomic effects of
cisplatin-based chemotherapy and implications for sub-

sequent treatment strategies, including immune checkpoint
blockade2, are incompletely characterized. Since a standard of
care for muscle invasive bladder cancer (MIBC) is neoadjuvant
cisplatin-based chemotherapy followed by cystectomy3–5, pre-
treatment tumor biopsy and post-chemotherapy cystectomy
specimens are clinically available, creating an ideal setting to
identify genomic effects specifically of cisplatin-based treatment
in MIBC. Furthermore, it has been proposed that a combination
of chemotherapy and immune therapy may result in synergistic
efficacy2 through multiple mechanisms, including increased
mutation and neoantigen load induced by DNA-damaging agents
such as cisplatin. In this setting, understanding the effect of
chemotherapeutic agents in clinical samples is critical to inform
the design of combination or sequential therapies. A recent study
of genomic heterogeneity in matched primary muscle invasive
bladder cancer (MIBC) and mixed post-treatment metastatic and
primary tumors have revealed complex phylogenies and clonal
selection in advanced urothelial cancers6. We hypothesized that a
genomic assessment of patient-matched pre- and post-platinum
based chemotherapy specimens from the same anatomic site may
allow deeper characterization of features specifically associated
with treatment exposure itself (rather than features associated
with the metastatic process), and that these features may directly
inform the role of cytotoxic chemotherapy in this setting.

Towards that end, we examined a cohort of MIBC patients who
underwent cisplatin-based neoadjuvant chemotherapy followed
by cystectomy and analyzed genomic tumor changes in matched
pre- and post-treatment bladder tumor samples.

Our primary results include the finding that mutational
and neoantigen load is not significantly increased after
therapy in matched post-treatment primary tumor samples
despite DNA-damaging therapy. We observe mutations private
to pre- and post-treatment samples and find that they are
primarily subclonal, suggesting chemotherapy-induced selection
though sampling heterogeneity likely also plays a part. To
further dissect chemotherapy-induced mutations, we perform a
mutational signature analysis and discover a novel signature
in post-cisplatin-based-chemotherapy tumor samples sharing
features with a pre-clinical experimentally derived cisplatin-
induced mutational signature, and consistent with known
characteristics of cisplatin damage and repair. We then validate
this signature in an additional independent cohort of pre-
and post-cisplatin therapy matched urothelial carcinomas.
We further find that increased intratumoral heterogeneity is an
independent negative predictor of overall survival in this
chemotherapy-resistant cohort adjusting for clinical covariates.
Finally, we observe alterations in cell-cycle and immune
checkpoint regulation genes in post-treatment tumors.
These results provide insight into the clinical and genomic
dynamics of tumor evolution with cisplatin-based chemotherapy,
suggest mechanisms of clinical resistance, and inform
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Fig. 1 Overall chemotherapy associated changes in genomic alterations. a Schematic overview of tumor tissue collection in the context of neoadjuvant
cisplatin-based chemotherapy, followed by whole-exome sequencing and analysis. The 25th to 75th percentile time between diagnosis and cystectomy
samples was 3.6–5.8 months. b Inferred changes in mutational load per patient from pre-treatment to post-treatment. Overall, there is no statistically
significant change in the total mutational load (mean change= −17.3, paired t-test p= 0.20). c Breakdown of mutations private to the pre-treatment tumor,
post-treatment tumor, and common to both. The mean number of “pre-only” mutations (private to pre-treatment tumor) and “post-only” mutations
(private to post-treatment tumor) mutations is 64.7 (SD= 81.1) and 47.5 (SD= 46.9), respectively. d Boxplot of pre-treatment, shared, and post-treatment
subclonal mutations. There are almost no shared subclonal mutations (median 3.5 mutations, 25th–75th percentile 1–15 mutations). There is a statistically
significant difference between the number of inferred subclonal pre-treatment and shared, and shared and post-treatment mutations (Mann–Whitney U p
= 1.2e-04, p= 1.9e-05 respectively). e Boxplot of pre-treatment, shared, and post-treatment clonal mutations. There is no statistically significant difference
between the number of inferred clonal mutations in the pre-treatment tumors and shared between pre and post-treatment tumors, and shared mutations
and post-treatment mutations (Mann–Whitney U p= 0.38, p= 0.51). SD Standard Deviation, N.S. Not statistically significant; “*”Indicates p< 0.05;
“**”Indicates p< 0.01
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development of clinically relevant biomarkers and trials of com-
bination therapies.

Results
Patient cohorts and genomic landscape. From two prospective
clinical trials and a previously published cohort7–9, we identified
a cohort of MIBC patients who underwent neoadjuvant cisplatin-
based chemotherapy (gemcitabine and cisplatin (GC); or
methotrexate, vinblastine, adriamycin, and cisplatin (MVAC))
and subsequent cystectomy. We performed whole exome
sequencing on matched pre-chemotherapy biopsy tissue, post-
chemotherapy cystectomy tumor tissue, and peripheral blood as a
germline control (Fig. 1a) in patients with resistant disease at
cystectomy (n = 56). After quality control (Methods), results from

30 non-responders were available for analysis using multiple
analytical pipelines (Methods). Relevant demographic, treatment,
and tumor characteristics are summarized in Supplementary
Data 1 and 2. In our cohort, the most frequently altered driver
genes10 were TP53 (68%), KMT2D (28%), CDKN2A (23%),
ARID1A (22%), PIK3CA (22%), and RB1 (20%) (Supplementary
Fig. 1).

Changes in mutational and neoantigen load after chemother-
apy. We hypothesized that DNA-damaging chemotherapy may
lead to increased mutational load in post-treatment tumor.
However, we observed no statistically significant change in
mutation load in our cohort (mean change = −17.3 mutations,
paired t-test p = 0.20, Fig. 1b). Examination of specific mutations
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Fig. 2 Mutations and mutational signatures in pre- and post-treatment tumors. a Mutations and mutational signatures in pre-treatment tumors. The top
bar graph shows the number of mutations per trinucleotide sequence motif across all pre-treatment tumors. The bottom two bar graph shows the
mutational signatures inferred in pre-treatment tumors. Two mutational signatures, matching previously described mutational signatures associated
with APOBEC activity (cos sim= 0.99 with average of COSMIC Sig 2 and 13,= 0.82 with each individually), and nucleotide excision repair (NER) deficit
(cos sim= 0.91 with COSMIC 5), were discovered. The NER signature also appears to have the aging signature embedded at a low level, which our data is
unable to resolve. a Mutations and mutational signatures in post-treatment tumors. The top bar graph shows the number of mutations per trinucleotide
sequence motif across all post-treatment tumors. The bottom bar graphs show the mutational signatures inferred in post-treatment tumors. Four
mutational signatures were discovered, with three matching previously described signatures (APOBEC1: cos sim= 0.96 with COSMIC Sig 2; APOBEC2: cos
sim= 0.95 with COSMIC Sig 13; NER: cos sim= 0.86 with COSMIC Sig 5) and an additional signature (UNK) not matching any previously described
signature. b Mutations and mutational signatures from post-only mutations. Here we consider only those post-treatment mutations not found in matched
pre-treatment tumors. The top bar graph shows the number of mutations per trinucleotide sequence motif, and the bottom graphs show mutational
signatures inferred in these mutations. Three signatures were inferred, two of which matched previously discovered signatures (AGING: cos sim= 0.86
with COSMIC Sig 1; APOBEC: cos sim= 0.90 with average of COSMIC Sig 2 and 13; UNK: an additional unmatched signature). c Inferred mutational
signature activity in pre-treatment tumors and post-treatment tumors. The majority of mutations are inferred to be due to mutational signatures associated
with APOBEC activity and nucleotide excision repair (NER) deficit, but 14% of mutations in the post-treatment tumors are associated with an unknown
mutational signature
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indicated that there were a significant proportion of mutations
private to (i.e., observed only in) pre- or post-treatment tumors;
the average number of mutations private to pre-treatment and
post-treatment tumors was 64.7 (standard deviation (SD) of 81.1)
and 47.5 (SD 46.9), respectively (Fig. 1c). Characterization of
mutations as clonal or subclonal (Methods) revealed that the
majority of private mutations were subclonal (Fig. 1d), and there
were very few shared subclonal mutations (median = 3.5 muta-
tions, 25th−75th percentile 1–15 mutations; p = 1.2e-04 and
p = 1.9e-05 (Mann–Whitney U) for the difference between pre-
treatment and shared, and shared and post-treatment subclonal
mutations, respectively). On the other hand, no statistically sig-
nificance difference in the number of clonal pre-treatment,
shared, and post-treatment mutations was observed (p = 0.38,
p = 0.51 (Mann–Whitney U), Fig. 1e). While this finding may be
consistent with chemotherapy-induced subclone reduction and
new mutation generation, the confounding effects of tumor

spatial heterogeneity (as observed in multi-regional biop-
sies6,11,12) cannot be ruled out with this analysis alone. A similar
analysis of change in predicted neoantigens (Methods) from
pre- to post-treatment tumors showed high concordance with the
change in mutational load (Pearson rho = 0.85, Supplementary
Fig. 2a), and a trend towards decreased number of neoantigens
(mean change = −41.8 neoantigens, p = 0.07 (paired t-test with
true mean of 0), Supplementary Fig. 2b).

Changes in global copy number alterations after chemother-
apy. We next examined global copy number alterations (CNAs)
in our cohort (Methods), and found that the CNA landscape in
matched pre- and post-treatment tumors was very similar (Sup-
plementary Fig. 3) in the majority of tumors. In a few tumors
(e.g., FCCC-017), there are significant differences between
pre- and post-treatment CNA profiles, which may reflect
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Fig. 3 Evaluation of a potential cisplatin chemotherapy mutational signature. a Comparison of a chicken lymphoblast (DT40) cisplatin-induced mutational
signature and the two unknown signatures found in the post-treatment and post-treatment-only mutational signatures. These are mutations induced in
chicken lymphoblast (DT40) cells treated with cisplatin18, adjusted for relative trinucleotide motif frequencies between the chicken and human genomes/
exomes. The cos similarity of this signature with the candidate cisplatin signature is modest (0.58), but there are similar T>A motifs (cos sim= 0.87), and
the two unknown signatures are similar to each other (cos sim= 0.90). b Correlation between DT40 cisplatin signature activity and the unknown signature
activity in the same post-treatment tumors. We replaced the unknown signature with the DT40 cisplatin signature, and inferred its activity (Methods),
yielding a Pearson correlation coefficient of 0.948 (p= 0.004 and p= 0.049 for a null distribution of correlations generated by replacing our candidate
signature with permutations of the DT40 signature and combinations of COSMIC signatures, respectively (Methods)). cTranscriptional strand bias in the
unknown signature. There was evidence of transcription strand bias in C>A (p= 5.8e-04), C> T (p= 0.003), T>A (p= 0.001), and T>C (p= 7.6e-04)
(binomial test with null probability= 0.5). A bias against coding (+) strand mutations in C> X and T> X mutations is consistent with transcription coupled
repair of platinum crosslinking in the non-coding strand at GpG and ApG motifs, which together represent 90% of crosslinking sites21,22. d Association of
the unknown signature with subclonal mutations. We inferred relative proportions of clonal and subclonal mutations in post-treatment tumors attributed to
each mutational signature in post-treatment tumors. The unknown signature has greater proportion of subclonal mutations (42%) compared to the overall
average (22%) (chi-squared p= 6.2e-68 with DF= 3). N.S.=Not statistically significant; “*”Indicates p< 0.05; “**”Indicates p< 0.01
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differences in coverage and tumor purity which affect our ability
to detect CNAs, but also suggest early evolutionary divergence
between the pre- and post-treatment sampled tumors. However,
on average, the proportion of the exome with CNAs in
the matched pre- and post-treatment tumor only differed by
0.4% (p = 0.71 (paired t-test with true mean of 0)) with an inter-
quartile range of 5% (25th percentile −2.4%, 75th percentile +
2.6% difference, Supplementary Fig. 4).

Mutational signature discovery. To further examine
chemotherapy-specific effects on post-treatment tumors, we
hypothesized that exposure to cisplatin-based chemotherapy may
promote mutagenesis and drive a specific pattern of mutations
unique to post-exposure tumors. We inferred signatures of
mutational activity using non-negative matrix factorization
(NMF) on single nucleotide mutations characterized in a tri-
nucleotide context13–15 (Methods). We separately analyzed pre-
treatment tumors (Fig. 2a), post-treatment tumors (Fig. 2b), and
mutations unique to post-treatment tumors (Fig. 2c), hypothe-
sizing that this last group would be enriched for cisplatin-
chemotherapy induced mutations. We identified previously
implicated MIBC mutational signatures6,13,16,17 associated with
APOBEC activity and nucleotide excision repair (NER) pathway
defects (Fig. 2a, b). In post-chemotherapy tumors, we also iden-
tified an additional novel mutational signature (Fig. 2b), which
was recapitulated in the analysis of private post-treatment
mutations (Fig. 2c) (cos sim = 0.90 between the two unknown

signatures). Overall, 14% of post-treatment mutations were
associated with this unknown mutational signature (Fig. 2d).

Comparison to experimental cisplatin induced mutational
signature. To test the hypothesis that this unknown signature
could be a human cisplatin-induced mutational signature, we
compared this signature to a mutational signature of cisplatin
activity experimentally derived from a chicken lymphoblast
(DT40) cell line18 (DT40) (Fig. 3a, Methods). The human
unknown and the DT40 cisplatin mutational signature had
modest cosine similarity (0.58), but both were enriched for
activity in T>A and C>A contexts compared to the other
bladder cancer mutational signatures (Fig. 2b, c). To further
examine whether the experimentally derived DT40 mutational
signature and our clinically observed unknown signature were
functionally related, we examined the correlation between the
mutational activity of the unknown signature and inferred
mutational activity substituting the DT40 signature for the
unknown signature (Methods) (Supplementary Fig. 5) and found
a strong correlation (Pearson’s rho = 0.949) (Fig. 3b). To deter-
mine the likelihood of seeing a correlation of this magnitude or
greater by chance, we generated a null distribution of correlations
using two approaches: by replacing our unknown signature with
permutations of the DT40 signature (n = 10,000); and linear
combinations of previously discovered mutational signatures16

(n = 10,000) (Methods). We found that the correlation between
the DT40 cisplatin signature and our unknown signature was
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Fig. 4 Intratumoral heterogeneity association with overall survival. a Overall survival of high and low pre-treatment intratumoral heterogeneity. We defined
heterogeneity as the proportion of mutations per pre-treatment tumor that were inferred to be subclonal. In Cox proportional hazards analysis, pre-
treatment heterogeneity was statistically significantly associated with overall survival (Cox PH: HRR 1.50 (95% CI 1.01–2.23), p= 0.046). Dividing the
cohort above and below a cutoff of 20% of subclonal mutations (n= 16/14 low/high heterogeneity tumors, Supplementary Fig. 12a) resulted in a trend
towards improved survival for pts with low pre-treatment heterogeneity (log-rank p= 0.088). b Overall survival of high and low post-treatment
intratumoral heterogeneity. We defined heterogeneity as the proportion of mutations per post-treatment tumor that were inferred to be subclonal. In Cox
proportional hazards analysis, post-treatment heterogeneity was negatively associated with overall survival (HRR 1.89 (95% CI 1.1–3.1), p= 0.013), and
dividing the cohort above and below a cutoff of 20% of subclonal mutations (n= 16/14 low/high heterogeneity tumors, Supplementary Fig. 12b) resulted in
improved survival for pts those with low post-treatment heterogeneity (log-rank p= 0.04). c Overall survival of high and low heterogeneity tumors. We
defined heterogeneity as the number of inferred subclones (Methods), which includes shared subclones and subclones private to either the pre-treatment
or post-treatment tumor. The number of subclones was negatively associated with overall survival (Cox PH: HRR 1.64 (95% CI 1.08–2.49), p= 0.02), and
using a threshold of 6 clones (n= 15/15 with high/low heterogeneity as defined, Supplementary Fig. 12c) demonstrates improved survival for patients with
low heterogeneity (log rank p= 0.004)
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statistically significant (empiric p-value = 0.004 and 0.049,
respectively) (Supplementary Fig. 6a, b).

Transcription strand bias and subclonality of mutational sig-
nature. Because cisplatin crosslinks are known substrates for
transcription coupled repair19,20, with crosslinks on the non-
coding (−) strand detected and repaired during transcription, we
looked for evidence of transcriptional strand bias in the unknown
signature. As 90% of cisplatin crosslinks occur at GpG and ApG
motifs21,22, we expect a transcriptional strand bias14 with
decreased C> X and T> X mutations on the coding (+) strand.
We repeated the NMF signature discovery process considering
mutations on coding and non-coding strands separately (Sup-
plementary Fig. 7), and found evidence of depletion of coding (+)
strand mutations in C>A (p = 5.8e-04), C> T (p = 0.003), T>A
(p = 0.001), and T> C (p = 7.6e-04) (binomial test p-values for
probability of 0.5) contexts (Fig. 3c).

Next, we hypothesized that cisplatin-induced mutations in our
cohort are more likely to be subclonal if associated with temporal
emergence in exposed tumors, and found that our unknown
signature was indeed associated with a higher proportion of
subclonal mutations (42% vs. overall 22%, chi-squared p = 6.2e-
68) (Fig. 3d).

Mutational signature validation in an independent patient
cohort. Finally, we performed a mutational signature discovery
analysis in an independent validation cohort of 15 urothelial
carcinomas with matched pre- and post- cisplatin-chemotherapy
samples6, a total of 19 post-treatment tumors representing a mix
of cystectomy (n = 10) and metastatic (n = 9) samples. In this
validation analysis, we focused on mutations unique to the post-
treatment tumor, and found a mutational signature with similar
motifs and overall concordance to our unknown mutational
signature (cos sim = 0.86, Supplementary Fig. 8). Taken together,
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these findings suggest that this unknown mutational signature
may represent a cisplatin-induced mutational signature in MIBC
and indicate direct effect of chemotherapy on mutagenesis.

Loss and acquisition of specific gene alterations through che-
motherapy. We next looked for loss and acquisition of alterations
from pre- to post-treatment tumors in significantly mutated23

genes but found no alterations that passed multiple hypothesis
test correction (Supplementary Fig. 9a, b). We also compared the
proportion of tumor samples in the pre- and post-treatment
setting with alterations in genes involved in homologous
recombination (HR) (Supplementary Fig. 10) and nucleotide
excision repair (NER) (Supplementary Fig. 11), hypothesizing
that subclones with defects in these pathways may be selected
against in the setting of platinum chemotherapy. However, in
both HR (Pre-tx: 8/30 altered tumors, Post-tx: 8/30 altered
tumors with alterations) and NER (Pre-tx:8/30 altered tumors;
Post-tx: 7/30 altered tumors), we did not see a significant
difference.

Intratumoral heterogeneity and survival. Given the global
mutagenesis patterns described above, we then hypothesized that
overall intratumoral heterogeneity itself may be associated with
survival24–26 in our resistant cohort absent specific highly
recurrent genomic mediators of resistance. We defined intratu-
moral heterogeneity as the proportion of mutations that were
subclonal in a tumor sample (Methods), and considered pre- and
post-treatment tumor heterogeneity separately (Fig. 4a, b, Sup-
plementary Fig. 12a, b). In our cohort of resistant disease, high
post-treatment heterogeneity was associated with decreased
overall survival (Cox PH: HRR 1.89 (95% CI 1.1–3.1), p = 0.013)
(Fig. 4b), with each 10% increase in proportion of subclonal
mutations associated with a 6.6% increase in mortality rate. Pre-
treatment heterogeneity was also statistically significantly asso-
ciated with overall survival in the Cox PH analysis (HRR 1.50
(95% CI 1.01–2.23), p = 0.046), though the Kaplan Meier log-rank
test was only borderline significant (p = 0.088, Fig. 4a). Interest-
ingly, there was only a modest correlation between pre- and post-
treatment tumor heterogeneity (Pearson rho = 0.29, p = 0.12,
Supplementary Fig. 12d). Further, when we adjusted for clinical
covariates (age, gender, type of chemotherapy, pathologic sta-
ging), post-treatment tumor heterogeneity but not pre-treatment
tumor heterogeneity continued to be statistically significantly
associated with overall survival (Cox PH: HRR 1.77 (95% CI
1.06–2.97), p = 0.03 and HRR 1.38 (95% CI 0.81–2.35), p = 0.24
for post- and pre-treatment heterogeneity, respectively, Supple-
mentary Table 1a and b). We then considered the total number of
subclones (private and shared) (Supplementary Fig. 12c, Meth-
ods) in the pre- and post-treatment tumor as a measure of tumor
heterogeneity integrating both pre- and post-treatment tumors,
and found that it was significantly associated with overall survival
(Cox PH: HRR 1.64 (95% CI 1.08–2.49), p = 0.02) (Fig. 4c, Sup-
plementary Fig. 6c), interpreted as an estimated 64% relative
increase in rate of mortality for each additional inferred subclone,
an association which persisted when adjusted for clinical cov-
ariates (HRR 1.80 (95% CI 1.13–2.88), p = 0.014; Supplementary
Table 1c). Taken together, this suggests that intratumoral het-
erogeneity predicts worse survival in patients with resistant dis-
ease in MIBC.

Specific genomic alterations in chemotherapy resistant tumors.
Although we did not detect highly recurrent gene alterations
predicting resistance to cisplatin-based chemotherapy, we per-
formed phylogenetic analyses of our pre- and post-treatment
samples and examined individual cases for insights regarding

molecular subtypes that emerge through cisplatin-based che-
motherapy (Supplementary Fig. 13). For example, in one patient
(Fig. 5a–c) treated with neoadjuvant gemcitabine and cisplatin
with no response to treatment, rapid recurrence and short sur-
vival, we identified amplification in focal segments containing
E2F3 and JUN (drivers of cell cycle progression) exclusively in the
post-treatment tumor sample. Another patient (Fig. 5d) with no
response to chemotherapy and early progression and death had a
pre-treatment single copy deletion of FBXW7, with an additional
FBXW7 E111* mutation event detected in the post-treatment
tumor (Fig. 5e, f), The acquisition of a bi-allelic loss of FBXW7, a
tumor suppressor gene which regulates27 protein degradation of
multiple onco-proteins including c-MYC, Notch, Cyclin E, and c-
JUN, in the resistant tumor suggests that this event may play a
role in resistance.

Finally, in a third patient with poor response and early death
(Fig. 5g), we observed a focal amplification of PD-L1/2 from pre-
to post-treatment tumor (Fig. 5h, Supplementary Fig. 14). In this
tumor, a pre-treatment subclone developed into the primary
clone in the post-treatment tumor (Fig. 5i, Methods), suggesting
that a PD-L1/2 amplified subclone may have been selected under
treatment.

Discussion
Broadly, clonal evolution has been studied in multiple
contexts6,11,28–30. This study conducts a focused assessment of
mutational changes at a primary bladder tumor site exposed to a
standard chemotherapy regimen over a limited time period, pro-
viding an opportunity to isolate cisplatin-chemotherapy associated
genomic changes in this clinical context. Tumor mutational load
has been associated with response to immune checkpoint
blockade31–35, and it has been hypothesized that combining
mutation-inducing platinum chemotherapy with immunotherapy
would improve response and outcomes36,37. However, our data
does not support this specific rationale for combination therapy,
as we do not find an increase in overall mutational or neoantigen
load with cisplatin-based chemotherapy, which is also consistent
with a prior study6 which examined pre- and post-treatment
mutational load in a mixed cohort of pre- and post-treatment
primary and metastatic urothelial tumors.

We do find evidence of a cisplatin chemotherapy-induced
mutational signature. There have been a number of past studies
inferring a cisplatin-induced mutational signature. One of the
first studies38 to examine the genomic impact of chemotherapy
performed whole genome sequencing on C. elegans exposed to a
variety of chemotherapies including cisplatin. Interestingly,
though this also showed an accumulation of C>A mutations
similar to DT40 chicken lymphoblast cisplatin-induced muta-
tions18, the trinucleotide context is quite different (Supplemen-
tary Fig. 15) favoring CpCpC and CpCpT contexts, with a poor
overall similarity (cos sim = 0.44). Past studies in human clinical
samples25,39–41 have also identified enrichment in C>A muta-
tions in post-platinum treated samples, though there was study
heterogeneity in cancer types (esophageal adenocarcinoma, head
and neck squamous carcinoma), platinum therapies (oxaliplatin
and cisplatin), and accompanying agents (epirubicin, capecita-
bine, and 5-FU). In this study, we have inferred a candidate
cisplatin-induced mutational signature from a cohort of patients
with time-limited pre- and post- cisplatin-based treatment serial
biopsies, and carefully derived additional characteristics of this
signature including transcription strand bias, increased sub-
clonality, and additional prominent motifs including C> T
mutations particularly in CpCpC and CpCpT contexts and T>A
mutations in a CpT context. Further, we were able to reproduce
this signature in an independent patient cohort6.
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While our mutational signature analysis indicated the presence
of a chemotherapy-associated mutational signature in MIBC,
further validation through experiments evaluating the effect of
cisplatin exposure in human cell lines and matched pre- and post-
cisplatin therapy across human tumors would be informative.
Further, patients in our cohort received two different cisplatin-
containing regimens, which may have different mutation-
inducing profiles. Larger clinical cohorts of patients treated with
different cisplatin-containing regimens (e.g., MVAC vs. GC) such
as SWOG 1314 may help tease apart these differences, as well as
mutational studies of combination chemotherapies in human cell
lines. If validated, the generation of neoantigens by cisplatin-
based chemotherapy may have implications for subsequent
immunotherapies or combination regimens, though overall
mutational load given these treatment regimens in this clinical
context was unchanged. Further, we observe heterogeneity in the
inferred level of candidate cisplatin signature activity, suggesting
heterogeneity of resistance mechanisms in these tumors. Some
tumors may resist platinum treatment through upregulation of
efflux pumps, DNA damage repair, or anti-apoptotic signaling. If
validated, a cisplatin-associated mutational signature may be
useful to differentiate mechanisms of resistance in post-treatment
tumors.

We also observed acquired or selected genetic alterations in
genes associated with cell cycle checkpoints and regulators (E2F3,
JUN, FBXW7), suggesting potential resistance as well as a pro-
liferation advantage in the setting of cisplatin chemotherapy that
warrant functional evaluation. FBXW7 also regulates MYC, which
has been functionally demonstrated to promote immune evasion
through direct upregulation of PD-L1 and CD4742. Altogether
with findings suggesting selection of a PD-L1/2 amplified sub-
clone in the setting of cisplatin chemotherapy, this lends support
to the hypothesis that chemotherapy may exert anti-tumor effects
through modulation of the immune system43. Further studies
examining the tumor immunological landscape and response to
chemotherapy through histologic or transcriptomic (e.g., single-
cell) analyses in pre- and post-treatment settings may clarify this
relationship further. Further, PD-L1/2 amplification and expres-
sion has been observed to be a biomarker of sensitivity to
immune checkpoint blockade44,45. Although rare in urothelial
cancers, it may be predictive when present.

Finally, consistent with prior results6, we find significant
intratumoral heterogeneity in our cohort, and further find that
heterogeneity (particularly post-treatment) predicts overall sur-
vival in our chemotherapy-resistant cohort. Prior work24–26,46

found that intratumoral heterogeneity (variably defined) was
associated with overall survival and response to immune check-
point therapy. While this may reflect intrinsic tumor biology, our
results suggest that post-treatment intratumoral heterogeneity
(perhaps reflecting broad tolerance to treatment) may provide
additional prognostic information; both pre- and post-treatment
assessments of intratumoral heterogeneity may aid in risk stra-
tification and should be explicitly assessed in future clinical trials.

One limitation of our study is that a comparison with non-
chemotherapy treated trios of pre- and post-cystectomy tumors
with matched normal tissue was not available, but may shed
further insight on chemotherapy-specific effects. Overall, how-
ever, expanded analysis of pre-post chemotherapy matched pri-
mary site tumor samples in MIBC contextualized with phenotypic
response data will inform new investigations into exposure-
related mutagenesis, treatment strategies, and patient risk-
stratification modalities in this disease.

Methods
Patient population and samples. Eligible patients were diagnosed with muscle-
invasive bladder cancer and treated with neoadjuvant cisplatin-based

chemotherapy (NAC) followed by cystectomy. A total of 101 patients from 2
clinical trials of NAC8,9 and a combined retrospective cohort7 from 3 different
academic medical centers (Memorial Sloan Kettering Cancer Center, Fox Chase
Cancer Center, Dana Farber Cancer Institute) were analyzed, and details of these
populations and studies have been described previously7–9. Informed consent was
obtained from all patients. In total 56 out of 101 patients were non-responders to
NAC with pT1 + disease left at cystectomy, and 46 of those patients had sufficient
tumor tissue in study specimens of formalin-fixed, paraffin-embedded (FFPE)
tissue sections from cystectomy samples that were subsequently sequenced. In our
final cohort, all patients had pT2 + (muscle-invasive) disease at cystectomy. Mat-
ched germline DNA was extracted from either peripheral blood mononuclear cells
or histologically normal nonurothelial tissue.

DNA extraction and exome sequencing. DNA extraction, whole exome library
prep and sequencing was performed for samples from DFCI and MSK (n = 18
matched pre-post tumors), as previously described7. Slides were cut from FFPE
blocks and examined by a board-certified pathologist to select high-density cancer
foci and ensure high purity of cancer DNA. Biopsy cores were taken from the
corresponding tissue block for DNA extraction. DNA was extracted using Qiagen’s
QIAamp DNA FFPE Tissue Kit Quantitation Reagent (Invitrogen). DNA was
stored at −20 °C. Whole exome capture libraries were constructed from 100 ng of
DNA from tumor and normal tissue after sample shearing, end repair, and
phosphorylation and ligation to barcoded sequencing adaptors. Ligated DNA was
size selected for lengths between 200 and 350 bp and subjected to exonic hybrid
capture using SureSelect v2 Exome bait (Agilent). The sample was multiplexed and
sequenced using Illumina HiSeq technology. Samples from FCCC (n = 12 matched
pre-post tumors) were sequenced using Illumina library preps. The Illumina exome
specifically targets ~ 37.7 Mb of mainly exonic territory made up of all targets from
our Agilent exome design (Agilent SureSelect All Exon V2), all coding regions of
Gencode V11 genes, and all coding regions of RefSeq gene and KnownGene tracks
from the UCSC genome browser (http://genome.ucsc.edu). The Illumina exome
uses Illumina’s in-solution DNA probe based hybrid selection method that uses
similar principles as the Broad Institute-Agilent Technologies developed in-
solution RNA probe based hybrid selection method47,48 to generate Illumina
exome sequencing libraries. Pooled libraries were normalized to 2 nM and dena-
tured using 0.2 N NaOH prior to sequencing. Flowcell cluster amplification and
sequencing were performed according to the manufacturer’s protocols using either
the HiSeq 2000 v3 or HiSeq 2500. Each run was a 76 bp paired-end with a dual
eight-base index barcode read. Data were analyzed using the Broad Picard Pipeline
which includes de-multiplexing and data aggregation.

Quality control and variant calling. Initial exome sequence data processing and
analysis were performed using pipelines at the Broad Institute. After alignment
from the Broad Picard Pipeline, BAM files were uploaded into the Firehose
infrastructure49 which managed intermediate analysis files executed by analysis
pipelines. Sequencing data were incorporated into quality-control modules in
Firehose49 to compare the tumor and normal genotypes and ensure concordance
between samples. Out of samples from 46 patients, 9 were abandoned due to low
input material, 1 was black-listed due to non-matching fingerprinting, 2 excluded
due to high estimates of tumor contamination50, 2 had inadequate coverage for
high-confidence mutation calling (< 40x tumor average coverage), and 2 were
removed due to low tumor purity (< 10% tumor cells and no matched mutations
in significantly mutated genes23), yielding 30 total pairs of pre and post treatment
tumors for analysis.

The MuTect algorithm51 was applied to identify somatic single-nucleotide
variants in targeted exons. Strelka52 was applied to identify small insertions or
deletions. Alterations were annotated using Oncotator53.

Neoantigen prediction. HLA-type was inferred using POLYSOLVER54, which
uses a normal tissue bam file as input and employs a Bayesian classifier to deter-
mine genotype for each patient. Neoantigens were predicted for each patient by
defining all novel amino acid 9mers and 10mers resulting from mutations (after
filtering out mutations with< 3 supportive reads or< 30 total reads at the position)
and determining whether the predicted binding affinity to the patient’s germline
HLA alleles was< 500 nM using NetMHCpan (v2.4)55.

Purity and ploidy, clonal and subclonal mutational calls. Purity and ploidy was
estimated using the ABSOLUTE algorithm56, which integrates variant allele fre-
quency distributions and copy number variants to estimate absolute tumor purity
and ploidy and infer cancer cell fraction (CCF), the proportion of cancer cells in
the sample which contain each mutation. An extension of ABSOLUTE56 was used
to infer a phylogenetic tree with clones, subclones, and evolutionary relationships
in pre and post treatment tumor samples, as described in detail in Brastianos
et al.29 Briefly, clones and subclones were determined through Markov Chain
Montecarlo (MCMC) sampling using Dirichlet process Mixture Models on pre-
and post-treatment mutation CCFs, an approach which assigns mutations to
subclones without pre-specifying the number of subclones. Mutations inferred to
be in a subclone with CCF = 1.0 were called “clonal” while those inferred to be in a
subclone with CCF< 1.0 were called “subclonal”. For each subclone, two CCFs
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were inferred: the CCF in the pre-treatment tumor and CCF in the post-treatment
tumor.

Changes in mutational and neoantigen load. Differences in tumor purity and
depth of coverage can confound analyses of differences in mutations between two
tumor samples. Therefore in our comparison between pre- and post-treatment
mutations we only considered those mutations which either were detected or had
power> 80% to be detected in both tumors (Supplementary Fig. 16). Changes in
mutational load and neoantigen load were calculated using a paired t-test of
changes in paired samples with a null hypothesis of a difference of 0. Pre-treatment
mutation load vs. shared mutation load, and shared mutation load vs. post-
treatment mutation load were compared using Mann–Whitney–Wilcoxon tests. A
one-way ANOVA was used to compare the proportion of lost mutations among all,
clonal, and sub-clonal mutations. p< 0.05 was considered to be statistically
significant.

Heterogeneity definition. We defined and assessed heterogeneity in two ways: (1)
proportion of mutations that were inferred as subclonal (as defined above), cal-
culated separately for pre- and post- treatment tumors, and (2) the total number of
subclones inferred by the MCMC process described above, which includes sub-
clones private to pre- or post-treatment tumors (where CCF in one tumor = 0) and
subclones shared between tumors (CCF in both tumors> 0).

Mutational signature analysis. We developed two separate algorithms for
mutational signature analysis, one for discovery of mutations, and the second for
assessing mutational signature activity of individual tumor samples given a set of
mutational signatures.

Discovery of new mutational signatures. Following Alexandrov et al.13, we
represented each SNV as a single nucleotide variant (e.g., C>A, C> T, by con-
vention beginning with the pyrimidine) within a trinucleotide context (e.g., “GCT
>GAT”), yielding 96 different possible motifs. Each tumor was then represented as
a distribution of mutations within these motifs; for the cohort generating a matrix
with the 96 trinucleotide contexts in rows and each tumor represented in a column.
We then performed a non-negative matrix factorization57 (NMF) to generate
mutational signatures and inferred activity of these mutational signatures in each
tumor. The optimal rank (number of mutational signatures) was inferred after
manually examining cophenetic coefficients58, residuals, and residual sum of
squares for 50 NMF runs at ranks 2–8, as well as comparing discovered signatures
to previously discovered signatures using a cosine similarity measure. High
cophenetic coefficients, low residuals, low residual sum of squares, and high cosine
similarity to previous signatures were preferred. We used the R-packages Soma-
ticSignatures59 and NMF60 with the Brunet update method58. Since NMF is non-
deterministic, we performed 200 independent NMF runs for a given rank and
chose the resulting mutational signatures and signature activity per tumor from the
NMF run with the minimum residual error.

We compared our discovered signatures to the 30 existing discovered and
validated signatures in COSMIC16. Cosine similarity was used to compare our
discovered signatures and previously detected signatures, using a threshold of 0.85.
We also manually visualized and inspected similarities in mutational motifs
between our signatures and COSMIC signatures. We manually examined all
generated mutational signatures from the 200 runs to evaluate run variance in
mutational signature similarities to COSMIC mutational signatures.

Inference of mutational signature activity in individual tumors. Given a set of
mutational signatures, inferring the activity of each mutational signature within
individual tumors was performed by modifying the NMF multiplicative update
process15,58. We randomly initialize a starting activity matrix H0 and update Hi to
Hi+1 via the multiplicative update rule given for H15. W remains fixed and so is not
updated. We keep track of the Frobenius norm of the error given by V-WHi at each
iteration. We terminated the update process when error vs. iterations demonstrated
horizontal asymptomatic behavior, which we defined as when 1/20 of the difference
of the error between V-WHi-20 and V-WHi is below a given threshold (0.0001).
The resulting matrix Hi is a good representation of the activity of the signatures in
W.

Discovery and validation of cisplatin mutational signature. To generate can-
didate mutational signatures for a cisplatin-induced mutational signature, we used
our discovery process independently on 30 matched pre-treatment tumors and the
30 matched post-treatment tumors, and discovered an additional mutational sig-
nature in the post-treatment tumors which did not match previously discovered
signatures in COSMIC. For comparison, we used a signature of cisplatin-induced
mutational activity from whole genome sequencing of a chicken lymphoblast
(DT40) line18, which we normalized to a human exome context by adjusting for
the difference in tri-nucleotide context frequencies in chicken and human gen-
omes18, and between human genomes and exomes using genome and coding
intervals from hg19. To compare similarities in mutational activity between the
DT40 signature and our candidate cisplatin-induced mutational signature, we

replaced our candidate signature with the DT40 signature and inferred mutational
signature activity in the post-treatment tumors (Supplementary Fig. 5). We then
calculated a Pearson correlation coefficient between the inferred activities of our
candidate signature and the DT40 signature.

To evaluate the significance of this correlation in activity, we repeated the
process of replacing our candidate cisplatin mutational signature with another
signature, inferring mutational activity of that signature, and correlating the
inferred activity between the two. We generated random signatures in two ways: (1)
randomly permuting the 96 trinucleotide motifs in the DT40 signature, and (2)
taking random linear combinations of two randomly chosen COSMIC signatures.
This corresponds to a null hypothesis that our candidate signature is a linear
combination of pre-existing, known mutational signatures. Repeating this process
generates a “null” distribution of Pearson correlation coefficients, and we calculated
an empiric “p-value” that is simply the proportion of simulated correlation
coefficients better than our observed correlation coefficient (Supplementary Fig. 6a,
b).

To evaluate a transcriptional strand bias, we represented each mutation as one
of 192 potential motifs rather than 96 (e.g., treating C> T and G>A as separate
motifs), ran the mutational signature discovery process on this matrix
(Supplementary Fig. 7), and looked for asymmetry in the complementary
mutational signatures motifs (e.g., imbalance between C> T and G>A motifs
within the corresponding trinucleotide context). Without a transcriptional strand
bias, we would expect similar distributions, e.g., CCC> CTC would have the same
distribution as GGG>GAG, and calculated a p-value assuming a binomial
distribution with probability = 0.5 for each SNV context (C>A, C> T, C>G, T >
A, T>C, T>G).

To evaluate mutational signatures active during chemotherapy, we generated
per patient a set of “new” mutations that were detected only in the post-treatment
tumor sample, removing those mutations that had been also detected in the pre-
treatment tumor. These mutations represented both mutations from intratumoral
heterogeneity and sampling differences, as well as mutations induced by cisplatin-
based chemotherapy. We performed our mutational discovery procedure on this
data set and compared the discovered signatures to our candidate mutational
signature.

To evaluate the association of a mutational signature with subclonality, we first
inferred each mutation as subclonal or clonal, as above. For each mutation within a
tumor, credit was assigned to signatures weighted by (1) the specific signature
activity for the trinucleotide context of the mutation and (2) the relative inferred
activity level of each signature in the tumor. For example, for a clonal CCT->CTT
mutation in a tumor with inferred activity levels [10, 90] of two mutational
signatures S1 and S2 with CCT-> CTT activity of [0.05] and [0.01] respectively, S1
would receive a clonal mutation attribution of c = 10×0.05/(10×0.05 + 90×0.01),
and S2 would receive (1-c). Iterating this process for every mutation in the
cohort resulted in clonal and subclonal mutational activity for each signature.
We then assessed the statistical significance of differences in proportion of
subclonal mutations per signature using a chi-squared test with DF = (number of
signatures – 1).

To generate the cisplatin-induced mutational signature in C. elegans38 in a
human context, we generated the overall frequency of all 96 trinucleotide contexts
in the C. elegans genome (ce10), then normalized the frequency of observed
mutations in C. elegans exposed to cisplatin by the ratio of each trinucleotide
context frequency in C. elegans to the corresponding frequency in the human
exome (Supplementary Fig. 15). We then compared this mutational signature with
the cisplatin-induced mutational signature in DT40 cells and our candidate
cisplatin-induced mutational signature in MIBC (Supplementary Fig. 15).

To generate mutational signatures in the Faltas6 cohort of 16 patients with pre-
post chemotherapy matched tumors, we followed the same procedure for de-novo
signature discovery as previously described, using only those mutations found
exclusively in the matched post-treatment tumors (enriched for chemotherapy-
induced mutations) for analysis. Detailed mutation data from 15 patients was
available. During QC, we excluded one post-chemotherapy tumor sample from the
lung (WCM077_3) which did not match the pre-chemotherapy primary bladder
tumor (WCM077_1) (99.6% non-matching mutations; common mutations only in
non-driver genes TCHH and TNNI).

Discovery of resistance biomarkers. Mutational Significance: We used Mut-
Sig2CV23 to identify significantly mutated genes across the cohort of resistant
tumors. For each altered gene in the pre-treatment tumors, we calculated a p-value
of mutational significance, then calculated the percentage of such mutations
identified in the pre-treatment tumor that continued to be detected in the post-
treatment sample. We further calculated a p-value of mutational significance
considering only those mutations private to the post-treatment tumor. Adjustment
for hypothesis testing was performed using a Benjamini–Hochberg FDR of 0.1.

Copy Number Alterations and Evolution: Total copy number alterations for
individual tumors were inferred using adaptations of a binary segmentation
algorithm61,62 (CapSeg) comparing fractional exon coverage for tumor segments to
a panel of normal samples, generating exomic segments and segment copy number.
Copy number data were inspected visually and manually for focal amplifications
and deletions, and genes were annotated with Oncotator53. For allelic copy
numbers, heterozygous SNPs were identified and integrated with the binary
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segmentation algorithm (Allelic CapSeg), and further adjusted for tumor purity
and ploidy56. We then called allelic amplifications and deletions, following
previously described criteria29 integrating segment focality and the revised allelic
copy number.

Survival analysis. To analyze the association between intratumoral heterogeneity
(defined above) and overall survival, we performed a survival analysis using both a
Cox Proportional Hazards model and a log-rank test dividing the cohort into
“high” and “low” heterogeneity samples. For the log-rank test, the cohort was
divided in half using a threshold of 0.2 proportion of mutations inferred to be
subclonal (as defined above) in the pre- and post-treatment setting (Supplementary
Fig. 12a, b), and a threshold of 6 subclones (Supplementary Fig. 12c). To adjust for
clinical covariates, we performed a multivariate analysis adding age, gender, pre-
treatment pathologic staging (T and N staging), and type of chemotherapy (GC or
MVAC) to the Cox PH model (Supplementary Table 1a–c).

Data availability. All BAMs for 30 matched pre and post-treatment tumors will be
deposited in dbGAP (phs000771.v2.p1). Code to regenerate figures is available on
request.
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