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Enabling omic technologies adopt a holistic view to produce unprecedented insights into the 

molecular underpinnings of health and disease, in part, by generating massive high-

dimensional biological data. Leveraging these systems-level insights as an engine driving the 

healthcare evolution is maximized through integration with medical, demographic, and 

environmental datasets from individuals to populations. Big data analytics has accordingly 

emerged to add value to the technical aspects of storage, transfer, and analysis required for 

merging vast arrays of omic-, clinical- and eco-datasets. In turn, this new field at the interface 

of biology, medicine, and information science is systematically transforming modern 

therapeutics across discovery, development, regulation, and utilization. 
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“…a man’s discourse was like to a rich Persian carpet, the beautiful figures and 

patterns of which can be shown only by spreading and extending it out; when it is contracted 

and folded up, they are obscured and lost” 

Themistocles quoted by Plutarch AD 46 – AD 120 

Like the tapestry in Plutarch’s quote, we can only comprehend the intricate patterns 

that constitute wellness and disease by spreading out and extending the multi-dimensional 

components that form the fabric of these processes. Implied in this self-evident concept is the 

ability to collect the relevant data, deconvolute that data into comprehensible elements, 

reassemble these elements into distinguishable patterns, and provide this new knowledge in a 

form that is readily accessible to end-users, including patients, practitioners and regulators.1 

The emergence of enabling medical technologies has revolutionized our ability to precisely 

define the detailed characteristics of individuals in sickness and health. Omic technologies offer 

a view of organization and function at the level of integrated molecular systems while next 

generation imaging imparts structure to those systems at cell, tissue, organ and organismal 

levels.2 Beyond these biological determinants, environmental elements that provide the 

context for molecular structure and function and, ultimately, shape pathobiology are 

memorialized in the longitudinal electronic health record (EHR).3 Together, these biological and 

environmental data elements encode the information that predicts wellness, identifies disease 

risk, personalizes healthcare interventions, and prevents untoward adverse therapeutic events. 

While these individual data elements form the matrix that defines the mechanisms 

underlying health and disease, a complete picture of these processes emerges only from their 
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integration. Like a painting created in the style of the 19th century Pointillism technique, the 

entire picture only comes into view when one steps away from the canvas and coalesces the 

individual dots into a coherent image. In the context of biological and clinical data, the full 

picture of (patho)physiology emerges when these elements are integrated across individual 

patients and populations. The attendant challenges associated with this necessary data 

integration can be appreciated by considering the sheer magnitude of the task. In 2012, the 

worldwide digital healthcare data burden was estimated to be ~500 petabytes and is expected 

to reach 25,000 petabytes (~1019 kB) in 2020.4 For comparison, the human brain stores ~2 

petabytes of data while the largest single data storage facility is ~100 petabytes. In that context, 

it has become easier and cheaper to generate data than to store, integrate and analyze it.5 

This avalanche of high dimensional data at the interface of biology, medicine, and 

healthcare delivery holds the potential to transform the therapeutics continuum of discovery, 

development, regulation, and utilization (DDRU).6 As highlighted in the Commentary by 

Schneweiss, this informational nexus is poised to provide unprecedented insights into the 

pathobiology of disease, transform drug discovery and development, and revolutionize the 

ability of regulatory agencies to maintain the highest standards of drug safety, all focused on 

providing the best care precisely tailored to each individual patient.7 However, these large and 

complex data sets are difficult to process using common database management tools or 

traditional data processing applications, especially with respect to data capture, storage, 

searching, sharing, integration and analysis. While the goal is to extract insights from complex, 

noisy, and heterogeneous data sets, barriers have included the speed of data handling, curation 

and the veracity of the data, the sheer volume of data, and the heterogeneity of data to be 
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integrated.7, 8 To address these challenges, big data analytics has emerged as a new discipline 

innovating the tools, processes and procedures that create, manipulate, manage and integrate 

very large heterogeneous data sets, to generate value from the whole that could not be 

appreciated form the sum of the individual parts.7 

The potential for big data to transform paradigms of disease pathobiology is exemplified 

by the electronic health record (EHR), which in aggregate across the population represents an 

extremely large collection of information generated in routine clinical care.4-6, 9 These datasets 

are challenging to use because they are heterogeneous, representing digital data as well as 

unstructured information, for example clinical notes. To optimize their utility, a new generation 

of technologies and architectures has emerged to extract value from large volumes of complex 

heterogeneous datasets through high-velocity capture, discovery and analysis.5 Analytic tools to 

cull this information from these large collections of unstructured data include artificial 

intelligence, natural-language processing, pattern recognition and machine learning.5 In that 

context, in their review, Roden and Denny describe how coupling EHRs to genomic datasets 

specifically enable discovery of genotype-phenotype associations which, in turn, can then be 

implemented through EHRs to individualize patient care.9 They highlight the global character of 

this effort, which includes their Electronic Medical Records and Genomics (eMERGE) Network, 

as well as the Veterans Administration’s Million Veterans Program, the Kaiser-Permanente 

GERA program, the UK Biobank, and the Icelandic deCODE resource.9, 10 Beyond their value in 

discovering common genetic loci associated with human disease through genome-wide 

association studies (GWAS), these resources also can be exploited to identify rare genetic 

variants with large effect sizes, pleiotropic effects of common and rare genetic variants, and 
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potential drug targets.11 One obstacle to the utility of EHRs for discovery research has been the 

ability of these databases to accurately identify clinical phenotypes that could be used to 

assemble true case and control cohorts to support meaningful genotype-phenotype 

correlations.12 Indeed, for common diseases, where datasets could include hundreds of 

thousands of subjects, electronic algorithms have been developed to overcome this obstacle 

and extract true cases and control subjects, including the eMERGE’s Phenotype Knowledgebase 

(PheKB.org) and i2b2 (informatics for integrating biology and the bedside).9-11 Employing these 

approaches, drug response and adverse drug reaction phenotypes can be readily identified. 

Importantly, beyond these genotype-phenotype associations, which typically start with a 

defined disease (phenotype) to explore genomic associations, the constellation of phenotypes 

represented within the collective EHR – the EHR phenome – can be interrogated for genomic 

associations in phenome-wide association studies (Phe-WAS).9 

The foregoing discussion underscores the potential for big data analytics as a resource 

for discovery of new molecular associations, disease pathways, and pathophysiological 

mechanisms. This is especially true in the context of integrating medical databases like the EHR 

and clinically-annotated omic databases that associate disease phenotypes with molecular 

features like genomics, epigenomics, transcriptomics, proteomics and metabolomics. As 

highlighted in the review by Chen and Butte, such databases have been constructed and are 

publically available to support an emerging in silico approach to drug discovery and 

development.13 For example, transcriptomic analysis using data mining revealed that 

expression of the protein MTBP was significantly elevated in breast cancer samples compared 

to normal breast tissues and associated with poor survival.13 Indeed, this gene product could be 
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used to stratify breast cancer patients into clinically relevant subgroups and might represent a 

new therapeutic target in these populations.13 Similarly, analysis of databases containing 

genomic characteristics of thousands of tumors revealed >400 new defects that serve as driver 

mutations that were previously unrecognized.13 Further, mapping these driver genes to drug 

databases, including ChEMBL and ClinicalTrials.gov, revealed that >70% of patients could 

benefit from novel agents in clinical development.13 Beyond discovery, these in silico 

approaches also can be used to assess target druggability, through an integrative analysis of 

protein function, homology to targets of approved drugs, three-dimensional structure, and the 

existence of published active small molecules.13 Moreover, these analytic approaches can be 

employed to compare similarities across different diseases, and the different drugs used to 

treat them, to develop new indications for existing agents through the emerging approach of 

computation drug repositioning.13 Together, these considerations highlight the potential of big 

data analytic approaches to transform the science of drug discovery and development.6, 13 

Beyond discovery and development, big data analytics is revolutionizing the safety of 

therapeutics at the level of regulation and utilization. As outlined in the Commentary by 

Harpaz, DuMochel and Shah, pharmacovigilance currently depends on spontaneous adverse 

event reporting from drug manufactures, health care professionals, and patients.14 While this 

type of reporting is essential to post-marketing surveillance, and effective at detecting ADRs, it 

is a passive system fraught with delays in detecting and reporting, and a substantial number of 

ADRs remain unreported.14 Big data analytics offers an unprecedented solution to improving 

pharmacovigilance, providing unique mechanisms for adverse event detection and evaluation. 

Some of the data sources to support this emerging field have been described earlier, for 
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example the very large collections of information in the EHR.7, 9 In that context, the EHR is the 

backbone for the FDA’s Sentinel Initiative, described in the Commentary by Ball, Rob, 

Anderson, and Dal Pan, which is creating a national network of databases to prospectively 

monitor the safety of drugs and rapidly respond to emerging risks.14-16 This Sentinel System 

currently comprises 18 partners, contains data on >170 million patients, and is earmarked to 

expand.14, 16 Surprisingly, another evolving source of vast amounts of relevant information is 

social media.5, 14 This real-time source of information includes health forums, social networks, 

and online patient communities, with posts typically occurring proximal to the time an event 

occurs.5, 14, 15, 17, 18 One example is the algorithm used by Google to track diseases, Google 

Trends, which uses geospatial mapping to sift through enormous amounts of real-time data 

vast quantities of information to identify clinically-relevant population-level events.5 For 

example, Google Trends can identify peaks in search requests for terms like ‘flu symptoms’ and 

‘flu treatments’ to identify an imminent disease outbreak in a geographic region even before 

patients begin to task the regional health system.5 This example highlights the opportunities 

offered by social media for adverse event surveillance that is global and real-time, to achieve 

the earliest detection. 

While big data analytics will transform every facet of the DDRU continuum, it is not 

without significant challenges. There are the technical challenges of storage and transfer 

speeds of an ever-growing body of heterogeneous information; developing algorithms that can 

parse heterogeneous data with veracity so that downstream analyses are revealing; and 

designing analytical tools that can integrate molecular, clinical, demographic, and 

environmental elements that coalesce individual data points when the viewer steps away from 
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the canvas. However, an over-arching challenge in this emerging field remains the development 

of tools to ensure the security of personal health information and scientific (e.g., genomic) data 

to maintain the privacy of patients. This challenge can be appreciated by considering the 

analogous problem of electronic fraud through identity theft, which is rampant in the 

developed, electronically-dependent world. These challenges notwithstanding, the ability to 

bring the power of vast amounts of electronic information to bear on the underpinnings of 

health and disease, the development of new pharmacological interventions, and the safety of 

the global formulary places biology and medicine on the verge of an exciting revolution. 
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