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Sustained CD8+ T Cell Memory Inflation after Infection
with a Single-Cycle Cytomegalovirus
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Abstract

Cytomegalovirus (CMV) is a b-herpesvirus that establishes a lifelong latent or persistent infection. A hallmark of chronic CMV
infection is the lifelong persistence of large numbers of virus-specific CD8+ effector/effector memory T cells, a phenomenon
called ‘‘memory inflation’’. How the virus continuously stimulates these T cells without being eradicated remains an enigma.
The prevailing view is that CMV establishes a low grade ‘‘smoldering’’ infection characterized by tiny bursts of productive
infection which are rapidly extinguished, leaving no detectable virus but replenishing the latent pool and leaving the
immune system in a highly charged state. However, since abortive reactivation with limited viral gene expression is known
to occur commonly, we investigated the necessity for virus reproduction in maintaining the inflationary T cell pool. We
inhibited viral replication or spread in vivo using two different mutants of murine CMV (MCMV). First, famcyclovir blocked
the replication of MCMV encoding the HSV Thymidine Kinase gene, but had no impact on the CD8+ T cell memory inflation
once the infection was established. Second, MCMV that lacks the essential glycoprotein L, and thus is completely unable to
spread from cell to cell, also drove memory inflation if the virus was administered systemically. Our data suggest that CMV
which cannot spread from the cells it initially infects can repeatedly generate viral antigens to drive memory inflation
without suffering eradication of the latent genome pool.
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Introduction

Cytomegalovirus is a b-herpesvirus that establishes life-long,

persistent infections in healthy people, and is associated with

significant morbidity in immunosuppressed individuals. CMV

infects a wide range of cells and tissues which, combined with the

low levels of virus in a given tissue, has made the study of CMV

latency extremely challenging. Long-term CMV carriage is

characterized by viral latency in many organs, but the variety of

cells that can harbor latent virus is unclear. Hematopoietic

progenitor cells in humans [1] and liver sinusoidal endothelial cells

in the mouse [2] have been shown to harbor latent virus, but in

both species it is likely that other cellular sites also exist, and their

relative importance is unknown (reviewed in [3,4]). Latency is

interrupted by repeated cycles of reactivation and occasional

replication in discrete foci throughout the body; this is only

occasionally detectable in mouse models. Abortive reactivation

(viral gene expression that does not ultimately result in virion

production) is common, at least in the mouse model and CD8+ T

cells have been shown to contribute by preventing the cascade of

lytic cycle gene expression from progressing past the immediate

early (IE) or early (E) gene stages [5,6]. Destruction of the infected

cells by virus-specific CD8+ T cells seemed a likely mechanism to

account for this block in viral gene expression, although this has

not been shown. Thus, how the latent pool of virus is maintained

through this process of reactivation and immune recognition

remains unclear.

Throughout the life of the host, CMV infection is characterized

by the presence of large numbers of virus-specific effector CD8+ T

cells. In both murine and human CMV infections, these cells have

been shown to increase in number after resolution of acute

infection, and as a result the process has been called ‘‘memory

inflation’’ [7–13]. In healthy human adults, an average of 5% of all

CD8+ T cells are specific for CMV [14], and the frequencies can

be even higher in experimentally infected mice. The frequencies of

CMV-specific cells increase with advancing age and can ultimately

result in distortions of the T cell compartment and large,

dysfunctional clonal expansions [11,15–20].

The dynamics of T cell-antigen interaction that lead to memory

inflation are unknown. However, despite the absence of

continuously detectable viral activity, the evidence suggests that

memory inflation, and ultimately the distortion of the T cell

compartment, is a direct result of persistent virus activity. First, the

majority of CMV-specific CD8+ T cells display an end-stage

differentiated effector phenotype, implying repeated antigenic

stimulation (CD27lo, CD28lo, CD127lo, KLRG-1+) [12,13,21,22].
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Consistent with this interpretation, the frequency of cells with this

phenotype in overt human CMV infection correlates with viral

activity [23,24]. Second, in the C57BL/6 mouse model, ongoing

viral activity is particularly illustrated by CD8+ T cell recognition

of an epitope encoded by the viral IE3 gene. These cells are

barely detectable early in infection, begin to accumulate only

several weeks after infection and ultimately come to dominate the

chronic MCMV-specific T cell pool [10,13]. Finally, our previous

data showed that most inflationary cells in MCMV infected mice

are unable to sustain their numbers through homeostatic or

antigen-driven division and are destined to die, even in the

presence of the persistent infection. However, the inflationary

populations are continuously replenished by new virus-specific

effector cells which differentiate from a pool of memory cells

established early in infection [13], presumably in response to foci

of reactivating virus.

The dynamic that allows for both repeated T cell stimulation

and viral persistence is not understood. It is clear that T cells can

recognize and limit viral reactivation before it proceeds to

genome replication and full virion production [6]. If CD8+ T

cells kill these infected cells, then the virus must be able to

replenish the latently infected pool of cells in order to persist.

Thus, the occurrence of infrequent, small foci of productive virus

infection seemed to be the most likely explanation for the

simultaneous occurrence of virus persistence and continuous

immune stimulation. Virions produced in these foci could infect

new cells and reestablish latency while the immune system

recognized and cleared the originally infected cells. This model

predicts both recurrent exposure to antigen, which would

explain the high numbers of effector CD8+ T cells and

persistence of the viral infection. We sought to test this model

by drug blockade of viral DNA replication or by infecting with a

variant of MCMV lacking the essential glycoprotein L (DgL) that

is unable to spread from cell to cell. If persistent viral replication

and infection of new cells were essential for the continued

effector/effector memory CD8+ T cell response, we would

expect CD8+ T cell memory inflation to be eliminated, the

antigen-specific populations to contract, and the remaining cells

to be largely quiescent memory cells. Indeed, this was what

occurred in a mouse model of systemic Herpes Simplex Virus

(HSV) infection, in which drug blockade of HSV DNA

replication prevented CD8+ T cell memory inflation [25].

However, our data show that MCMV spread and/or replication

is completely dispensable for memory inflation, here defined as

the maintenance or accumulation of effector/effector memory

CD8+ T cells specific for certain viral antigens. The spread

defective DgL virus even elicited the delayed IE3-specific

inflationary response, which first became detectable 8–12 weeks

after systemic infection. Moreover, most responding T cells still

gained expression of KLRG-1 and lost expression of the IL-7R

(CD127), phenotypic hallmarks of inflationary T cells. These

data indicate that a relatively small number of latently or

persistently infected cells can repeatedly activate the immune

system without loss of the viral genome.

Results

The thymidine kinase gene from HSV-1 renders MCMV
extremely sensitive to acyclovir and famcyclovir

To investigate the amount of virus activity needed to sustain

memory inflation, we needed to be able to inhibit viral replication

more completely than is possible with available antiviral drugs, to

which MCMV is only partially sensitive. Acyclovir is a guanosine

analogue that acts as a DNA chain terminator when it is

phosphorylated by herpes simplex virus thymidine kinase (TK)

[26]. However, MCMV lacks TK [27,28] and is thus relatively

insensitive to acyclovir and its derivatives. To render MCMV

sensitive to acyclovir, we replaced the early gene m157 of MCMV

with the TK gene from HSV-1 to render the recombinant virus

sensitive to acyclovir and its derivatives. Deleting m157 also

rendered the virus resistant to NK cell control in C57BL/6 mice

[29,30], which resulted in increased viral titers during acute

infection but did not substantially affect the chronic CD8+ T cell

response (Cho et. al., manuscript in preparation). MCMV-TK

grew with normal kinetics in vitro (Figure 1A), but was exquisitely

sensitive to acyclovir compared to wild-type MCMV (Figure 1B).

To test whether we could block replication of the TK-expressing

virus in vivo, we used famcyclovir, an orally available analogue of

acyclovir, that effectively blocks HSV-1 replication in mice

[25,31,32]. BALB/c mice (in which deletion of m157 does not

affect MCMV titers) or C57BL/6 mice were left untreated or

were treated continuously with famcyclovir in their drinking

water beginning 3 days before infection with wild-type or

MCMV-TK viruses. While famcyclovir reduced the replication

of wild-type virus in the spleens and livers of treated animals, it

completely prevented the detection of infectious MCMV-TK

(Figure 1C and D). Moreover, treatment reduced the viral

genome copy number to undetectable levels (at least 100 to 1000

fold) in B6 and BALB/c mice (Figure 1E), indicating that

famcyclovir effectively blocked viral DNA replication. To

determine whether famcyclovir could also inhibit an ongoing

infection, treatment was delayed until day 4 of the infection in

BALB/c mice, which corresponds to the peak viral burden in the

spleen and liver (not shown). No replicating virus could be

detected in the salivary glands of 5 out of 6 treated mice 10 days

later (d14 post infection - Figure 1F). Thus, famcyclovir could

control an ongoing infection and prevent viral spread to the

salivary gland, which is a major site of viral replication after the

first week of infection. Additionally, famcyclovir treatment from

days 2 to 5 was sufficient to block ongoing viral replication in

highly susceptible Type I IFN receptor knock out mice

(Figure 1G). Together these data show that MCMV-TK is

extremely sensitive to the antiviral drug famcyclovir and that oral

treatment is sufficient to block systemic viral replication and

spread.

Author Summary

Cytomegalovirus (CMV) establishes life-long, asymptomat-
ic infections in healthy people. Ongoing immune surveil-
lance prevents viral disease but also results in the
accumulation of large numbers of virus-specific T cells.
The mechanisms by which the virus persists while
stimulating such strong immune responses are unknown.
We and others had hypothesized that periodic viral
replication and spread to neighboring cells allowed CMV
to replenish the pool of infected cells while stimulating
virus-specific T cells to accumulate. In this manuscript, we
have tested this model by blocking the replication or
spread of murine cytomegalovirus (MCMV) and found,
surprisingly, that accumulation of virus-specific T cells
occurs independently of viral replication. Moreover, these
T cells developed the terminal differentiated phenotype
that is indicative of repeated antigenic stimulation. Thus,
these data suggest that CMV can remain active and
continuously stimulate the immune system, while avoiding
immune-mediated clearance, without the capacity to
spread from cell to cell.

Memory Inflation without Viral Spread
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Famcyclovir treatment of MCMV-TK infected mice does
not diminish the frequency of MCMV-specific CD8+ T
cells

To test the impact of blocking viral replication on the

accumulation or maintenance of MCMV-specific inflationary

CD8+ T cells, famcyclovir treatment was initiated at various times

before or after MCMV-TK infection. CD8+ T cell responses to

the three dominant inflationary epitopes, encoded by m139, M38

and IE3, were monitored in the peripheral blood. Pre-treatment of

mice with famcyclovir for 3 days before infection did not inhibit

Figure 1. Replication of MCMV-TK is inhibited by acyclovir or famcyclovir. A) BALB-3T3s were infected with the indicated virus at a
multiplicity of infection equal to 1 and infected cell lysate was taken on the indicated days for plaque assay. B) BALB-3T3s were infected with 200 pfu
of MCMV-TK and treated with the indicated concentration of acyclovir. Plaques were counted 6 days later. C) Balb/c mice were left untreated or were
treated with famcyclovir beginning 3 days before infection with wild-type MCMV or MCMV-TK. Viral titers were assessed by plaque assay in the
spleens and livers 3 days after infection, or the salivary gland 14 days after infection. D) B6 mice were infected and treated as in C. E) Total splenic
DNA from mice infected for 3 days and famcyclovir treated or untreated, was tested for the presence of MCMV by quantitative PCR. F) Famcyclovir
treatment was initiated on d4 post infection of BALB/c mice with MCMV-TK. Viral titers in the salivary gland were measured by plaque assay on day
14. G) IFNa/bR2/2 mice were treated with famcyclovir from day 2 to day 5 post infection. Viral titers were measured by plaque assay as above.
doi:10.1371/journal.ppat.1002295.g001

Memory Inflation without Viral Spread
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the primary immune response to inflationary antigens (Figure 2A).

However, if famcyclovir treatment was begun 3 days before

infection and maintained continuously for 12 weeks after infection,

we observed a significantly reduced frequency of inflationary

CD8+ T cells at the end of the time course (designated as day 23,

Figure 2B). In particular, the late-arising response to IE3 was

barely detectable. Thus, CD8+ T cell memory inflation was

blocked by pre-treatment with famcyclovir. Strikingly however, if

famcyclovir treatment was started 4, 7 or 21 days after infection

and maintained until 12 weeks post infection, there was no

significant reduction in the frequency of inflationary CD8+ T cells

that had accumulated during this time (Figure 2B). Similarly, if

famcyclovir treatment was started in the 6th or 9th week after

infection and maintained for the subsequent 12 weeks into the

chronic phase of infection, there was no significant difference in

the frequency of inflationary CD8+ T cells (Figure 2C). These data

seemed at odds with the presumption that memory inflation

depends on viral replication: they suggested that, once infection

has been established, further virus replication was not needed to

maintain memory inflation. However, we can not exclude the

possibility that famcyclovir inhibition of MCMV replication was

incomplete, perhaps especially in some critical cells or organs.

Figure 2. Inhibiting viral replication with famcyclovir does not reduce the size of virus-specific T cell populations. A) B6 mice were left
untreated or treated with famcyclovir from 3 days before infection with MCMV-TK. CD8+ T cell responses were measured in the peripheral blood 7
days post infection by intracellular cytokine staining after stimulation with the indicated peptides. B) Famcyclovir treatment was initiated at the
indicated day and mice were infected on day 0 with MCMV-TK. Virus-specific T cells were measured 12 weeks after infection in the peripheral blood
by intracellular cytokine staining after stimulation with the indicated peptides. C) Famcyclovir treatment of MCMV-TK infected mice was initiated in
the 6th or 9th week after infection and maintained for 12 weeks thereafter. Virus-specific CD8+ T cells were measured as in A and B, at the end of the
time course.
doi:10.1371/journal.ppat.1002295.g002

Memory Inflation without Viral Spread
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Spread-defective MCMV is also capable of driving CD8+ T
cell memory inflation

To more stringently examine whether viral replication is needed

to maintain memory inflation, we used a recently characterized

recombinant MCMV lacking the essential glycoprotein L (DgL)

[33]. The viral gL is essential for incorporation of the gH/gL

complex into the viral envelope, which is needed for entry into

cells (reviewed in [34]). This virus is propagated on a

complementing cell line that provides gL in trans, generating

virions that can infect cells and produce all classes of viral proteins

and replicate viral DNA. However, progeny virions lack gH/gL

and are unable to infect new cells in vitro or in vivo [33], making this

gL-deleted virus spread-defective.

C57BL/6 mice were infected i.p. with wild-type or DgL

MCMV, and the CD8+ T cell response was followed in the

peripheral blood over time. As previously described, acute DgL

MCMV infection induced the broad range of CD8+ T cell

responses elicited by acute wild-type infection ([33] and Figure 3).

The responses to DgL infection were substantially smaller than

after wild-type infection (note the different y-axis scales), but

nevertheless followed a strikingly similar pattern. In both wild-type

and DgL infections, M45 and M57-specific responses contracted

after day 7 while m139-, M38- and IE3-specific responses

increased or were maintained (Figure 3). The responses were not

identical. While m139- and M38-specific T cells accumulated in

most mice infected with wild-type MCMV, similar accumulation

only occurred in some mice after DgL infection (Figure 3A).

However, on average, these responses were maintained after DgL

infection and thus m139- and M38-specific T cells became co-

dominant upon contraction of M45 and M57-specific T cells

(Figure 3B). Notably, T cells specific for IE3, which are barely

detectable in the first 4 weeks after infection with either virus

(arrows in IE3 plot), eventually accumulated in 8 of 10 DgL

infected mice. The two animals that did not develop an IE3-

specific T cell response after DgL infection also failed to maintain

the m139- or M38-specific responses. We note that the overall size

of the inflationary populations is lower after DgL infection than in

wild-type infected mice, which likely reflects the reduced latent

viral burden these animals. However, in both infections, the

maintenance or accumulation of m139-, M38- and IE3-specific T

cells resulted in a similar change in the immunodominance

hierarchy from acute to chronic time points (Figure 3B).

We also tested DgL MCMV in the common BALB/c model of

infection, in which T cells specific for two epitopes from the IE1

and m164 proteins are co-dominant in acute infection and also

undergo memory inflation. Here, the inflationary response to DgL

infection was even more impressive, reaching levels that were

similar to inflation after wildtype infection (Figure 4). Interestingly,

in contrast to wildtype infection, IE1-specific T cells were virtually

undetectable 1 and 4 weeks after DgL infection. However, they

accumulated at later times and eventually dominated the response,

in a pattern highly reminiscent of the IE3 response in C57BL/6

mice. Together, the maintenance or accumulation (memory

inflation) of virus-specific CD8+ T cells after DgL infection of

B6 and BALB/c mice suggest ongoing viral antigen production for

at least 20 weeks (BALB/c mice) or 36–74 weeks (B6 mice).

Whether this activity will be life-long remains to be determined.

Cells with inflationary specificities, whether measured by

tetramer staining (Figure 5A) or by their ability to produce IFN-

c upon stimulation (Figure 5B) were phenotypically similar in all

B6 mice regardless of the virus used for infection, with the majority

of m139, M38- and IE3-specific cells expressing high levels of the

inhibitory molecule KLRG-1 and low levels of the IL-7Ra chain

(CD127) and co-stimulatory molecule CD27 (Figure 5 and data

not shown). This phenotype is thought to result from repeated

antigen exposure [21,22,35,36] and clearly contrasts with the

phenotype of M45- and M57-specific T cells, which did not inflate

in any animal (Figure 5A). Importantly, the phenotype of the

inflationary populations correlated with the extent of T cell

accumulation such that populations that were reduced in

frequency also tended to express more CD127 and contain fewer

cells expressing KLRG-1 (Figure 5C). Similar data have been

obtained in humans infected with HCMV [23,24], suggesting a

direct relationship between viral activity, the size of inflationary

populations and the degree of T cell differentiation.

These results suggest that DgL MCMV persists and remains

antigenically active, driving late-developing IE3- and IE1-specific

T cell responses without the ability to spread from the first cells

infected. Because of the profound implications of these results, it

was especially important to verify that the viral stock injected did

not contain any virus that had recovered gL-expression and thus,

the ability to spread from cell to cell. For example, it is formally

possible for the gL gene to be restored through homologous

recombination with the complementing cell line in a fraction of

virions. Such a rescued contaminant would have had to occur

consistently, since the data shown in Figures 3, 4 and 5 represents

four independent experiments using three independently produced

DgL preparations. Nevertheless, to formally test whether the DgL

might be rescued at a frequency that could account for our results,

we performed a series of in vitro and in vivo infections with each of

the virus stocks used for the experiments shown in Figures 3, 4 and

5. First, cultures of non-complementing murine embryonic

fibroblasts (MEFs) were infected with at least 16105 and up to

16106 plaque forming units (pfu) of DgL virus. Following

infection, cultures were maintained for 4 weeks without evidence

of viral growth (Figure 6A and data not shown). In contrast, just

3 pfu of wild-type MCMV added to the DgL infected cultures was

sufficient to kill all of the cells within 2 weeks (Figure 6A). Second,

to test whether any fraction of the DgL virus was able to spread in

vivo, BALB/c-SCID mice were infected with 16105 pfu of the DgL

virus or varying amounts of wild-type MCMV. While just 10 pfu

of wild-type virus overwhelmed these mice in 5 weeks, no virus was

detectable above background in the spleens or salivary glands of

DgL infected mice after 6 weeks (n = 10 mice, Figure 6B and data

not shown). Together, these data show that any spread-competent

virus contaminating our preparations could maximally comprise

between 0.001% (1 per 16105) and 0.0001% (1 per 16106) of all

viruses in our preparations. Since we used 16105 pfu of the DgL

virus to infect mice for the experiments in Figures 3, 4 and 5, at

most we would expect 1 pfu of contaminating, spread-competent

virus in each infection. Finally, to determine whether our results

are consistent with a small, contaminating population of spread-

competent MCMV, additional mice were infected with 100 or

10 pfu of wild-type K181 MCMV (K181 is the wild-type, parental

strain used to generate DgL). Most mice infected with these low

doses of wild-type virus showed evidence of memory inflation

within the m139- and M38-specific CD8+ T cell populations (12

out of 14 mice, shown individually - Figure 6C). Strikingly

however, of the 12 mice that developed m139- and M38-specific

responses, 7 failed to develop an inflating IE3-specific CD8+ T cell

response (individual mice marked with an asterisk, Figure 6C).

This contrasts with the results obtained by infection with

16105 pfu of the DgL virus, which induced inflation of IE3-

specific CD8+ T cells in all mice that responded to m139 and M38

antigens and 8 out of 10 total mice (Figure 3). Together, these data

suggest that the memory inflation induced by DgL infection cannot

be explained by a small number of contaminating, spread-

competent viruses.

Memory Inflation without Viral Spread
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Spread-defective MCMV must infect host cells in order to
drive CD8+ T cell memory inflation, but cannot be
restricted to the footpad

Since the DgL virus can only undergo one round of infection,

we reasoned that viral persistence and CD8+ T cell memory

inflation would be prevented if we ‘‘spent’’ the single infectious

cycle on fibroblasts in vitro. To this end, murine embryonic

fibroblasts (MEFs), which do not express the glycoprotein L, were

infected with wild-type or DgL viruses in vitro. Following infection,

the cells were washed stringently in a citrate buffer to remove any

infectious virions that remained in the culture [33]. The absence of

infectious virions associated with the infected fibroblasts was

confirmed by plaque assay on the complementing gL-expressing

cell line (not shown). The cells were then injected i.p. into mice,

and CD8+ T cell responses in peripheral blood were measured by

tetramer staining (Figure 7). Importantly, although primary CD8+
T cell responses were elicited in all animals, memory inflation only

occurred in mice that received wild-type virus-infected MEFs. The

primary response to DgL-infected fibroblasts was presumably

driven by cross-presentation of antigen from dying cells, as we

have previously suggested [33]. However, without the ability to

directly infect cells in vivo, DgL did not drive memory inflation.

This supports the idea that the DgL virus cannot spread from the

first cells infected and suggests that memory inflation is critically

dependent on the ability of the virus to access cells in the animal

that are capable of maintaining latent/persistent infection.

In each of the above experiments, the DgL virus was

administered by intraperitoneal injection, from which the virus

gains access to the blood via the mediastinal lymphatics and within

the first few hours infects a variety of cell types in the mediastinal

Figure 4. Spread-defective MCMV drives CD8+ T cell memory inflation in BALB/c mice. Mice were infected with wild-type K181 MCMV
(filled symbols, n = 4, labeled ‘‘WT’’ for wild-type) or DgL MCMV (n = 4, open symbols) and virus-specific CD8+ T cells were measured in the peripheral
blood at the indicated time post infection by the ability to produce IFN-c after stimulation with the indicated peptides. Each line represents an
individual mouse followed over time. The bar graphs (right-most column) represent the mean and standard deviation for data collected at acute (1
week) or chronic (20 weeks) time points. Statistical significance measured by the student’s t-test for paired data.
doi:10.1371/journal.ppat.1002295.g004

Figure 3. Spread-defective MCMV drives CD8+ T cell memory inflation. A) Mice were infected with WT-BAC or wild-type K181 MCMV (filled
symbols, n = 8, labeled ‘‘WT’’ for wild-type) or DgL MCMV (n = 10, open symbols) and virus-specific CD8+ T cells were measured in the peripheral
blood by tetramer staining at the indicated times post infection. Each line represents an individual mouse followed over time. Data was combined
from 3 independent experiments. B) The mean and standard deviation of the responses in all infected mice was compared at acute (1 week post
infection) or chronic time points. Data for the chronic time point is an average of antigen-specific frequencies 20, 30 or 36 weeks post infection (each
mouse was only counted once depending on which time point data was collected). Statistical significance was determined by the student’s t-test for
paired data.
doi:10.1371/journal.ppat.1002295.g003

Memory Inflation without Viral Spread
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lymph nodes, liver and spleen [37]. We wondered whether

alternate routes of infection, with limited cell types available for

immediate infection, might change the ability of the virus to persist

and drive CD8+ T cell memory inflation. The hind foot pad is a

commonly used site for experimental MCMV infection. In our

hands, foot-pad injection of C57BL/6 mice with wild-type virus

resulted in less CD8+ T cell accumulation than intraperitoneal

infection (Figure 8, left column). Nonetheless, m139- and M38-

specific T cell responses clearly remained elevated in comparison

to non-inflationary M45- and M57-specific T cell responses. IE3-

specific T cells were poorly elicited by foot-pad injection, but were

detected in about half of the mice infected with wild-type virus. In

contrast, foot-pad injection of the DgL virus yielded no detectable

maintenance of any MCMV-specific populations, despite the fact

that M45-, M57-, m139- and M38-specific T cells were all primed

and readily detectable 1 week after infection (Figure 8, 2nd column

from left). This is best illustrated by the M38-specific response,

which is clearly maintained after foot pad injection of the wild-type

virus, but not the DgL virus. In addition, IE3-specific T cells were

never detected in mice infected with the DgL virus via the foot pad.

Control mice infected with an identical dose of DgL virus delivered

via the intraperitoneal route displayed maintenance or inflation of

m139-, M38- and IE3-specific T cells in a pattern that mimicked the

wild-type infection over the 12 week time frame (Figure 8, 3rd

column from the left). Together, these results suggest that systemic

inoculation of a spread-defective MCMV, but not a localized foot

pad infection, allows for CD8+ T cell memory inflation. We

conclude that maintaining or accumulating virus-specific CD8+ T

Figure 5. CD8+ T cell differentiation correlates with inflation. A) 20 weeks after infection, virus-specific CD8+ T cells in the peripheral blood
were identified by tetramer staining and cells were co-stained with antibodies specific for CD127 (IL-7Ra) and KLRG-1. B) 25 weeks after infection with
wild-type or DgL MCMV, virus-specific T cells from the peripheral blood were measured by intracellular cytokine staining and co-stained with
antibodies specific for KLRG-1. C) The phenotype of peripheral blood, inflationary T cells (m139-, M38- or IE3-specific) from the three experiments
shown in Figure 3 is combined. Data correspond to blood drawn at 36, 43 or 74 weeks after infection. Populations that comprised less than 0.1% of all
CD8+ T cells were assumed to result from non-specific tetramer staining (based on uninfected control mice) and were not graphed. Shown is the
percentage of cells expressing KLRG-1 (left panel) and the geometric mean fluorescence of CD127 (right panel) within the tetramer+, CD8+ T cell
population.
doi:10.1371/journal.ppat.1002295.g005
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cells after priming is not dependent on periodic viral replication

during chronic infection. This implies that latently or persistently

infected cells can repeatedly stimulate the immune system while

avoiding clearance.

Discussion

CMV latency and reactivation remains poorly understood, in

part because the virus infects so many cell types and persists at

vanishingly low levels (reviewed in [3]). Molecular studies have

clearly shown that limited viral gene expression occurs in the

absence of viral replication during chronic infection and that

CD8+ T cells can recognize the products of these genes

[5,6,38,39]. The accumulation of effector/effector memory

CD8+ T cells specific for CMV, which we and others call

memory inflation, is yet another indicator of ongoing antigenic

expression and viral persistence. However, it has never been clear

whether CD8+ T cell recognition of reactivating virus resulted in

clearance of the infected cells. If so, one might predict that the

virus must produce infectious virions periodically, even at

extremely low levels or in a privileged site, in order to maintain

the latent genome pool in the face of a potent CD8+ T cell

response. Here we show that DgL-MCMV, which cannot spread

beyond the first cells infected, nonetheless drives the accumulation

of virus-specific CD8+ T cells. This includes the late accumulation

of IE3-specific T cells in B6 mice as well as delayed, but substantial

accumulation of IE1-specific T cells in BALB/c mice. Importantly,

these virus-specific T cells expressed the terminal-effector

phenotype that is indicative of repeated antigenic stimulation.

Thus, our data strongly suggest that MCMV can both persist and

remain antigenically active after only a single round of productive

infection.

The fact that replication-blocked and spread-defective MCMV

were immunogenic upon initial infection was not surprising, since

many different replication-deficient viruses are known to prime

robust CD8+ T cell responses. Moreover, the idea that spread-

defective MCMV might establish latency is not new, since this has

been described previously for a- and c-herpesviruses [40–43] as

Figure 6. Contaminating spread-competent MCMV cannot account for CD8+ T cell memory inflation. A) MEFs were infected with
16105 pfu of DgL with or without 3 pfu of wild-type K181 MCMV. Shown are representative images of infected cultures taken 4 and 14 days after
infection. Data is representative of at least 8 independent experiments. B) BALB/c-SCID mice were infected with the indicated amounts of wild-type
K181 MCMV or 16105 pfu of DgL MCMV and sacrificed at the indicated day post infection. Uninfected control samples were derived from naı̈ve
C57BL/6 mice. Viral DNA was quantified in the spleens and salivary glands by qPCR. Data was combined from 2 independent experiments. One
mouse infected with a single pfu of wild-type virus displayed detectable viral DNA in the salivary gland, but not the spleen (indicated by the
asterisks). A correlation was found between the salivary gland and spleen in all other mice. The limit of detection in these assays was estimated to be
30 copies of viral DNA per 500 ng of total DNA as measured by a standard curve of the viral E1 gene cloned into a plasmid. C) B6 mice were infected
with 10 or 100 pfu of wild-type K181 MCMV and antigen-specific T cells were tracked in the peripheral blood by tetramer staining. Each box shows
the T cells specific for m139, M38 and IE3 within a single mouse. The boxes marked with an asterisk indicate mice in which IE3-specific T cells failed to
inflate despite accumulation of m139- and M38-specific T cells. Data was combined from 2 independent experiments.
doi:10.1371/journal.ppat.1002295.g006
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well as for temperature sensitive mutants of MCMV [44].

However, nothing in the literature predicted the fact that this

latent virus would continue to robustly stimulate CD8+ T cell

responses without being rapidly eliminated, even though it lacks

the ability to replenish the pool of latently infected cells.

How can DgL be highly immunogenic, clearly visible to the

immune system, but not eradicated by the immune system? The

answer to this puzzle must lie in the nature of CMV latency or

persistence and the cells that produce viral antigens, both of which

remain poorly understood. It is likely that CMV can establish

latency in a variety of cell types. In mice, stromal cells, including

sinusoidal endothelial cells in the liver, have been implicated as the

main sites from which latent virus can be reactivated [2,45].

Latent human CMV can be found in CD34+ hematopoietic stem/

progenitor cells, and it reactivates as these cells differentiate into

dendritic cells [46,47]. Similarly, it was shown many years ago that

MCMV establishes a latent or persistent infection in undifferen-

tiated cells in vitro and reactivates upon differentiation [48]. The

phenomenon of latency in undifferentiated cells and replication in

differentiated cells may be a common theme in CMV latency. In

our study, a relatively small amount (105 pfu) of DgL was injected,

and viral DNA was undetectable even in SCID mice (Figure 6).

However, our study suggests that at least one site of latency is

capable of maintaining the viral genome without being replenished

by viral replication and infection of new cells, and is simulta-

neously able to robustly stimulate CD8+ T cells. It is possible that

latency in stem/progenitor cells could explain this. Since

progenitor cells can divide asymmetrically during differentiation,

this could allow the virus to persist in an antigenically silent state in

the undifferentiated daughter cell, but stimulate the immune

system during reactivation in the differentiated daughter cell. An

alternative possibility is that latently or persistently infected cells

may be recognized by the immune system, but resistant to

immune-mediated lysis, as is the case for HSV-infected neurons

[49]. This latter possibility would indicate a cell with unusual

immunological properties. Neurons are highly immune-privileged.

Long thought to be invisible to the immune system, it is now clear

that neurons can be seen, but are protected from damaging

immune mechanisms. However, they are not immune stimulatory:

they do not prime an immune response, and the CD8+ T cells that

surround HSV-infected neurons do not undergo memory

inflation. The cells that harbor latent MCMV would not only

need to be resistant to lysis, but they would have to also possess the

ability to drive differentiation and proliferation of inflationary

CD8+ T cells. Dendritic cells are not a likely candidate, as they are

the only cells that we found to be readily lysed by CD8+ T cells

specific for inflationary epitopes, despite viral inhibition of antigen

presentation (figure 2 in [50]).

It is obviously important to identify the cells in which DgL-

MCMV established latency. To date, we have found no evidence

of viral RNA in hematopoietic stem cells. Additional possibilities

include subcapsular macrophages in the mediastinal lymph nodes,

reticular fibroblasts in the spleen, and hepatocytes in the liver, all

of which are infected by MCMV within 8 hours after i.p.

inoculation [37], but the latently infected cell could be a minor,

as yet unnoted subset. Further investigation will be needed to

determine whether any of these cells harbor latent DgL DNA and

whether they can stimulate CD8+ T cells. However, it is unlikely

that all of these cells support CMV latency, and since the memory

inflation reported here resulted from an infection with only

105 pfu of DgL virus, we are searching for a tiny needle in a large

haystack.

Our studies with MCMV-TK infected mice treated with

famcyclovir yielded analogous results to those infected with the

DgL virus with one notable exception: whereas a single cycle of

DgL infection elicited memory inflation, pretreatment of mice with

famcyclovir, which should restrict the virus to the first round of

infection, substantially blunted memory inflation. This finding is

not entirely unexpected if we assume that any mechanism of viral

persistence would require that CMV be capable of multiplying its

genome. While the DgL virus can replicate its genome after the

initial infection, famcyclovir blocks viral DNA replication of the

MCMV-TK virus. Thus, pretreatment with famcyclovir would

prevent the initial amplification of the viral genome even within

the first cells infected. However, allowing the MCMV-TK virus to

establish infection for just 4 days before initiating famcyclovir

Figure 7. DgL MCMV must infect a cell population in vivo. B6 MEFs were infected with wild-type or DgL MCMV in vitro, washed in a citrate
buffer to strip infectious virions that had not entered the cells, and then injected into naı̈ve B6 mice. Antigen-specific T cell responses were measured
in the peripheral blood by tetramer staining. Data was combined from 2 independent experiments and each line represents an individual mouse.
doi:10.1371/journal.ppat.1002295.g007
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treatment resulted in normal CD8+ T cell accumulation. It is

interesting that our famcyclovir experiments returned different

results to those recently reported in HSV infection of mice, where

famcyclovir, even when administered several days after infection,

prevented memory inflation of CD8+ T cells responding to the

HSV-gB epitope [25]. This difference may be due to the fact that

expression of HSV-gB, a late protein, is inhibited by famcyclovir

[31], while expression of the immediate-early and early genes

encoding MCMV inflationary epitopes should be unaffected by

the drug. Alternatively, different cellular sites and mechanisms of

latency for the two viruses may explain the discrepancy.

These results also have practical implications for the use of

CMV as a vaccine vector. Louis Picker and colleagues recently

showed that a CMV-based vaccine elicited potent protection in a

monkey model of AIDS, a result the authors attribute to the large

effector memory (inflationary) CD8+ T cell response [51,52]. We

and others are also pursuing CMV as a vaccine vector for cancer.

However, use of a live, replicating herpesvirus-based vaccine raises

safety issues. We have recently shown that cross-presented antigen

(in the absence of direct infection) is sufficient to prime a broad

array of MCMV-specific T cell responses [33]. Likewise, a recent

study has shown that vaccination with a spread defective MCMV

can prime both T cell and neutralizing antibody responses, and

protect susceptible mice against subsequent MCMV challenge

[53]. The current study shows, remarkably, that spread defective

MCMV continues to elicit effector/effector memory CD8+ T cells

over long periods of time. That it may be possible to retain the

unique immunogenic properties of CMV in a vaccine vector

which is completely unable to cause disease is perhaps the most

significant implication of our results. However, memory inflation

was only observed when DgL was administered systemically. For

a prophylactic vaccine it will be necessary to find a route of

Figure 8. Foot pad injection of DgL MCMV fails to result in maintenance or inflation of m139-, M38- or IE3-specific CD8+ T cells.
Antigen-specific T cell responses were measured in the peripheral blood by tetramer staining after foot pad infection of wild-type MCMV or DgL
MCMV or intraperitoneal infection of the same amount of DgL MCMV. Data was combined from 2 independent experiments and each line represents
an individual mouse. The right-most column shows the mean and standard deviation of the data collected from all mice at acute (1 week post
infection) or chronic time points. Data for the average chronic response was drawn from the final time point measured for each mouse - 119 or 161
days post infection. Statistical significance was determined by the student’s t-test for paired data.
doi:10.1371/journal.ppat.1002295.g008
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peripheral administration that would enable the spread defective

vaccine to gain access to the cells it needs for latent/persistent

infection. For a therapeutic vaccine in cancer patients, a systemic

route may be feasible.

Materials and Methods

Ethics statement
All animal work was performed in accordance with NIH

guidelines and the Animal Welfare Act. The OHSU Department

of Comparative Medicine and Division of Animal Resources have

full accreditation from the Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC). The

experiments were approved by the Institutional Biosafety Com-

mittee and the Institutional Animal Care and Use Committee at

OHSU.

Viruses
To produce the MCMV-TK virus, the Thymidine Kinase gene

from HSV-1 was inserted into the m157 locus of MCMV using

lRED mediated recombination [54–56]. Briefly, TK from HSV-1

was amplified from a plasmid (kindly provided by David Johnson)

and sub-cloned into a second plasmid containing kanamycin

flanked by FRT recombination sites (kindly provided by Jay

Nelson). PCR was performed to generate the TK-Kan construct

flanked with MCMV sequences in the m157 region and this PCR

product was recombined with wild-type MCMV cloned into a

bacterial artificial chromosome (BAC, strain MW97.01 [57]). The

final product replaced the entire m157 coding region with HSV-1

TK. Kanamycin was removed by Flp-mediated recombination of

the FRT sites and the final product was verified by PCR and

sequencing. The DgL virus has been recently described elsewhere

([33] and Allan et. al. manuscript submitted). Briefly, a 4.2 k.b.

construct bearing b-galactosidase was inserted into the middle of

the gL coding region from the K181 strain of MCMV,

functionally deleting MCMV-gL. Stocks of the DgL virus were

produced on gL-3T3 cells, which provide gL in trans ([33] and

Allan et. al. manuscript submitted). Wild-type K181 MCMV and

the MW97.01 strain (hereafter called WT-BAC) were used as

control, wild-type viruses.

Mice and infections
BALB/c, BALB/c-SCID mice (CBySmn.CB17-Prkdcscid/J)

and C57BL/6 (B6) mice were purchased from Jackson Labora-

tories. In some cases B6.SJL-Ptprca Pepcb/BoyJ (CD45.1 con-

genic), originally purchased from the Jackson Labs, were used in

place of B6 mice. All studies were approved by the Institutional

Biosafety Committee and the Institutional Animal Care and Use

Committee at OHSU. For direct infections, unless otherwise

indicated mice were injected with 16105 pfu of MCMV (multiple

strains) via the intraperitoneal (i.p.) route or 86104 pfu into the

hind foot pad. In some cases famcyclovir (TEVA Pharmaceuticals

USA, Sellersville, PA) was mixed in the drinking water at a

concentration of 2 mg/ml and maintained for the indicated

amount of time. For indirect infections, infected murine

embryonic fibroblasts (MEFs) were injected into B6 mice as

described elsewhere [33]. Briefly, 16105 B6 MEFs were plated

overnight in 6 well plates before infection with 36105 pfu of DgL

or K181 viruses. After 3 hours, cells were washed twice with PBS,

incubated for 60 seconds with 1 ml of citrate buffer (50 mM

sodium citrate, 4 mM potassium chloride, pH = 3) and washed

twice more with complete media (DMEM+10% FetalPlex2Ge-

mini Bioproducts). Cells were then harvested with trypsin-EDTA

(Gibco), washed and resuspended in PBS for injection. B6 mice

received approximately 16105 infected MEFs by i.p. injection. In

these experiments, a fraction of the MEFs was checked for

infectious virus by plaque assay on gL-3T3s. No plaques were

found in any experiment. For infections of BALB/c-SCID mice

with wild-type K181 or DgL virus, animals were separated into

groups based on the amount of injected virus. When any mouse in

a group appeared moribund (hunched posture, ruffled fur, swollen

eyes and/or sluggishness), all mice in the group were sacrificed. No

morbidity was observed in DgL-infected mice prior to sacrifice at

day 42. Organs were harvested and DNA was prepared for qPCR

as described below.

Plaque assay
To determine the sensitivity of MCMV-TK to acyclovir, 200

plaque forming units of wild-type or MCMV-TK was used to

infect BALB-3T3s without centrifugal enhancement in the

presence of the indicated amount of acyclovir (Bedford Labora-

tories). Infected wells were overlaid with 0.375% (w/v) carboxy-

methylcellulose and plaques were enumerated 6 days later. To

determine viral titers in organs, infected tissue was disrupted by

dounce homogenization using a drill. Salivary gland tissue was

further disrupted by sonication and debris was removed from all

tissue by centrifugation at 25006g before samples were aliquoted

and frozen. Viral titers were determined by plaque assay without

centrifugal enhancement using BALB-3T3s (wild-type viruses or

MCMV-TK) or gL-3T3s (DgL virus).

Quantitative PCR
To determine amount of viral genome present in infected tissue,

organs were disrupted as above and frozen without further

processing. DNA was isolated from spleen and salivary gland tissue

using the QiaAmp kit (Qiagen) and following the manufacturer’s

recommended protocol. Quantitative PCR for the MCMV E1

gene was performed using the Taqman Universal PCR Mastermix

(Applied Biosystems). The primers and probe have been described

elsewhere [33]. To calculate the genome copy number, a standard

curve of a plasmid containing the E1 gene from MCMV (pGEM-

T-E1) was included in every assay.

Analysis of antigen specific CD8+ T cells
Antigen specific CD8+ T cells were identified by IFN-c

expression after peptide stimulation or by tetramer staining as

described elsewhere [13,58]. The peptides that were loaded into

tetramers or used to stimulate IFN-c were as follows: M45 -

HGIRNASFI; M57 - SCLEFWQRV; m139 - TVYGFCLL; M38

- SSPPMFRV; IE3 - RALEYKNL; IE1 - YPHFMPTNL; m164 -

AGPPRYSRI. Tetramers were synthesized by the NIH tetramer

core facility (http://www.niaid.nih.gov/reposit/tetramer/overview.

html). Samples were acquired on an LSR II flow cytometer (BD

Biosciences) and data were analyzed with FlowJo software (Tree

Star).
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