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Impact of Distinct Poxvirus Infections on the Specificities and
Functionalities of CD4� T Cell Responses

Nicholas A. Siciliano,a Adam R. Hersperger,a,d Aimee M. Lacuanan,a Ren-Huan Xu,b John Sidney,c Alessandro Sette,c Luis J. Sigal,b

Laurence C. Eisenlohra

Department of Microbiology and Immunology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USAa; Fox Chase Cancer Center, Immune
Cell Development and Host Defense Program, Philadelphia, Pennsylvania, USAb; Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla,
California, USAc; Department of Biology, Albright College, Reading, Pennsylvania, USAd

ABSTRACT

The factors that determine CD4� T cell (TCD4�) specificities, functional capacity, and memory persistence in response to com-
plex pathogens remain unclear. We explored these parameters in the C57BL/6 mouse through comparison of two highly related
(>92% homology) poxviruses: ectromelia virus (ECTV), a natural mouse pathogen, and vaccinia virus (VACV), a heterologous
virus that nevertheless elicits potent immune responses. In addition to elucidating several previously unidentified major histo-
compatibility complex class II (MHC-II)-restricted epitopes, we observed many qualitative and quantitative differences between
the TCD4� repertoires, including responses not elicited by VACV despite complete sequence conservation. In addition, we ob-
served functional heterogeneity between ECTV- and VACV-specific TCD4� at both a global and individual epitope level, particu-
larly greater expression of the cytolytic marker CD107a from TCD4� following ECTV infection. Most striking were differences
during the late memory phase where, in contrast to ECTV, VACV infection failed to elicit measurable epitope-specific TCD4� as
determined by intracellular cytokine staining. These findings illustrate the strong influence of epitope-extrinsic factors on TCD4�

responses and memory.

IMPORTANCE

Much of our understanding concerning host-pathogen relationships in the context of poxvirus infections stems from studies of
VACV in mice. However, VACV is not a natural mouse pathogen, and therefore, the relevance of results obtained using this
model may be limited. Here, we explored the MHC class II-restricted TCD4� repertoire induced by mousepox (ECTV) infection
and the functional profile of the responding epitope-specific TCD4�, comparing these results to those induced by VACV infection
under matched conditions. Despite a high degree of homology between the two viruses, we observed distinct specificity and
functional profiles of TCD4� responses at both acute and memory time points, with VACV-specific TCD4� memory being notably
compromised. These data offer insight into the impact of epitope-extrinsic factors on the resulting TCD4� responses.

Through their recognition of pathogen-derived peptides pre-
sented by major histocompatibility complex class II (MHC-

II), CD4� T cells (TCD4�) play important roles in shaping cellular
(1, 2) and humoral immunity (3, 4) and in establishing immuno-
logical memory (5–7). Additionally, TCD4� can suppress viral rep-
lication through the secretion of antiviral cytokines, such as
gamma interferon (IFN-�), and less frequently, through cytotoxic
granule-mediated killing of infected cells (5, 8, 9).

Smallpox, caused by the Variola virus poxvirus, plagued man-
kind for millennia and continues to be a concern due to the threat
of weaponization (10–13). Other poxviruses are equally lethal to
their natural hosts, including ectromelia virus (ECTV), a poxvirus
that causes smallpox-like symptoms in mice. Due to the threat it
poses to mouse colonies, ECTV has not been widely investigated,
and our understanding of host-poxvirus interplay and the result-
ing TCD4� response stems mainly from studies in mice with vac-
cinia virus (VACV), a poxvirus of unknown origin and the centu-
ries-old vaccine against smallpox. Moreover, these poxviruses
have distinct courses of infection after intradermal infection in
mice. ECTV multiplies rapidly at the site of infection before dis-
seminating into the lymphatics and bloodstream, where it leads to
a systemic infection that affects both the liver and spleen (14, 15),
whereas VACV remains relatively localized after intradermal in-
fection and does not lead to systemic infection (16). Importantly,

because VACV is not a natural mouse pathogen, despite a high
degree of homology with ECTV, the relevance of results from the
widely studied VACV murine infection model may be limited. For
example, distinct innate responses (17–21) that can alter the array
of immunogenic peptides (22), which can profoundly affect TCD4�

responses, can differ substantially even with highly related viruses
due to host cell tropism and host-specific immunomodulatory
factors, such as viral cytokine mimics and/or receptors (23–30).
These epitope-extrinsic factors can dramatically alter the course of
infection and the resulting host immune response. For instance, it
has been previously reported that Toll-like receptor 9 (TLR9) is
critical for resistance against ECTV but not VACV (31). Indeed,
low-dose footpad infection of C57BL/6 mice with ECTV usually
results in loss of the infected limb, while much higher doses of
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VACV cause no discernible long-term effects. Thus, a compara-
tive analysis of ECTV and VACV infection in mice provides an
excellent opportunity to reveal the character of the ensuing virus-
specific TCD4� responses through the examination of specificity
and functionality.

The primary aim of the present study was to compare the re-
activity, magnitude, and functionality of ECTV- and VACV-spe-
cific TCD4�. By screening a large number of 12- to 15-mer peptides,
we identified a total of 14 ECTV-specific TCD4� epitopes and ob-
served both quantitative and qualitative differences between the
TCD4� epitope repertoires elicited by ECTV and VACV. Subse-
quently, we probed differences in virus-mediated imprinting on
TCD4� function and found that the resulting profiles of epitope-
specific TCD4� are distinct and that long-term TCD4� memory to
ECTV is substantially stronger. In total, these data offer insight
into the degree to which the alignment of host and pathogen can
affect the specificity and functionality of responding virus-specific
TCD4�.

MATERIALS AND METHODS
Ethics statement. All experimental procedures involving mice were ap-
proved by the Institutional Animal Care and Use Committee at Thomas
Jefferson University (Philadelphia, PA) and carried out in a humane
manner.

Viruses. The VACV WR strain was obtained from Bernard Moss (Na-
tional Institute of Allergy and Infectious Diseases) and grown in 143 TK–

cells. The ECTV Moscow strain was grown in BSC1 cells. The �evm0158
ECTV (Fox Chase Cancer Center) was generated by homologous recom-
bination, like other mutant viruses, (32, 33) and grown in BSC1 cells.

Mice. Six- to 8-week-old female C57BL/6 mice were primed via foot-
pad with 3,000 PFU ectromelia virus (Moscow strain), 3,000 PFU or 3 �
106 PFU vaccinia virus (Western Reserve), or 3,000 PFU �evm0158
ECTV. C57BL/6 mice were obtained from The Jackson Laboratory and
were used between 6 and 8 weeks of age according to the National Insti-
tutes of Health guidelines and Institutional Animal Care and Use Com-
mittee-approved animal protocols.

Infection and immunizations. Six- to 8-week-old female C57BL/6
female mice were infected in the left hind footpad with either 3,000 PFU
ectromelia virus (Moscow strain), 3,000 PFU or 3 � 106 PFU vaccinia
virus (Western Reserve), or 3,000 PFU �evm0158 ECTV. At various time
points postinfection, the mice were observed and/or sacrificed and the
inguinal lymph nodes, liver, and spleen were harvested. The splenocytes
were used in either ex vivo IFN-� enzyme-linked immunosorbent spot
assay (ELISpot) or intracellular cytokine staining (ICS) assay as described
below.

Epitope mapping. The 1,022 peptides used for mapping were a subset
of a previously described library (34). Briefly, peptides were synthesized as
crude material by Pepscan Systems and mimotopes ranging from 12 to 15
amino acids in length were used previously to identify VACV epitopes
(34). The peptides were screened for reactivity against splenocytes from
ECTV-primed mice at various time points postinfection. Splenocytes
from naive mice were used as antigen-presenting cells. Naive splenocytes
were incubated with peptide (final concentration, 2 �g/ml) at 37°C and
5% CO2. Peptide-primed splenocytes were then coincubated overnight
with either ECTV-specific whole splenocytes or TCD4� isolated from
splenocytes (Dynal mouse CD4 negative isolation kit; Invitrogen). IFN-
�-positive T cell responses were assayed by IFN-� ELISpot (BD). Spots
were counted using ImmunoSpot software (Cellular Technology Lim-
ited). To account for varying signal-to-noise ratios, we also calculated a
stimulation index (SI), defined as (SFC [spot-forming cell] experiment
results)/(SFC background) (34). Peptides with average spot numbers of
�20, means of 1 � 106 effector T cells, P values of �0.05, and SI values of
�2 in three independent experiments were considered positive.

ICS assay. ICS assays were performed as previously described (15).
Briefly, bone marrow-derived dendritic cells (1 � 106) generated using
previously published methods (35) were either pulsed with peptides
(3 �g/ml) for 1 h in a 96-well plate or were infected with VACV WR
(multiplicity of infection [MOI] of 5) for between 10 and 18 h before the
addition of 1 � 106 to 2 � 106 splenocytes (pooled from two to five mice
that were immunized with VACV WR for 10 days). Two hours later,
brefeldin A (10 �g/ml) was added, and cells were cultured for another 6 h
before staining according to the protocol of the BD Fix/Perm solution kit
(BD Biosciences). At least 1.5 � 106 to 2 � 106 events per sample were
collected using an LSRII fluorescence-activated cell sorting (FACS) sys-
tem (BD Biosciences) and were analyzed with FlowJo software (Tree Star).
Background values were determined from samples pulsed with dimethyl
sulfoxide (DMSO) only (no peptide) and were subtracted from the exper-
imental values. At least three independent experiments were performed
for each peptide or peptide pool. A peptide was considered positive if the
average of the individual experiments was at least 1 standard deviation
above the background.

RESULTS
TCD4� response magnitude after infection with ECTV or VACV.
The distinct pathogenesis of ECTV compared with that of VACV
in C57BL/6 mice, despite �92% genetic identity (36), could be
appreciated following footpad inoculation of these viruses (Fig.
1A). VACV-induced inflammation was often detectable by day 3
postinfection, while the onset of ECTV-induced swelling was typ-
ically not appreciable until day 6. This can be ascribed, at least in
part, to greater subversion of early immune responses by ECTV
than by VACV (14, 37). However, while VACV-induced inflam-
mation remained relatively mild and eventually subsided, ECTV-
associated swelling became considerable, ultimately leading to ne-
crosis and loss of the limb within 	21 days of infection in most
cases, consistent with previous reports (38). In both infections, we
found day 10 postinfection to be the time point at which virus-
specific TCD4� responses could be discriminately measured, pro-
viding an optimal signal-to-noise ratio (data not shown). The di-
vergent pathogenesis of ECTV and VACV in mice, despite a high
degree of genetic similarity, provides an ideal experimental system
to explore the influence of virulence and infectivity on the result-
ing TCD4� responses following poxvirus infection.

The global TCD4� responses to ECTV and VACV were initially
compared to determine differences in the overall magnitudes of
the responses to these two distinct poxviruses. We primed
C57BL/6 mice with ECTV or VACV, and 7 days later, cocultured
splenocytes with bone marrow-derived dendritic cells (BMDCs)
infected with either ECTV or VACV. Using flow cytometry, we
measured the magnitude of the TCD4� responses by examining
several T cell functional outputs (Fig. 1B). Heterologous stimula-
tion produced approximately 62% (VACV TCD4� to ECTV
BMDC) to 67% (ECTV TCD4� to VACV BMDC) of the numbers
of activated TCD4� produced by homologous stimulation. This
was 25 to 30% lower than what would be anticipated based upon
the degree of sequence identity shared by the proteomes of VACV
and ECTV (36, 39). This suggested a disparity in the TCD4� re-
sponses to the two poxviruses extending beyond sequence heter-
ogeneity, a possibility that was first investigated by assessing re-
sponses to individual epitopes.

TCD4� specificities elicited by VACV and ECTV. Previous
mapping of the MHC-II-restricted C57BL/6 response to intraperito-
neal VACV infection was accomplished with a library of synthetic
peptides, comprising 	30% of the predicted transcriptome of VACV
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(34). That study identified 14 specificities, with late-phase antigens
predominating among the list of parent proteins (34). Utilizing 1,022
of those peptides (comprising 	15% of the predicted transcriptome
of VACV), we compared the reactivities elicited by ECTV and VACV
in C57BL/6 mice by ELISpot analysis (Fig. 2) (34). Since the common
route of entry for ECTV is through abrasions on the skin (38, 40–42),
we performed footpad injection at the standard dose (3,000 PFU) as
the route of infection for this study. Importantly, for the ELISpot
screening, both the route and dose of VACV were matched to allow
for direct comparison with the results obtained following ECTV
priming. Spleens were harvested 10 days after infection, and the fre-
quency of reproducible ECTV epitopes (Fig. 3A) measured was rela-
tively low, on the order of 1 to 2% (Fig. 3B), consistent with the
previous VACV screen (34).

The majority of peptides screened were fully conserved be-
tween VACV and ECTV, consistent with the high degree of ho-
mology. Fourteen distinct and reproducible MHC-II-restricted
specificities were identified in response to ECTV infection (Fig. 3A
and C and Table 1). Eleven of these had been previously identified
in the VACV screen, with two common epitopes (residues 46 to 60
of A18R [A18R46 – 60] and I1L7–21) differing by a single, apparently
neutral, amino acid (Table 2). Thus, three epitopes (I4L632– 646,
B13R14 –28, and E2L426 – 440) were novel (Table 3). Interestingly,
when we screened VACV-specific TCD4� (Fig. 2, solid bars), these
three specificities were also elicited, although B13R14 –28 and
E2L426 – 440 were just above the limit of detection. Three other
specificities identified in the original VACV screen (D8L238 –252,
A28L10 –24, and A24R399 – 413) were not elicited by ECTV. This
could not be attributed to sequence heterogeneity for any of the
three because A28L10 –24 and A24R399 – 413 are 100% conserved.
And while the ECTV sequence differs from D8L238 –252 by two
residues (A244¡V244 and A249¡V249), the ECTV counterpart was
also nonreactive (Fig. 4).

At the same time, we expanded the screen to include CD8� T
cell (TCD8

�) specificities and identified a novel and relatively po-
tent MHC class I (MHC-I)-restricted epitope, M1L424 – 438, that
elicited TCD8

� responses after both ECTV and VACV infections

(Fig. 2 and 3C). The minimal H2-Kb-restricted epitope within the
M1L424 –338 peptide was defined via a series of truncated peptides
as M1L426 – 434 (IIIPFIAYF) (data not shown).

The sum of the differences in TCD4� specificities depicted in
Fig. 2, 3, and 4 do not, on their own, account for the unexpected
deficit in cross-reactivity shown by the results in Fig. 1. Particu-
larly striking are the unequal responses to homologous epitopes.
For example, despite the sequence identity, ECTV elicits signifi-
cantly greater responses to the A20R230 –244, E2L426 – 440, and
F15L41–55 epitopes than VACV. Conversely, VACV elicits far
greater responses to the I1L7–21, I1L18 –33, and L4R173–187 epitopes.
These differences in both directions indicate qualitative differ-
ences in the TCD4� responses to the two viruses that are indepen-
dent of epitope sequence. This led us to assess additional attributes
of the resulting TCD4� responses.

Minimal influence of the ECTV IFN-� binding protein on
assay results. One factor we needed to address at an early stage
was the IFN-� binding protein expressed by both ECTV and
VACV, since only the ECTV version has specificity for murine
IFN-� (43). Thus, the comparative ELISpot assays might have
been compromised by this selective activity. To address this, we
compared the responses of mice to wild-type (WT) ECTV and a
recombinant strain that lacks the soluble IFN-� receptor (B8R in
VACV). The TCD4� responses to WT and �evm0158 ECTV were
generally quite similar, with only a few significant differences (Fig.
5). For example, the E2L426 – 440 and F15L41–55 responses were re-
duced and the I1L18 –33 response elevated in comparison to the
responses of these epitopes to WT ECTV. Collectively, these data
indicate that �evm0158 ECTV does not significantly affect virus-
specific TCD4� reactivity or IFN-� production. Compatible with
this finding, �evm0158 ECTV was not appreciably attenuated in
vivo in our hands (unpublished data).

Comparative functional profiles of epitope-specific
TCD4�from ECTV- or VACV-primed mice. To assess functional-
ity using intracellular cytokine staining (ICS) and polychromatic
flow cytometry, we pooled six peptides (Table 4, boldface) that
consistently elicited robust TCD4� responses in ELISpot assays, five

FIG 1 Divergent pathogenesis and magnitude of TCD4� response to ECTV and VACV. (A) C57BL/6 mice were infected with either VACV or ECTV (3,000 PFU
per footpad). Footpad swelling was measured using a caliper and recorded in millimeters at the indicated days postinfection. Representative photos of footpads
at day 12 postinfection with either ECTV or VACV are shown. (B) TCD4� response magnitude, represented as the frequency of total responding TCD4� from mice
primed with either VACV and ECTV (3,000 PFU per footpad). Responses were measured by intracellular cytokine staining after splenocytes were stimulated with
BMDCs infected with ECTV or VACV (MOI 
 1). Total magnitude was calculated after background subtraction by summing across all combinations of cells
producing at least one of the following functions: CD107a, IFN-�, IL-2, and TNF-�.
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FIG 2 Comparative epitope specificities and magnitudes of responses to VACV- and ECTV-primed splenocytes. Naive splenocytes were incubated with
synthetic poxvirus peptides ranging from 12 to 15 amino acids in length and screened for reactivity against splenocytes from ECTV-primed mice 10 days
postinfection. Naive splenocytes were incubated with peptide (final concentration, 2 �g/ml). Peptide-primed splenocytes were coincubated overnight with whole
splenocytes from ECTV-primed mice (3,000 PFU per footpad [f.p.]) 10 days postinfection. IFN-�-positive T cell responses were assayed by IFN-� ELISpot. To
determine the level of statistical significance, Student’s t test was performed using the mean of triplicate values of the response. #, number; *, P � 0.05; limits,
means � standard deviations (SD); APC, antigen-presenting cell. Data are representative of 3 independent experiments.
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being completely conserved between ECTV and VACV. Three cy-
tokines were measured: IFN-�, interleukin-2 (IL-2), and tumor
necrosis factor alpha (TNF-�). In general, these molecules play
well-described roles in antiviral immunity (44–47), and both
IFN-� and TNF-� have been found to be particularly important
for protection following poxvirus infection (48, 49). In order to

identify TCD4� with cytotoxic potential, we also assessed degranu-
lation by measuring the surface expression of CD107a after stim-
ulation (50). In agreement with our prior study (15), the average
TCD4� response profile across all six epitopes was comparable be-
tween the two viruses (Fig. 6A). However, there were significant
differences in the overall frequency of cytokine production when

FIG 3 Determination of ECTV-specific TCD4�epitopes in C57BL/6 mice. A synthetic VACV peptide library of 1,022 peptides, ranging from 12 to 15 amino acids
in length, was screened for reactivity against splenocytes from ECTV-primed mice (3,000 PFU per footpad) 10 days postinfection. Naive splenocytes were
incubated with peptide (final concentration, 2 �g/ml). Peptide-primed splenocytes were coincubated overnight with ECTV-specific whole splenocytes. (A)
IFN-�-positive T cell responses were assayed by IFN-� ELISpot. Stars indicate previously unreported poxvirus epitopes, and MHC class I or MHC class II
epitopes are indicated below. (B) Frequency map of the positive peptides identified in panel A. (C) Confirmation that the epitopes identified in panel A are
recognized by TCD4�. A screen was performed as described in the legend to panel A with splenocytes or purified TCD4� from ECTV-primed mice. Limits, means � SD.
MHC class I or MHC class II epitopes are indicated below.
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individual functions were assessed (Fig. 6B), and it became clear
that ECTV-specific TCD4� released significantly more cytotoxic
granules after peptide stimulation.

Next, we examined the functional profiles of the individual
specificities. Despite the functional similarity between ECTV-
and VACV-specific TCD4� at a global (peptide pool) level, we
observed heterogeneity in the individual response profiles (Fig.
6C). Of note, VACV-infected mice did not yield a response
above the background for two specificities, I4L632– 646 and
H3L269 –283 (Fig. 6C). Of the specificities that could be com-
pared, E9L176 –190-specific TCD4� displayed the greatest func-
tional divergence.

Additionally, due to the importance and relevance of long-
lasting poxvirus immunization strategies (51, 52, 113), we exam-
ined epitope-specific TCD4� functionality and persistence into the
memory phase (�100 days postinfection). We found that five of
the six ECTV specificities were detectable (greater than or equal to
0.05% of total TCD4�) at 100 days postinfection (reactivity to
I4L632– 646 was undetectable by ICS), with minor degradation of
functionality over time in each case. In striking contrast, no indi-
vidual VACV-specific epitopes were detectable at 100 days postin-
fection, even though a 1,000-fold high dose of VACV was used for
priming (Fig. 6D). In the context of this study, these data suggest
that ECTV and VACV infections mediate distinct priming and

TABLE 1 Identification of ECTV-specific epitopesa

Peptide hit Sequence VACV protein
Time of
expression Function

MHC
class

B8R20–27 TSYKFESV B8R (VACWR190) [A190] Early Virulence I
M1L424–438 KSIIIPFIAYFVLMH M1L (VACWR030) [A030] Early Unknown I
A18R46–60 PKGFYASPSVKTSLV A18R (VACWR138) Early Regulation II
A20R230–244 GDNIFIPSVITKSGK A20R (VACWR141) [A141] Early Regulation II
E9L176–190 PSVFINPISHTSYCY E9L (VACWR065) Early Regulation II
I4L632–646 EFQVVNPHLLRVLTE I4L (VACWR073) [A073] Early Regulation II
J4R75–89 DDDYGEPIIITSYLQ J4R (VACWR096) Early Regulation II
B13R14–28 ENVFISPASISSVLT B13R (VACWR195) [A195] Early Virulence II
E2L426–440 RLMFEYPLTKEASDH E2L (VACWR058) [A058] Early Unknown II
E1L114–128 VLTIKAPNVISSKIS E1L (VACWR057) [A057] Late Regulation II
D13L483–497 PKIFFRPTTITANVS D13L (VACWR118) [A118] Late Structural II
I1L7–21 QLVFNSISARALKAY VACWR070 (I1L) Late Structural II
I1L18–33 LKAYFTAKINEMVDE I1L (VACWR070) Late Structural II
H3L269–283 PGVMYAFTTPLISFF H3L (VACWR101) Late Structural II
L4R173–187 ISKYAGINILNVYSP L4R (VACWR091) [A091] Late Structural II
F15L41–56 TPRYIPSTSISSSNI F15L (VACWR054) Late Unknown II
a Boldface indicates previously unreported epitopes.

TABLE 2 TCD4� poxvirus-specific epitopes

Peptide hit Reactivitya

% Conservation of:

Time of
expression

MHC
class

Epitope
(differing residue[s])

Flanking
regionb

Parent
protein

ECTV � VACV
A20R230–244 ECTV and VACV 100 100 97 Early II
F15L41–56 ECTV and VACV 100 100 99 Late II

VACV � ECTV
I1L7–21 ECTV and VACV 93.3 (V9¡I9) 100 99 Late II
I1L18–33 ECTV and VACV 100 100 99 Late II
L4R173–187 ECTV and VACV 100 100 99 Late II
A24R399–413 VACV only 100 100 99 Early II
A28L7–21 VACV only 100 100 99 Late II
D8L235–249 VACV only 86.7 (A244¡V244,

A249¡V249)
100 95 Late II

ECTV  VACV
A18R46–60 ECTV and VACV 93.3 (A54¡S54) 100 97 Early II
E9L176–190 ECTV and VACV 100 100 98 Early II
J4R75–89 ECTV and VACV 100 100 99 Early II
E1L114–128 ECTV and VACV 100 100 99 Late II
D13L483–497 ECTV and VACV 100 100 99 Late II
H3L269–283 ECTV and VACV 100 100 96 Late II

a Stimulation index (SI) of �2.
b Includes 5 amino acid residues upstream and downstream from the epitope.
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functional imprinting of epitope-specific TCD4� that affect persis-
tence into the memory phase.

A greater frequency of effector TCD4� is elicited by ECTV dur-
ing acute infection. Having examined CD107a expression among
the poxvirus-specific responses (Fig. 6), we looked in more detail
at the effector status of TCD4� responses after infection. Our recent
work points to the importance of cytolytic function by TCD4� dur-
ing acute ECTV infection of mice (9). Here, we asked whether
cytolytic function is a poxvirus-specific phenomenon or unique to
ECTV. Using flow cytometric analysis, we observed significant
differences in the surface mobilization of cytotoxic granules by
TCD4� that were dependent upon both the epitope specificity and
identity of the infecting poxvirus. The TCD4� responses to two
conserved epitopes, D13L483– 497 and E9L176 –190, serve as an illus-
tration of these points, with ECTV infection inducing E9L176 –190-
specific TCD4� with greater degranulation capacity than TCD4�

with other specificities (Fig. 7A). Additionally, compared with
VACV, ECTV infection consistently elicited a higher proportion
of responding TCD4� with discernible CD107a expression after
stimulation (Fig. 7A). The frequency of degranulation typically
declined over time but was better maintained for some epitope
specificities (Fig. 7B).

Granzyme B (gzmB) is a major proapoptotic mediator stored

within cytotoxic granules. As an additional way to assess cytotoxic
potential, we measured the global levels of this molecule within
total TCD4� at acute time points postinfection with both viruses in
the liver, inguinal lymph nodes, and spleen. We found that total
TCD4� in all three locations within ECTV-infected mice expressed
2- to 3-fold-higher levels of grzB than were observed with VACV
(Fig. 7C and D). The enhanced grzB expression observed from
ECTV TCD4� suggests that the induction of cytolytic TCD4� is char-
acteristic of the murine host response to ECTV and not generally
associated with murine poxvirus infection, as it is absent in
VACV-immunized animals.

To further explore differential effector phenotypes between
ECTV and VACV TCD4�, we examined the expression levels of
macrophage inflammatory protein 1� (MIP1�) from ECTV- and
VACV-specific TCD4�. MIP1� is a proinflammatory chemokine
involved in the recruitment of immune cells, and its expression by
T cells is associated with a more robust effector profile (53–55).
We found greater expression of MIP1� from ECTV-specific
TCD4� than from VACV TCD4� (Fig. 8), offering additional evi-
dence that, in general, ECTV-specific TCD4� display a greater ef-
fector-like profile than their VACV counterparts.

DISCUSSION

This study has revealed several ways in which host responses to the
natural murine poxvirus, ECTV, differ considerably from those to
VACV, the predominant model for examining poxvirus virulence
and immunity in mice (16, 56–59). The initial experiments re-
vealed a level of cross-reactivity, 	62 to 67%, that was far lower
than that expected by the degree of homology (92%). The basis for
this became clear when we examined individual specificities with a
12- to 15-mer peptide library. Eleven of 14 previously identified
VACV-induced specificities were elicited by ECTV (34), with the
remaining three specificities (D8L238 –252, A28L10 –24, and
A24R399 – 413) failing to develop in response to ECTV. The screen
also uncovered four novel poxvirus epitopes for both ECTV and
VACV, three of which were MHC class II (I4L632– 646, B13R14 –28,
and E2L426 – 440) and one of which was MHC class I (M1L426 – 434,
the precise boundaries being subsequently determined by a trun-
cated-peptide series). Several factors may explain why the three
MHC-II epitopes were not discovered in an earlier screen (33).
Different routes of infection can affect TCD4� differentiation, since
they determine the initial cell types that interact with the virus
(60), and prior screens utilized an intraperitoneal challenge (34),
whereas here, we employed a dermal footpad challenge to mimic
the natural infection route of ECTV (42). Additionally, prior
VACV epitope screens utilized B cells to present synthetic peptides
to TCD4� (34), and differential costimulatory molecule expression
by unique antigen-presenting cell types can alter signaling at the

TABLE 3 Previously unreported poxvirus-specific epitopes

Peptide hit Reactivitya

% Conservation of:

Time of
expression

MHC
class

Epitope
(differing residue)

Flanking
regionb

Parent
protein

M1L424–438 ECTV and VACV 100 96 96 Early I
I4L632–646 ECTV and VACV 100 100 97 Early II
B13R14–28 ECTV only 93.3 (P20¡S20) 100 95 Early II
E2L426–440 ECTV only 100 100 98 Early II
a Stimulation index (SI) of �2.
b Includes 5 amino acid residues upstream and downstream from the epitope.

FIG 4 Comparative epitope reactivities to D8L238 –252 between VACV- and
ECTV-primed splenocytes. Naive splenocytes were incubated with synthetic
D8L238 –252 (VACV sequence) or D8L238 –252

A244¡V244/A249¡V249 (ECTV se-
quence) at a final concentration of 2 �g/ml. Peptide-primed splenocytes were
then coincubated overnight with whole splenocytes from ECTV-primed mice
or VACV-primed mice (3,000 PFU per footpad) 10 days postinfection. IFN-
�-positive T cell responses were assayed by IFN-� ELISpot. To determine the
level of statistical significance, Student’s t test was performed using the mean of
triplicate values of the response. *, P � 0.05.
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immunological synapse, resulting in shifted TCD4� activation
thresholds (61).

The novel MHC-I epitope, M1L426 – 434, induced relatively
equivalent responses from both ECTV and VACV splenocytes
that were nearly as potent as the immunodominant B8R20 –27

for both VACV and ECTV splenocytes (Fig. 2), independent of
infection route and dose (data not shown). In silico analyses
that utilized algorithm-based predictions for MHC-I binders
within the VACV transcriptome identified a 10-mer H-2Db

class I epitope (TSNVITDQTV/M1L291–300) within the M1L
parent protein (56) but not at the 426 – 434 location.

The lack of ECTV TCD4� reactivity to the three specificities
identified in the original VACV screen could not be accounted for

by sequence heterogeneity, as A28L10 –24 and A24R399 – 413 are both
100% conserved. And although there were two amino acid differ-
ences in the D8L238 –252 epitope (A244¡V244 and A249¡V249), the
possibility that these changes prevent proper processing of the
antigen or prevent binding to the I-Ab molecule was discounted by
the observation that VACV TCD4� responds to the ECTV ho-
molog. Thus, in all three cases, factors extrinsic to epitope com-
position are at work. One clear difference between the two viruses
is the course of infection. ECTV productively infects a wider range
of murine cell types, including dendritic cells, epidermal T cells,
and keratinocytes (14, 41, 62). Thus, different sets of antigen-
presenting cells with differing processing capabilities will be en-
gaged. Furthermore, ECTV produces species-specific factors that
allow for evasion and subversion of host responses and far greater
replication in mice, as well as a greater antigen load, which will
affect the levels of epitope display. Virulence factors and antigen
load can also affect the cytokine milieu, which is markedly differ-
ent in the two infections (15, 63–67) and which can strongly in-
fluence antigen-processing capabilities (68, 69). Chief among the
cytokines of interest is IFN-�, which, in addition to influencing
the expression of antigen-processing components (68–71), drives
upregulation of MHC-II (72). This was especially true for these
investigations since ECTV but not VACV encodes a soluble IFN-�
receptor (B8R) that binds to murine IFN-� (25, 73, 74). However,
deletion of B8R did not have a substantial impact on overall TCD4�

magnitude or on the individual TCD4� reactivities, consistent with
our observation that �evm0158 is not attenuated in vivo (unpub-
lished data).

Differences in participating antigen-presenting cells and anti-

FIG 5 Comparative epitope specificities and magnitudes of responses between WT ECTV- and �evm0158 ECTV-primed splenocytes. Naive splenocytes were
incubated with synthetic poxvirus peptides ranging from 12 to 15 amino acids in length (final concentration, 2 �g/ml). Peptide-primed splenocytes were
coincubated overnight with whole splenocytes from WT ECTV- or �evm0158 ECTV-primed mice (3,000 PFU per footpad) 10 days postinfection. IFN-�-positive
T cell responses were assayed by IFN-� ELISpot. To determine the level of statistical significance, Student’s t test was performed using the mean of triplicate values
of the response. *, P � 0.05; limits, mean � SD. Data are representative of 3 independent experiments.

TABLE 4 Selected TCD4�/MHC class II poxvirus-specific epitopesa

Peptide Amino acid sequence

A20R230–244 GDNIFIPSVITKSGK
I4L632–646 EFQVVNPHLLRVLTE
F15L41–55 TPRYIPSTSISSSNI
E1L114–128 VLTIKAPNVISSKIS
I1L7–21 QLVFNSISARALKAY
I1L18–33 LKAYFTAKINEMVDE
D13L483–497 PKIFFRPTTITANVS
E9L176–190 PSVFINPISHTSYCY
H3L269–283 PGVMYAFTTPLISFF
L4R173–187 ISKYAGINILNVYSP
a Boldface indicates peptides that consistently elicited robust TCD4� responses in
ELISpot assays and were pooled to assess functionality using intracellular cytokine
staining (ICS) and polychromatic flow cytometry.
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gen load can also affect the functional character of the TCD4� re-
sponse (75–79). Indeed, we found that for the majority of the
epitopes tested (5 of 6), ECTV-specific TCD4� demonstrated a
higher effector capacity; most notably enhanced were cytolytic
potential and MIP1� expression. Furthermore, VACV TCD4� ex-
hibited responses above the background for just 4 of the 6 epitopes
examined at 10 days postinfection, while ECTV-specific TCD4�

reacted strongly to all 6. We also identified higher percentages of
grzB-positive cells from the tissues of ECTV-infected mice (Fig.
7C and D). This was true of all three tissues examined at acute time
points postinfection. This result demonstrates that the generation
of robust cytolytic TCD4� is not a general property of all poxvirus
infections and is consistent with earlier reports that increased an-

tigen loads drive the development of cytolytic TCD4� in both acute
and chronic viral infections (80, 81).

Previous work by Fang et al. demonstrated that cytolytic TCD4�

contribute to the suppression and host control of ECTV replica-
tion (9), consistent with the well-documented pleiotropic antivi-
ral effects of grzB expression. In addition to triggering apoptosis
during ECTV infection, despite the production of antiapoptotic
proteins such as B13R (82, 83), grzB has been shown to directly
suppress VACV replication via cleavage of eukaryotic initiation
factor 4 gamma 3 (eIF4G3), a protein essential for the initiation of
protein translation (84). Increased grzB production may also play
a role in the greater inflammation shown with ECTV at the site of
infection (footpad) (Fig. 1) by inducing apoptosis of endothelial

FIG 6 Comparative functional profiles of epitope-specific TCD4� from ECTV- or VACV-primed mice. (A) TCD4� responses to a poxvirus-specific class II peptide
pool (Table 4) at day 10 were divided according to the relative contribution of each functional combination. Permutations that did not contribute significantly
to the functional profile are not shown due to space constraints. Responses are grouped according to the degree of positivity and matched to the colors in the pie
graphs for responses to the peptide pool at day 10. (B) Proportion of poxvirus-specific TCD4� at day 10 postinfection for each specific function measured after
stimulation. (C and D) Functional profiles of TCD4� responsive to a selected cohort of poxvirus epitopes at day 10 (C) and day 100 (D) postinfection are shown
for ECTV-infected (3,000 PFU per footpad) and VACV-infected (3,000 PFU per footpad or 3 �106 PFU per footpad) mice. (A to D) All depicted data were from
pooled cells of three mice at each time point and represent the average of two independent experiments. Bars represent the means, and error bars indicate the
standard deviations. P values are defined where applicable; N.S., not significant. Data are representative of 3 independent experiments.
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cells (anoikis) via granule exocytosis (85) and remodeling of ex-
tracellular matrix through cleavage of vitronectin, fibronectin,
and laminin (86).

We also assessed the functional profiles of several peptide-spe-
cific TCD4� at memory (day 100) time points using flow cytometry
(Fig. 6D). While ECTV infection stimulated robust long-term
TCD4� memory, none of the 6 epitopes examined yielded a re-
sponse above the background at day 100 postinfection with
VACV, even when the input dose was 1,000-fold-greater for

VACV than for ECTV. This was unexpected, since prior studies
have shown persistence of VACV-specific TCD4� in both humans
(52) and mice (15, 66). In our own earlier study (15), we detected
both TCD4� memory responses at day 75 postinfection, utilizing a
more comprehensive peptide pool than the one examined here,
and VACV-infected presenting cells. Thus, while long-term TCD4�

memory to VACV may not be completely absent, it is significantly
compromised.

The considerably greater difference between ECTV- and

FIG 7 ECTV-specific TCD4� degranulate and express larger amounts of granzyme B during acute infection. (A) Proportions of D13L- or E9L-specific TCD4�

splenocytes coexpressing CD107a and IFN-� from ECTV- or VACV-primed mice (3,000 PFU per footpad) at 10 days postinfection. Percentages represent the
fraction of overlaid cells that fall within each quadrant. (B) Percentages of D13L-, E9L-, H3L-, I1L-, or L4R-specific TCD4� splenocytes expressing CD107a from
ECTV-primed mice (3,000 PFU per footpad) at acute (10 days postinfection) and memory (75 to 100 days postinfection) time points. (C) Percentages of
grzB-positive (grzB�) cells from bulk TCD4� collected from the spleen, inguinal lymph nodes (LN), or liver of ECTV- or VACV-primed mice (3,000 PFU per
footpad) at 10 days postinfection. (D) Quantification of the average percentages of grzB� from bulk TCD4� collected from the spleen, inguinal LN, or liver of
ECTV- or VACV-primed mice (3,000 PFU per footpad) at acute time points postinfection. Depicted data are from pooled cells of three mice and represent the
average and SD of two independent experiments. P values are defined where applicable. Data are representative of 2 independent experiments.
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VACV-specific TCD4� at the memory phase is consistent with the
earlier demonstration that differences in the initial antiviral TCD4�

characters can become exaggerated as populations transition to
central and/or effector memory cells (87, 88). Several factors
might contribute to this amplification effect. Early expression of
IL-15 by phagocytes and innate immune cells has been found to
induce both a cytolytic TCD4� character and TCD4� effector mem-
ory cells (89–91) and has also been associated with NK cell recruit-
ment, shown to be essential for natural resistance to ECTV (92). In
addition, the above-mentioned parameters of antigen exposure
and persistence can greatly affect the initial and long-term effec-
torlike properties of responding TCD4� (77, 87, 93). At the same
time, excessive antigen exposure can also lead to exhaustion in
some settings (94). A greater understanding of the factors that set
the balance between long-lasting TCD4� effector-memory and ex-
haustion has been elusive (87, 94) but will likely be critical for
insight into the profound differences in TCD4� memory to two
such homologous viruses.

The long-term protection against smallpox conferred by
VACV is well known (52, 95–105). In a recent study of smallpox
vaccinees, the levels of VACV-specific antibody, generally held to
be the measure of protection (52), remained stable over many
years postimmunization. In contrast and in line with our findings,
VACV-specific TCD4� memory declined over time (52). Due to the
complexity of poxviruses, which clearly contain an abundance of
MHC-II-restricted epitopes (this study and reference 34), this de-
cline may not meaningfully impact protection. Alternatively or in
addition, memory TCD4� may not play a critical role in protection
from smallpox. The importance of robust TCD4� memory popu-
lations for protection from agents such as influenza virus and
hepatitis A and C viruses is more apparent (106–111). Whether
this is due to their relative simplicity and the limited number of

TCD4� epitopes they encode or other factors remains to be deter-
mined.

ECTV is proving to be an excellent model both in terms of
providing an opportunity to study a natural host-pathogen rela-
tionship under defined conditions and in being highly relevant to
other poxviruses (112), including smallpox and monkeypox (11,
12). The overall results of this study highlight interesting distinc-
tions between the TCD4� epitope reactivity profiles of ECTV and
VACV. A better understanding of the mediators that influence
TCD4� reactivity and function is critical to designing better vac-
cines and antiviral therapeutics. Factors such as tropism and rep-
lication efficiency are likely major reasons for the functional dif-
ferences observed between ECTV and VACV TCD4� responding to
common epitopes. Moreover, distinct host-pathogen relation-
ships may ultimately play a predominant role in both shaping the
TCD4� repertoire and influencing the functional imprinting and
differentiation of poxvirus-specific TCD4�. The striking cytolytic
character of TCD4� induced by ECTV and the inability of VACV to
drive the development of this protective TCD4� subset (89) or a
substantial memory TCD4� population demonstrate the impact of
epitope-extrinsic mediators on TCD4� repertoire, function, and
persistence. Further study in this comparative poxvirus model
may yield additional insights into the design of vaccine strategies
that lead to more robust and long-lived TCD4� responses.
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