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ABSTRACT.        

Objective. Examine whether lung endothelial cells (EC) from patients with Systemic Sclerosis 

(SSc)-associated interstitial lung disease (ILD) express mesenchymal cell markers and gene 

transcripts indicative of the occurrence of endothelial to mesenchymal (EndoMT) phenotypic 

transition.  

Methods. Lung tissues from 6 patients with SSc-associated pulmonary fibrosis were examined 

by histopathology and immunohistochemistry. Confocal laser microscopy was employed to 

assess the simultaneous expression of EC and myofibroblast molecular markers. CD31+/CD102+ 

EC were isolated from lung tissues from two patients with SSc-associated ILD and from two 

normal lungs and the expression of EC and mesenchymal cell markers and other relevant genes 

were analyzed by quantitative PCR, immunofluorescence microscopy and Western blots.  

Results. Immunohistochemistry showed cells expressing the CD31-specific EC marker in sub-

endothelial, perivascular and parenchymal regions of lungs from patients with SSc-associated 

ILD. Confocal laser microscopy identified cells co-expressing endothelial and mesenchymal cell 

markers in SSc-associated ILD tissues but not in control lungs. CD31+/CD102+ EC isolated from 

SSc lung tissues displayed simultaneous expression of von Willebrand factor and -smooth 

muscle actin and expressed high levels of mesenchymal cell-specific genes (collagen I, collagen 

III and fibronectin), EC-specific genes (collagen IV and VE-cadherin), profibrotic genes (TGF-β 

and CTGF) and genes encoding EndoMT-related transcription factors (TWIST and SNAI2).  

Conclusion. Cells co-expressing endothelial and mesenchymal cell-specific molecular markers 

are present in the lungs from patients with SSc-associated ILD. CD31+/CD102+ EC isolated from 

SSc-affected lungs expressed simultaneously mesenchymal and EC-specific transcripts. 
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Collectively, these observations strongly suggest involvement of EndoMT in the pathogenesis of 

SSc-associated ILD.   
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INTRODUCTION.                   

Systemic Sclerosis (SSc) is a systemic autoimmune disease of unknown etiology characterized 

by progressive fibrosis of skin and multiple internal organs, and severe fibroproliferative 

vasculopathy affecting the microvasculature resulting in severe vessel narrowing or even 

complete obliteration (1-3). The pathogenetic mechanisms responsible for the fibrotic process 

and the severe vascular alterations in SSc are complex and have not been fully elucidated (4-6). 

Numerous recent studies have demonstrated that activated myofibroblasts are the cells 

ultimately responsible for the exaggerated deposition of extracellular matrix (ECM) 

macromolecules in skin, the parenchyma of affected organs such as the lungs and the heart, 

and the subendothelial space of small and medium sized arteries in SSc (7-9). The activated 

myofibroblasts are a unique class of mesenchymal cells characterized by specific biological 

functions including a motile phenotype, expression of α-smooth muscle actin (α-SMA), 

increased production of fibrillar collagens type I (COL1) and type III (COL3), and reduction in the 

expression of genes encoding ECM-degradative enzymes (9-11).  

The activated myofibroblasts in fibrotic tissues emerge from several sources (12,13), including 

expansion of resident tissue fibroblasts (14), migration and tissue accumulation of bone 

marrow-derived circulating fibrocytes (15,16), and from epithelial cells, pericytes, and Gli1- 

positive perivascular progenitor cells that have undergone transition to a mesenchymal 

phenotype (17-19). More recently, it has been demonstrated that endothelial cells (EC) are also 

capable of undergoing a phenotypic change into mesenchymal cells in a process known as 

endothelial to mesenchymal transition or EndoMT (20-23). Although EndoMT was initially 

considered to occur only during cardiovascular embryonic development (24,25), accumulating 
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evidence indicates that this process occurs in various experimentally-induced models of tissue 

fibrosis (20-23,26-29), and may play a role in the pathogenesis of certain human fibrotic and 

vascular disorders (30-34). However, the possibility that EndoMT might be an important source 

of the mesenchymal cells responsible for the fibroproliferative vasculopathy and the fibrotic 

process in SSc has not been considered until very recently (35). Demonstration that EndoMT 

may participate in the generation of activated myofibroblasts in SSc would be of substantial 

value as it may provide an important and currently unexplored target for the development of 

novel disease-modifying therapeutic interventions for this currently incurable disease (35). 

Here, we provide immunohistological and confocal microscopy evidence demonstrating that 

cells displaying specific EC molecular markers are present in the subendothelial, perivascular 

and parenchymal regions of lungs from patients with SSc-associated interstitial lung disease 

(ILD) and that EC expressing myofibroblast-specific molecular markers can be identified in the 

endothelium and subendothelial space of small arteries of lungs from patients with SSc-

associated ILD. We further show that CD31+/CD102+ EC isolated from SSc-affected lungs 

produce numerous mesenchymal cell specific proteins and display the simultaneous expression 

of mesenchymal and EC-specific-transcripts. These observations provide strong support to the 

hypothesis that a population of activated myofibroblasts involved in the progressive intimal 

fibrosis, vascular occlusion and pulmonary fibrosis in SSc-associated ILD originate from lung EC 

through the EndoMT process. This novel mechanism may represent an important and novel 

therapeutic target for the severe and currently fatal complications of SSc –associated 

fibroproliferative vasculopathy and pulmonary fibrosis. 

MATERIALS AND METHODS. 
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Tissue samples. Lung tissues from six patients with SSc-associated ILD  were studied. Two of the 

lung samples were from surgical open lung biopsies obtained at Thomas Jefferson University 

Hospital (Patients 1 and 2 in Table I) and the other four lung samples were from patients who 

had undergone lung transplantation at the University of Pittsburgh Medical Center. The surgical 

biopsies and the lung transplants were performed following informed consent and according to 

IRB approved protocols from Thomas Jefferson University and the University of Pittsburgh 

Medical Center. Two normal lung samples obtained at necropsy served as controls for all 

procedures. Both of the donors of normal lung tissues died from cerebrovascular accidents. 

One of the normal controls was from the University of Pittsburg Medical Center and the other 

was obtained from the National Disease Research Interchange (NDRI, Philadelphia, PA). These 

two patients did not have a clinical history of pulmonary pathology and chest radiographs of 

both subjects obtained before their demise were normal. 

Histopathology, immunohistochemistry and confocal laser microscopy. Paraffin embedded 

tissue slides were examined histopathologically employing hematoxylin-eosin and Masson’s 

trichrome staining, and by immunohistochemical staining with specific endothelial and 

mesenchymal (myofibroblast) cell markers. The SSc and normal lung tissue samples were also 

examined by confocal laser microcopy as described previously (36,37). In all 

immunohistochemical and confocal laser microscopy studies samples incubated without 

primary antibody were used as negative controls. For immunohistochemistry the following 

primary antibodies were used: anti-CD31 (Neomarkers, Fremont, CA), anti-von Willebrand 

Factor (vWF, Dako, Denmark), anti-COL1 (Santa Cruz Biotechnology, Santa Cruz, CA), anti-COL3 

(Fitzgerald, Acton, MA), and anti-α-SMA (Abcam, Cambridge, MA).  For single antibody labeling, 
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paraffin sections were immunoassayed by the peroxidase method using the indicated 

antibodies. For confocal laser microscopy paraffin samples were de-paraffinated and 

dehydrated following antigen retrieval with a citric acid buffer as described (36,37). Slides were 

first incubated with blocking IgG solution for 1 h and then overnight with a 1:50 dilution of anti 

CD31, or a 1:200 dilution of anti α-SMA, or a 1:50 dilution of anti-vWF, or a 1:200 dilution of 

anti COL1 or a 1:200 dilution of anti-COL3 antibodies. IgG binding was revealed following 

incubation with (Fab’)-sheep anti-rabbit Cy3 antibody and (Fab’)-sheep anti-mouse FITC 

antibody (Sigma, St. Louis, MO) for 1 h. Nuclei were counterstained with 4,6-diamidino-2-

phenylindole ( DAPI, Jackson ImmunoResearch Laboratories, West Grove, PA). Samples were 

examined with a Zeiss 51 confocal laser microscope (Zeiss, Thronwood, NY) to evaluate the co-

localization of immunoreactivity with polyclonal and monoclonal antibodies in paired 

combinations of either CD31 or vWF with either α-SMA, COL1, or COL3. 

Isolation of human lung EC. CD31+/CD102+ EC were isolated from the lungs of two patients 

with SSc-associated pulmonary fibrosis (Patients 3 and 4 on Table I) and from the two normal 

lungs employing a modification of previously published methods (38,39) as described previously 

(40). Briefly, lung tissue samples were minced with a scalpel and enzymatically digested with 

clostridial collagenase (30 mg/100ml in 0.1% BSA, Worthington, Lakewood, NJ) at 37°C for 1h to 

obtain a single cell suspension. The isolated cell suspension was immunoprecipitated with CD45 

microbeads (MilTenyi BioTec, Auburn, CA) to remove non-EC as described (39). Following 

immunomagnetic removal of CD45+ cells, the remaining cells were then employed for EC 

isolation and purification employing immunomagnetic immunoselection with rabbit anti-human 

CD31 antibody followed by magnetic bead separation using goat anti-rabbit IgG-conjugated 
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microbeads (1:5, Miltenyi Biotec). The isolated CD31+ EC were cultured in EC culture medium 

(ScienCell Research Laboratories, Carlsbad, CA) containing 5% FBS, 100 U/ml penicillin and 100 

µg/ml streptomycin in 2% gelatin pre-coated tissue culture dishes for 5-10 days. Following 

expansion, the cells were re-suspended and the EC were subsequently further purified 

employing a second immunologic separation using rabbit anti-human CD 102 antibody to 

obtain a highly purified preparation of CD31+/CD102+ EC. The purified CD31+/CD102+ EC were 

plated on 2% gelatin coated plastic dishes, their morphology assessed by phase contrast 

microscopy, and their EC phenotype confirmed by evaluating the cellular uptake of 1,1’-

dioctadecyl-3,3,3’,3’-tetramethylindocarbocyanine perchlorate (Dil)-acetylated LDL (Dil-AcLDL, 

Biomedical Technologies, Stoughton, MA) as previously described (40). All studies were 

performed with cells in early passage (less than passage 5) to assure the preservation of their 

original phenotype. 

Immunofluorescence staining. CD31+/CD102+ lung EC were seeded onto glass culture slides 

and were fixed with 3.7% formaldehyde and permeabilized with 0.1% Triton X-100 in PBS for 3 

min. Slides were washed with PBS and blocked with PBS containing 1% BSA at room 

temperature for 1 h, and then they were incubated with primary antibodies against α-SMA 

(1:200), CD31 and vWF epitopes. Slides were then incubated with Cy3-conjugated secondary 

antibodies (1:500) followed by DAPI for nuclear staining. 

Western blot analysis. Aliquots of CD31+/CD102+ lung EC culture media were processed for 

Western blot under denaturing conditions. Secreted proteins in the culture media were 

resolved by SDS-polyacrylamide gel electrophoresis, and transferred to nitrocellulose 

membranes (Invitrogen, Carlsbad, CA). Blots were blocked for 1 h in Odyssey Blocking buffer (LI-
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COR, Lincoln, NE). The membranes were then incubated overnight at 4°C with a polyclonal anti-

COL1 antibody (Southern Biotech, Birmingham, AL), or a polyclonal anti-COL3 antibody  (Sigma-

Aldrich, St. Louis, MO) in the same blocking buffer. Membranes were then washed with PBS-

Tween (PBS, 0.2% Tween 20), and incubated for 1 h with the appropriate horseradish 

peroxidase-conjugated secondary antibodies (GE Healthcare, UK) diluted 10,000-fold in 

Odyssey Blocking buffer. Signals were detected  and  quantitated employing the Odyssey 

Imagen System (LI-COR).  

Quantitative reverse transcription (RT)-PCR. CD31+/CD102+ lung EC preparations from two 

normal and two SSc-associated ILD samples were cultured in duplicate wells of 12 well gelatin-

treated plastic tissue culture dishes for 72 h and harvested with a cell lifter, washed in cold PBS 

and processed for RNA extraction (RNeasy kit; Qiagen, Valencia, CA) including a genomic DNA 

digestion step. Total RNA (1µg) was reverse-transcribed using Superscript II reverse 

transcriptase (Invitrogen, Carlsbad, CA) to generate first strand cDNA. EC transcript levels were 

quantified using SYBR Green real time PCR as described (41). The primers employed are listed in 

Supplementary Table I. The differences in the number of mRNA copies in each PCR were 

corrected for the 18S endogenous control transcript levels; levels in control experiments were 

set at 100 and all other values expressed as multiples of control values. Target gene expression 

was estimated by the ΔΔCt method (41). The specificity of the primers was established at the 

end of the PCR amplification employing melt curve analyses. These studies displayed a single 

melt peak of the amplified product in all cases.  

Statistical analysis.  Comparative CT (ΔΔCt) analysis was performed employing DataAssist 3.0 

Software ( Applied Biosystems) as described previously (41). The data obtained from SSc lung 
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EC from each of the two patients was compared with the average of the data obtained from the 

two normal lung EC preparations and expressed as fold change. 

RESULTS. 

Clinical and demographic characteristics of SSc-associated ILD patients studied. The clinical 

features of the patients and normal controls whose lung tissues were studied are shown in 

Table I. None of the patients had clinical features of pulmonary arterial hypertension (PAH) at 

the time the tissue samples were obtained and all were tested for the presence of PAH 

employing transthoracic echocardiograms and right heart catheterizations which were normal. 

One patient developed clinical PAH 10 months after the lung biopsy sample was obtained. 

Histopathology and immunohistology. All six lung tissue samples from the SSc-associated ILD 

patients displayed varying degrees of interstitial fibrosis along with a mononuclear cell 

inflammatory infiltrate pattern. Numerous small and medium size arteries in all samples 

showed marked intimal proliferation resulting in narrowing of the vessel lumen and sometimes 

complete obliteration of the affected vessel as illustrated in Figure 1A. The endothelial cell 

markers CD31 and vWF were employed to identify EC. As expected, CD31 positive EC were 

found lining the vessel lumen as illustrated in Figure 1B-D. However, CD31 positive cells were 

also observed beneath the endothelial layer embedded within the subendothelial space which 

contained numerous elongated mesenchymal cells (Figure 1B and 1C) as well as in the 

perivascular tissue and within the parenchyma, often near small arteries and arterioles as 

illustrated in Figure 1D. 

Confocal laser microscopy. Confocal laser microscopy showed co-localization of vWF with α-

SMA in the endothelium and within the subendothelial compartment in all SSc-associated ILD 
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samples (Figures 2A-2C). In contrast, samples from normal controls did not show any cells co-

expressing the endothelial and mesenchymal cell markers. Furthermore, in contrast with 

control lungs (Figure 3A), in SSc-lungs the EC layer of some vessels displayed areas of 

detachment from the vessel wall (Figure 3B, arrow) and numerous vessels showed portions of 

vessel lumen denuded from endothelial lining (Figure 3B, arrowheads). The endothelial layer in 

the SSc tissues also displayed very weak or absent CD31 staining (Figures 3B, 3C, and 3D) 

compared with the very intense CD31 staining in the vessels in the control lungs (Figure 3A). 

Marked sub-endothelial accumulation of COL1 (Figure 3D) and COL3 (Figures 3B and 3C) was 

also observed throughout the sub-intimal tissue in the SSc lung vessels. The abundant 

deposition of sub-endothelial collagens was very consistent regardless of the vessel size and 

could be appreciated in various degrees of severity in all small and medium size arterioles.  

Gene expression analysis of CD31+/CD102+ lung EC. The gene expression assessment of 

immunopurified CD31+/CD102+ EC obtained from lung tissues from two patients with SSc-

associated ILD compared to the average gene expression of immunopurified CD31+/CD102+ EC 

from two control lungs is shown in Figure 4. The results demonstrated a very strong expression 

of COL1A1 and COL3A1 in the CD31+/CD102+ purified EC from lungs from SSc patients and 

these values were up to 21 times and 26 times higher, respectively, than the expression of the 

same collagen genes in CD31+/CD102+ EC purified from the normal control lungs. The 

expression of FN1 and ACTA2 (-SMA), other profibrotic genes such as TGFB1 and CTGF, and 

that of several EndoMT-related genes such as SNAI2 and TWIST was also substantially increased 

in the CD31+/CD102+ EC from the lungs of SSc patients.  
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Indirect immunofluorescence and Western blots of CD31+/CD102+ lung EC. Indirect 

immunofluorescence analysis of the cultured CD31+/CD102+ EC from SSc lungs showed intense 

staining for the EC-specific marker vWF as well as for the myofibroblast marker -SMA in the 

same cells (not shown). Western blots of the culture media from CD31+/CD102+ EC isolated 

from the two SSc lungs confirmed the gene expression results showing statistically significant 

greater amounts of type I and type III collagens compared to the culture media from the 

CD31+/CD102+ EC isolated from the two normal control lungs (Figure 5). 

DISCUSSION. 

The generation of activated myofibroblasts, which are distinguished from quiescent resident 

fibroblasts by the initiation of expression of α-SMA and the increased production of fibrillar 

type I and type III collagens (9-11), is a crucial mechanism in the development of tissue fibrosis 

in SSc (7-9). There are numerous sources of activated myofibroblasts (12,13), including TGF-β-

induced fibroblast to myofibroblast phenotypic change of resident quiescent fibroblasts (14), 

recruitment and activation of bone marrow-derived fibrocytes (15,16), and transition of 

epithelial cells , pericytes, and Gli1-positive perivascular progenitor cells into mesenchymal cells 

(17-19). Recently, EndoMT has been recognized as an important mechanism in the generation 

of activated myofibroblasts involved in the development of several experimentally-induced 

animal models of fibrotic diseases (20-23,26-29) and may also play a role in some fibrotic 

human diseases (30-34). EndoMT is a complex biological process during which EC lose their 

specific endothelial characteristics and the expression of EC-specific molecular markers such as 

VE-cadherin/Cdh5, PECAM1/CD31, ICAM2/CD102, and vWF, and concomitantly acquire the 

upregulated expression of α-SMA as well as that of mesenchymal cell-specific components such 
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as fibrillar type I and type III collagens. The detailed mechanisms involved in EndoMT have not 

been fully elucidated, although the crucial role of TGF-β in its initiation and maintenance, as 

well as the participation of several transcription factors involved in cellular transdifferentiation 

including SNAI1, SNAI2 or SLUG, and TWIST1 has been well documented (20-23, 42-44).  

Despite the extensive experimental evidence supporting a role of EndoMT in the pathogenesis 

of tissue fibrosis there have been some reports raising controversy as to whether EndoMT was 

indeed a source of activated myofibroblasts contributing to the development of cardiac fibrosis 

in vivo (45). However, a recent study using endothelial lineage tracing in transgenic mice with 

experimentally-induced renal fibrosis showed that from 10 to 20% of fibroblasts in the fibrotic 

kidneys arise from endothelial cells via EndoMT (28) in vivo and another study in cardiac fibrosis 

also showed that a population of cardiac interstitial fibroblasts were of EC origin (46). 

Here, we provide immunohistopathological evidence of the presence of cells expressing EC 

molecular markers in the subendothelial neointima as well as in the perivascular regions and in 

the parenchyma of lung tissues from patients with SSc-associated ILD and fibroproliferative 

vasculopathy. Furthermore, we show confocal microscopy evidence of the presence of 

numerous cells simultaneously expressing EC and mesenchymal cell molecular markers in the 

SSc lungs. Finally, we show that immunopurified CD31+/CD102+ lung EC isolated and expanded 

in vitro from lung tissues from patients with SSc-associated pulmonary fibrosis exhibited 

marked up-regulation in the expression and production of interstitial type I and type III 

collagens, increased levels of transcripts for the potent profibrotic growth factors, TGF-β and 

CTGF, and for several other EndoMT related proteins, such as the transcription factors TWIST 

and SNAI2. 
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The novel observations described here provide strong evidence indicative of the participation 

of EndoMT in the development of the severe fibroproliferative vasculopathy and progressive 

parenchymal fibrosis which are the hallmarks of the pulmonary involvement in SSc and are 

largely responsible for the high mortality and poor therapeutic response of SSc-associated 

interstitial lung disease (47-50). These results also suggest that greater understanding of the 

molecular mechanisms involved in EndoMT and its pharmacological modulation may represent 

a novel therapeutic approach for the fibroproliferative vasculopathy of SSc-associated tissue 

fibrosis including ILD (35). The feasibility of such an approach has recently been supported by 

the demonstration that pharmacologic modulation of EndoMT pathways was a feasible and 

highly effective approach in vitro and may be applicable as a potential therapeutic intervention 

(33). Finally, our observations may be relevant to other disorders with clinical manifestations 

caused by tissue fibrosis and a fibroproliferative vasculopathy such as PAH or idiopathic 

pulmonary fibrosis. 
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LEGENDS TO FIGURES. 

Figure 1. Histopathology and immunohistology of SSc-associated ILD lung tissues. A small 

artery in the lung of a patient with SSc-associated ILD stained with hematoxylin-eosin (A). Note 

the severe narrowing of the vessel lumen as a result of the accumulation of elongated 

mesenchymal cells and large amounts of fibrous tissue in the subendothelial intimal space. 

Immunohistochemical staining of the same tissue for the endothelial cell specific antibody 

marker CD31 (B, C, D). Note the presence of CD31 positive cells in the subendothelial space (B) 

besides their expected endothelial location. Two cells bearing the EC-specific CD31 marker are 

embedded within the neointimal tissue removed from the endothelium (C). CD31-positive cell 

clusters within the fibrotic lung parenchyma (D). 

 

Figure 2. Confocal microscopy staining for vWF  and α-SMA of a medium-sized arteriole in the 

lung of a patient with SSc-associated ILD. Staining for vWF is shown in green (A) and staining 

for α-SMA is shown in red (B). Cells co-expressing vWF and α-SMA (shown in yellow in the 

merged image;C) are present within the endothelium and in the subendothelial tissue.  

 

Figure 3. Confocal microscopy staining of lung tissues from SSc-associated ILD for either COL3 

or COL1 and CD31. CD31 is stained green (A-D). COL3 (B,C) or COL1 (D) are stained red. 

Comparison of normal (A) and SSc (B-D) lung parenchymal arterioles and medium size arteries. 

In the normal lung vessels (A), there is a very strong endothelial CD31 staining and the 

endothelium appears well attached to the vessel architecture. COL3 staining is very faint and 

mostly restricted to structures beyond the elastic lamina (A). In SSc vessels (B) the endothelial 



 

22 

lining is often detached from the vessel wall (arrow) and some areas of denuded endothelium 

are noticeable (arrowheads). CD31 staining is noticeably weaker in the endothelial layer in SSc 

vessels compared to normal vessels (compare Figure A with Figures B-D). Intense and abundant 

sub-endothelial staining of COL3 is noted in the SSc vessels (B and C) with a uniform distribution 

through the whole intimal and subintimal regions of the vessel wall. COL1 staining was also 

intense and displayed strong subendothelial distribution (D).  

 

Figure 4.  Quantitative PCR assessment of expression levels of selected genes in 

CD31+/CD102+ lung EC obtained from two patients with SSc-associated ILD compared to the 

average of CD31+/CD102+ EC obtained from two normal lungs. Two different preparations of 

CD31+/CD102+ EC isolated from the lungs of each SSc patient or from each of the normal lungs 

were analyzed. Each sample was analyzed in duplicate. Shown are measurements of transcripts 

corresponding to interstitial collagen genes (COL1 and COL3), fibronectin 1 (FN1), α-smooth 

muscle actin (SMA), EC-specific genes (COL4A1, VE-cadherin, vWF and VEGF), profibrotic genes 

(TGF-β1 and CTGF), and genes encoding EndoMT-related transcription factors (SNAI2, and 

TWIST1). The vertical scale shows expression levels as fold change in CD31+/CD102+ EC from 

each of the SSc lungs (SSc1 and SSc2) compared to the average levels of the CD31+/CD102+ EC 

from the normal lungs. 

 

Figure 5. Protein expression of CD31+/CD102+ EC from lung tissues from two patients with 

SSc-associated ILD compared with the average values obtained from CD31+/CD102+ EC from 

two normal lungs. Western blot analysis for secreted type I and type III collagens in culture 
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media from duplicate cultures of CD31+/CD102+ EC from two normal and two SSc lungs. The 

intensity of the bands was analyzed by fluorescence quantitation and is expressed in arbitrary 

units of fluorescence. Representative Western blots for two different normal and two different 

SSc cell lines are shown. *:p values for the difference between SSc and normal cells were <0.05. 
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