The vaso-occlusive pain crisis in sickle cell disease: Definition, pathophysiology, and management.

Deepika S. Darbari
Children's National Medical Center

Vivien A. Sheehan
Baylor College of Medicine

Samir K. Ballas
Thomas Jefferson University

Follow this and additional works at: https://jdc.jefferson.edu/cardeza.foundation

Part of the [Hematology Commons](https://jdc.jefferson.edu/hematology-commons)

Let us know how access to this document benefits you

Recommended Citation

https://jdc.jefferson.edu/cardeza.foundation/64

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Cardeza Foundation for Hematologic Research by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
The Vaso-Occlusive Pain Crisis in Sickle Cell Disease: Definition, Pathophysiology, and Management

Deepika S. Darbari, MD¹; Vivien Sheehan, MD, PhD²; Samir K. Ballas, MD³

¹Division of Hematology, Children’s National Medical Center, Washington, DC, USA; ²Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA; ³Cardeza Foundation for Hematologic Research, Thomas Jefferson University, Philadelphia, PA, USA

Corresponding author:
Samir K. Ballas, MD
Cardeza Foundation for Hematologic Research
Thomas Jefferson University
1020 Locust Street
Philadelphia, PA 19107
Email: Samir.Ballas@jefferson.edu

Short running title: VOC in SCD: Pathophysiology and Management

Abstract word count: 116 [200 word limit]

Manuscript word count: 4502 words [6000 word limit]

Number of references: 88 [80 ref limit]

Number of tables and figures: 1 table
Summary Questions

1. What is the new aspect of your work?

This work discusses and reviews several potential treatments for management of patients with frequent vascular occlusive crises associated with sickle cell disease other than opioids and hydroxyurea. These new treatments either have been approved or are in development.

2. What is the central finding of your work?

As understood, a vaso-occlusive crisis in patients with sickle cell disease is a multifactorial process characterized by inflammation, adhesion, and multicellular aggregation of sickled red blood cells, endothelial cells, platelets, and other blood cells, resulting in vaso-occlusion and acute severe pain. Prevention of onset and/or reduction in frequency of pain crises, especially in those at higher risk, should be considered foremost, as opposed to management protocols that treat pain with opioid administration.

3. What is (or could be) the specific clinical relevance of your work?

While management protocols to abort or ameliorate vaso-occlusive crises by administration of opioids have been developed and are widely in use, opioid medication does not address the underlying disease processes, and may lead to hyperalgesia, dependence, and tolerance. Prevention of pain associated with these crises is a preferred approach whenever possible. Studies have shown that supplementation with L-glutamine decreases endothelial cell adhesion,
suggesting that it may be useful for prevention of vaso-occlusive crises; this drug has been approved by the US Food and Drug Administration (FDA) in 2017 to reduce the complications of sickle cell disease in adult and pediatric patients 5 years of age and older. Additionally, the drug crizanlizumab was approved by the FDA in 2019 to reduce the frequency of crises in patients at least 16 years of age. Other drugs are in clinical development as well. Education of hematologists and others who work in the field of sickle cell disease about these new agents should lead to improved protocols for patients with sickle cell disease, with an expected outcome of a reduction in vaso-occlusive crises.
Abstract [114 words; 200-word limit]

Early diagnosis, treatment, and prevention of a vaso-occlusive crisis (VOC) is critical to the management of patients with sickle cell disease. It is essential to differentiate between VOC-associated pain and chronic pain, hyperalgesia, neuropathy, and neuropathic pain. The pathophysiology of VOCs includes polymerization of abnormal sickle hemoglobin, inflammation, and adhesion. Hydroxyurea, L-glutamine, and crizanlizumab have been approved by the US Food and Drug Administration for reducing the frequency of VOCs; the European Medicines Agency (EMA) has approved only hydroxyurea. Other novel treatments are in late-stage clinical development in both the United States and the European Union. Development of agents for prevention and treatment of VOCs should be driven by our understanding of its pathophysiology.

Keywords: sickle cell disease, vaso-occlusive crisis, hydroxyurea, L-glutamine, voxelotor, crizanlizumab
Introduction

Sickle cell disease (SCD) is the most common hemoglobinopathy, with approximately 300,000 new cases each year and millions of patients affected globally (1). In the United States, there are more than 230,000 hospital admissions related to SCD annually at an economic cost of $2.4 billion (2). Acute episodes of pain, also commonly referred to as sickle cell pain crises, or vaso-occlusive crises (VOCs), are not only the primary presenting morbidity associated with SCD, but also the cause of hospitalization in approximately 95% of cases (3). Furthermore, the frequency of VOCs, along with acute chest syndrome (ACS), is the most common predictor of death in patients with SCD (4). Recurrent episodes have a significant impact on quality of life (5), such that the incidence of pain may have a greater impact on quality of life than cumulative organ damage (6).

The pain associated with VOC is often described as sudden in onset, throbbing, and sharp (5–7). Common sites of pain include the lower back, joints, and extremities. Vaso-occlusive crisis is often preceded by a prodromal phase of 1–2 days, with pain peaking on Day 3 and lasting until Day 6 or 7 before resolving (5). The average hospital stay is approximately 9–11 days in adults (5). In addition to the pain associated with VOC, there are a number of clinical consequences. Acute chest syndrome, hepatic and renal involvement, cerebrovascular accident, and multi-organ failure resulting in death can develop in association with VOCs (7–9). Acute chest syndrome occurs in 10%–20% of hospitalized patients with
SCD, usually manifesting 1–3 days after admission for a severe VOC and can, in some cases, progress rapidly to acute respiratory failure and death (10). Thus, identification, treatment, and prevention of VOCs could significantly impact the natural history of the disease. The objective of this review is to discuss the pathophysiology, diagnosis, and management of VOC, and to distinguish between VOC and other causes of pain in patients with SCD.

Mechanisms of VOC

In order to accurately diagnose, predict, or prevent the onset of VOC and associated pain and other sequelae, it is necessary to understand the underlying mechanisms. Chronic vascular inflammation causes activation of endothelial and blood cells leading to release of macrophages, mast cells, and platelets, multicellular adhesion, and activation of nociceptors, resulting in vaso-occlusion and VOC (11,12). Vaso-occlusion is a multifactorial process involving not only occlusion of small blood vessels by sickled red blood cells (RBCs) and adherent blood cells, but also large-vessel intimal hyperplasia, thrombosis, and bone marrow fat embolization (13), leading to hypoxia, ischemia, and tissue damage and inflammation (4,14–16). It is this combination of hypoxia/reperfusion injury, ischemic tissue damage, and inflammation that makes SCD pain unique (4).

Polymerization
Polymerization of deoxygenated sickle hemoglobin leads to decreased deformability of RBCs, with deformability reduced early in VOC (17,18). Counterintuitively, high levels of RBC deformability during the recovery phase of a painful VOC has been shown to be predictive of new painful crises; this may be due to the fact that sickled RBCs with the highest deformability are the most adherent (17,18).

Adhesion

Vaso-occlusive crises are believed to occur because of adherence of sickled RBCs to the vascular endothelium, adherent leukocytes, and platelets in small blood vessels. This multicellular adhesion, rather than changes in RBC morphology per se, is now thought to be the trigger for VOC, and has been shown in animal models to lead to initiation of VOC (19). Accumulation of sickled RBCs and other adherent cells may contribute to vaso-occlusion in smaller vessels in the absence of an inflammatory trigger (17). Interaction of a number of adhesion molecules has been implicated in SCD, including α4β1 integrin, CD36 expression on sickle cell versus normal erythrocytes, basal cell adhesion molecule/Lutheran protein, and endothelial vascular cell adhesion molecule-1 (VCAM-1) (19,20).

P-selectin is another adhesion molecule that is implicated in inflammation, coagulation, and atherosclerosis, and appears to be particularly important in SCD
P-selectin is expressed on the surface of both endothelial cells and platelets, and has a role in the adhesion, rolling, and capture of blood cells (21–23). Activated platelets bind to neutrophils in a P-selectin-dependent manner to form aggregates, and increased expression of P-selectin on endothelial cells promotes leukocyte adhesion, together contributing to development of VOC (24). Possible triggers described for this process include inflammation, stress, increased viscosity, decreased flow, and hemolysis (15).

Inflammation

The inflammatory chemokine CXCL1, which acts as a neutrophil chemoattractant, has been identified as a critical mediator of VOC in humanized SCD mice (25), and neutrophil activation accompanied by an acute inflammatory response has been associated with VOC in patients who experience subsequent ACS (26). Together, sickled RBCs, activated endothelial cells, neutrophils, leukocytes, and monocytes create a pro-inflammatory and pro-aggregatory environment (15,27). Ischemia-reperfusion injury secondary to microvascular occlusions promotes chronic inflammation through increased oxidant production and increased adhesion of leukocytes, which further contributes to vaso-occlusion and tissue damage (28). Inflammatory mediators TGF-β and IL-17 have been shown to be significantly increased in patients with SCD at steady state compared with controls; TNF-α, IL-6, and IL-8 are also significantly elevated compared with controls in patients with SCD and VOCs (29).
Distinguishing Between VOC and Other Types of Pain in SCD

The pain associated with VOC is typically acute and severe, often requiring treatment with parenteral opioids (3). However, it is important to distinguish VOC pain from other pain syndromes commonly seen in SCD. For instance, many patients with SCD suffer from chronic pain as a result of bone infarction, avascular necrosis of the femoral or humeral head, leg ulcers, and chronic osteomyelitis. Some patients also experience intractable chronic pain without evident pathology (5,30).

Chronic pain in SCD has been defined as ongoing pain that is present on most days over 3–6 months in a single or multiple locations (5,31). Chronic pain is usually treated with long-acting or controlled-release opioids and does not require hospitalization unless severe or associated with an acute crisis, or if it is associated with severe infection as may happen with leg ulcers (5,32). Pediatric patients with SCD are more likely to be pain free between VOCs compared with adult patients with SCD; with increasing age, mild or moderate pain between crises becomes more common, complicating diagnosis and management (5). Although acute pain is usually thought to be a consequence of VOC, it is also possible that pain itself may trigger vasoconstriction, leading to full-scale VOC
It is estimated that 47% of adult patients with SCD in the United States take short-acting opioids and 27% take both short- and long-acting opioids, although the median daily dose of opioids is relatively low at 6.1 mg oral morphine equivalents (33). A fraction of patients also take non-steroidal anti-inflammatory drugs (NSAIDs) (33).

Neuropathic pain is usually regarded as chronic, and is usually described as numb, tingling, lancinating, spontaneous, shooting, or paroxysmal in nature, and may be associated with a sensation of pins and needles, hyperalgesia, and allodynia (5). This is in contrast to the pain associated with VOC, which is described as pounding, cutting, gnawing, or like a generalized toothache (5). Neuropathic pain is quite common in patients with SCD, with 37% having evidence of neuropathic pain in one study (34,35). It is therefore critical to differentiate between neuropathic pain and acute and chronic pain seen in these patients. Neuropathic pain has also been shown to correlate with older age (34,35). It is important to note that neuropathy and neuropathic pain are not the same. Neuropathic pain is usually defined as pain arising as a direct consequence of a lesion or disease affecting the somatosensory system (36). This type of pain usually occurs in concert with VOC and resolves after the crisis ends (37). Drugs typically used for neuropathic pain, including gabapentin, pregabalin, and amitriptyline, have not been systematically studied in patients with SCD, but preliminary studies and case reports have suggested that they may have some efficacy, including reducing the frequency of VOCs (38–40). A
number of patient-reported outcome (PRO) scales, including the McGill Pain Questionnaire and PAINReport®®, have been used to diagnose neuropathic pain in SCD (37). Neuropathy, such as peripheral neuropathy, also occurs in SCD, with mental nerve neuropathy most commonly associated with VOC (5,34). Although neuropathy is not always associated with pain, it may occur as a result of tissue damage to vessels and nerves following VOC.

Differential Diagnosis of VOC

When diagnosing VOC, the most important step is to differentiate it from acute flares of chronic pain that are often of unknown origin, but could be related to orthopedic complications of SCD, including bone infarction and avascular necrosis (5,30). Diagnosis of VOC in children is complicated by the fact that VOC affecting the bone is the most common acute clinical manifestation of SCD in this population (41). Vaso-occlusive crisis may also be confused with the much less frequently occurring osteomyelitis, which can be an acute or chronic inflammatory process caused by infection with pyogenic organisms due to impaired immune function and functional asplenia, leading to infection of the bone. Osteomyelitis is characterized by localized pain, tenderness, and swelling affecting a single site and a limited range of motion, and/or prolonged fever and pain. While the number of days of fever and pain prior to admission, as well as increased C-reactive protein levels and erythrocyte sedimentation rates, are considered to be key differentiators by some, often it is difficult to differentiate the two conditions (41,42).
Neuropathic pain and hyperalgesia can also be difficult to distinguish from VOC. While hyperalgesia is a signature of neuropathic pain, it can also occur due to prolonged opioid use (5). Opioid-induced hyperalgesia differs from tolerance in that increasing the opioid dose to manage pain paradoxically increases pain sensitivity, results in higher pain scores, and is accompanied by allodynia (43).

It may also be necessary to differentiate ACS from VOC manifested in the pulmonary system (44). Both present with fever, shortness of breath, chest pain, and leukocytosis. A new infiltrate on chest X-ray is diagnostic of ACS, which may appear normal early in an ACS episode (45). However, pain usually precedes onset of ACS, with ACS occurring about 3 days after the onset of VOC (9).

Managing Pain Crises in SCD

The primary approach to management of ongoing VOCs is pain control. Guidelines have been provided by the National Heart, Lung, and Blood Institute (NHLBI) regarding the management of acute and chronic pain in SCD, including pain associated with VOC (45). The core elements of management of VOC include initiation of individualized opioid analgesia (ideally within 30 minutes), determining the most appropriate route of analgesic administration (oral, intranasal, subcutaneous, or intravenous), choosing an adequate starting dose (0.1 mg/kg morphine or 0.015 mg/kg hydromorphone), and repeating
administration frequently (every 15–30 minutes) until pain improves (30,45–47). If possible, an individual’s prior history of pain control requirements during VOC should be used to determine appropriate dosing. In a recent phase 3 study, patient-specific dosing protocols, based in part on patient history, provided for better outcomes than a standard weight-based approach (48). Patient-controlled analgesia can also be considered. However, certain studies have indicated that this is less effective than other forms of pain control, resulting in a longer length of stay by up to 8 days in patients aged 18–30 years and 13 days in those older than 30 years (49).

Acetaminophen (paracetamol) and NSAIDs are widely used adjuvant therapies with opioids, not only because they can help to reduce the opioid requirement and reduce associated adverse events, but also because VOC is associated with increased inflammatory markers, including prostaglandin (50). This is of interest because the anti-inflammatory and analgesic effects of NSAIDs are mediated via their inhibition of cyclooxygenase enzymes that convert arachidonic acid to prostaglandin (51). In patients with VOCs associated with mild to moderate pain, NSAIDs can be continued in place of opioids in patients who report pain relief with this class of drugs (48). However, a randomized controlled trial indicated that the NSAID ketoprofen had no additional effect when given in combination with morphine (52). Care must be taken with use of NSAIDs in patients with SCD as some patients may have contraindications for their use. For example, acute renal failure may occur in subjects with chronic sickle nephropathy or other chronic
kidney diseases when exposed to NSAIDs (45). Other areas of concern include gastrointestinal and cardiovascular effects, and hypersensitivity caused by drug allergy or due to biochemical processes linked to arachidonic acid metabolism (51,53). In addition, prostaglandins have a wide variety of effects, including induction of platelet aggregation, vasoconstriction and vasodilation, and regulation of circadian rhythms, reproduction, and homeostasis, that could be affected by NSAID use in this population (51). For patients with SCD with evidence of, or at risk of, end-organ damage, use of NSAIDs may be contraindicated, especially in patients with serum creatinine ≥1.0 mg/dL (45).

Potential adjuvant treatments include hydration, laxatives, antihistamines, antiemetics, intravenous fluids, and oxygen if the patient is hypoxic, and less commonly anxiolytics or non-pharmacologic approaches such as massage, acupuncture, yoga, and meditation (30,44,46,54). Patients, especially children, who are experiencing emerging pain are advised to hydrate and take NSAIDs at home, provided there are no contraindications.

Recent studies have utilized mechanistic therapies to manage VOCs. The investigational pan-selectin inhibitor rivipansel was studied in a prospective, randomized, placebo-controlled phase 2 trial in patients experiencing VOCs. Although not statistically significant, the median time to resolution of VOC was
48% shorter than with placebo (69.6 hours vs 132.9 hours, respectively) (55). A phase 3 trial is ongoing (ClinicalTrials.gov identifier: NCT02187003).

Prediction of VOC

Various predictive factors should heighten vigilance in monitoring for VOC, and may be an indication for more aggressive management. For example, higher levels of fetal hemoglobin may be protective against VOC and other pathological consequences of SCD due to its interfering with polymerization of sickle hemoglobin during the sickling process (56,57), and are also inversely related to mortality (4). In addition, some patients have reported symptoms of numbness, paresthesia, or aches before onset of VOC. In one study, 58% of patients with SCD reported these symptoms 1–2 days before VOC, suggestive of a prodromal phase (58).

Triggers of VOC

Many patient-related and environmental factors have been shown to be risk factors for VOC, and may also lead to hyperalgesia (Table 1) (46,59). Patient factors include hypoxia, infection, fever, acidosis, dehydration, pregnancy, menstruation, and obstructive sleep apnea; pain itself can also precipitate painful crises. Anxiety, depression, alcohol consumption, and physical exhaustion can also trigger onset of VOC. In addition, comorbidities such as sarcoidosis, diabetes, cholecystitis, and herpes can lead to pain crises. It has been suggested
that these triggers may actually cause pain crises due to a link between the autonomic nervous system (ANS) and VOC (59). Perturbations in the ANS in response to these triggers may cause ANS-mediated vasoconstriction, tipping the balance from steady state towards VOC. A recent study using mathematical models of biophysical markers indicated that markers relating to increased blood pressure were involved in pain-induced vasoconstriction (60). These markers may allow for characterization of disease severity and risk of VOC, based on the underlying physiology rather than genotype.

Environmental factors such as exposure to extremes of temperature and higher wind speed have also been identified as triggers for VOC (46,59) In one study, colder temperatures and higher wind speed were associated with a higher incidence of VOC in children under age 18 years (61). The average monthly pain score was also significantly higher in more humid months.

Biomarkers of VOC

Some blood parameters have been associated with severity of SCD. As already discussed, neutrophils have a key role in the pathogenesis of VOC (27). Higher neutrophil counts have been shown to correlate with more severe disease, including earlier death, and increased incidence of silent brain infarcts, hemorrhagic stroke, and ACS (26). Although platelet counts have not consistently been shown to be associated with the frequency or severity of
VOCs, platelet hyperactivity has been found to be increased during VOC. Plasma levels of platelet factors 3 and 4 are increased in patients with SCD at steady state and are even higher during VOC (62). Notably, patients with SCD are capable of making platelet factor 3 available for coagulation activity, suggesting that this may play a role in VOC (63). Papadimitriou et al suggested that platelet inhibitors may have a role in prevention of VOC (62). Levels of extracellular hemoglobin may also play a role in the development of VOC. Hemolysis resulting in release of excessive amounts of hemoglobin is a signature of SCD. Extracellular hemoglobin forms a complex with haptoglobin, but once the capacity of haptoglobin for hemoglobin is surpassed, excess extracellular hemoglobin can cause further complications (63). Unbound extracellular hemoglobin in turn consumes the endogenous vasodilator nitric oxide, resulting in vasoconstriction and systemic and pulmonary hypertension (63). This hemoglobin also inhibits the cleavage of von Willebrand factor multimers, which then accumulate in the plasma and bind to platelets or sickled/fragmented erythrocytes to promote cell adhesion, leading to VOC (63). A recent study in Nigeria found that higher hemoglobin levels, platelet and neutrophil counts, as well as avascular necrosis and leg ulcers were all significantly associated with a higher incidence of VOC (64). A number of other metrics also have been shown to be predictive of the severity of VOC. For example, high levels of lactate dehydrogenase in serum have been associated with a severe evolution of VOC, especially in patients without ACS (65).
A number of serum inflammatory markers potentially associated with VOC have been identified. However, increases in these markers are typically observed once a pain event has already begun, and therefore are connected to crisis severity rather than being predictive of onset. One report suggested that VOC occurs due to an imbalance in pro- and anti-inflammatory mechanisms associated with IL-10 signaling (66). This study found that reduced IL-10 secretion was associated with an increased risk of VOC, possibly due to its effect on the pro-inflammatory cytokine TNFα. However, because of the design of the study, it is not possible to distinguish if this was a consequence rather than a predictor of VOC. Another study suggested that levels of soluble CD163 >1400 ng/mL were predictive of VOC and pulmonary hypertension (67).

Elevated levels of serum fractal kinase and Fkn gene expression in patients with SCD at steady state and during VOC indicate that it may be important in acute inflammation during crises (68) In fact, it has been shown that serum fractal kinase is elevated in patients with the highest frequency of VOCs and may be important in recurrent episodes. In addition, the potent inflammatory mediator secretory phospholipase A2 has been shown to be elevated in patients with VOCs who go on to develop ACS, and could be used to predict ACS development, and hence identify candidates for closer monitoring (69).

Identification of imbalances in other inflammatory markers that predict severity and/or frequency of VOCs are needed in order to identify potential therapeutic targets and treatments.
Genetic Predictors of VOC

There are a number of polymorphisms in the β-hemoglobin gene. While hemolytic anemia and VOC occur with all variants, some genotypes are associated with more severe disease than others, in part due to varying cellular concentrations of HbS and hence the degree of polymer formation (70). Determining the genotypic variant present in an individual could help to predict the severity of disease. Other genetic mutations have also been associated with increased frequency of VOCs. The presence of both single nucleotide polymorphisms +191 and +292 in LGALS3 resulting in intermediate serum galectin-3 levels have been associated with a higher frequency of VOCs (71).

Higher levels of fetal hemoglobin are thought to be protective against VOC (56,57). A recent study suggested that introduction of mutations into the γ-globin gene promoter disrupted binding of two major fetal globin repressors, BC11A and ZBTB7A. This may result in increased expression of fetal hemoglobin and thus help to prevent VOC (72). Genome-editing technologies may therefore allow for new strategies in management of patients with SCD at risk of frequent VOCs.

Preventive Pharmacotherapy
Hydroxyurea is one of the most commonly used drugs for management of painful crises in adult patients with sickle cell anemia. It is indicated for reduction of the frequency of painful crises and to reduce the need for blood transfusions in adult patients with sickle cell anemia with recurrent moderate to severe painful crises (generally at least three VOCs during the preceding 3 months) (45). In addition, NHLBI also recommends its use in patients who have pain that interferes with daily activities or quality of life, as well as in patients with a history of severe or recurrent ACS or severe chronic anemia that interferes with daily activities or quality of life, and in infants >9 months of age, children, and adolescents to reduce the incidence of SCD-related complications (45). Hydroxyurea has been shown to increase levels of fetal hemoglobin, which appears to be protective against VOC (73,74). In addition, hydroxyurea treatment has been associated with lower white blood cell, platelet and reticulocyte, and dense-cell counts; lower levels of adherent reticulocytes and leukocytes that may release pro-inflammatory cytokines may also help to prevent initiation of VOC (73–75). Most importantly, hydroxyurea has been shown to reduce the number of pain episodes in adults with sickle cell anemia, with an annual rate of VOC 44% lower than placebo ($P<0.001$) (74). A 9-year follow-up study indicated that hydroxyurea also reduced mortality by 40% (73). The optimal response to hydroxyurea occurs when the dose is titrated to a maximum tolerated dose that induces mild myelosuppression, with individual pharmacokinetics, pharmacodynamics, and pharmacogenomics contributing to the variability (76). As a result, there may be limitations to its effectiveness, especially in clinical practice. While hydroxyurea is
generally well tolerated, some patients experience mild and reversible cytopenias leading to temporary suspension of treatment. A number of recognized and potential adverse events, many of which are rare, have been reported with hydroxyurea, including skin ulcers, pancytopenia, diarrhea, rash, vomiting, nausea, anorexia, and thrombocytopenia that may cause some patients to discontinue treatment (76). Misconceptions about hydroxyurea-associated side effects and poor adherence are the greatest barriers to the use of and efficacy of hydroxyurea (77).

Although less well established, a number of other possible treatments for management of patients with frequent VOCs have been approved or are in development. Studies have shown that supplementation with L-glutamine decreases endothelial cell adhesion, suggesting that it may be useful for prevention of VOC (78); L-glutamine was approved by the FDA in 2017 to reduce the complications of SCD in adult and pediatric patients 5 years of age and older (79). This approval was based on a clinical trial in 230 patients who had had at least two or more painful crises in the previous 12 months; all patients were stable on hydroxyurea for at least 3 months and continued treatment throughout the study. Over the course of the 48-week study, patients randomized to L-glutamine had fewer sickle cell crises (3 vs 4), fewer hospitalizations for sickle cell pain (2 vs 3), and fewer cumulative days in the hospital (6.5 days vs 11.0 days) than in those randomized to placebo, respectively. The median time to the first sickle cell crisis was 84 days for patients who received L-glutamine and 54
days for those who received placebo. There were also fewer occurrences of ACS in patients randomized to L-glutamine than placebo (8.6% vs 23.1%) (79).

Crizanlizumab has been approved to reduce the frequency of VOCs in patients aged 16 years and older (80). This humanized immunoglobulin G2 (IgG2) antibody inhibits P-selectin and blocks its interaction with its ligands, including P-selectin glycoprotein ligand 1 (PSGL-1), thereby reducing VOC (81). In a phase 2, multicenter, randomized, placebo-controlled trial in patients aged 16–65 years, crizanlizumab 5 mg/kg administered every 4 weeks (after a loading dose 2 weeks apart) with or without hydroxyurea was associated with a significantly lower annual rate of VOCs than placebo (1.6 vs 3.0, \(P=0.01 \)) and a significantly longer time to first crisis than placebo (4.1 vs 1.4 months, \(P=0.001 \)) (81). In a post hoc subgroup analysis of patients in the SUSTAIN trial who were VOC free during the study, more patients were event-free in the crizanlizumab 5 mg/kg arm versus placebo, including patients with more frequent VOCs (ie, 5–10; 28.0% vs 4.2%), those who had the HbSS genotype (31.9% vs 17.0%), and those using hydroxyurea concomitantly (33.3% vs 17.5%) (82).

Another potential therapy currently under clinical development is the investigational oral agent voxelotor (GBT440). GBT440 is an allosteric modulator of hemoglobin-oxygen affinity, thus holding HbS in the oxygenated state, improving the rheology and hemodynamics of blood, and possibly delaying
polymerization and inhibiting RBC sickling (83). Phase 2 studies have demonstrated improvements in hemoglobin levels and hemolysis (84). Results from the phase 3 HOPE study of voxelotor in patients with SCD (N=274) showed a significant increase in the proportion of patients with a hemoglobin increase >1 g/dL (primary endpoint) with the 1500 mg dose (51%; \(P<0.001\)) compared with placebo (7%) after 24 weeks of treatment (85). However, there was only a trend towards a reduction in the annualized incidence rate of VOC between voxelotor and placebo in this study; additional research and follow-up is required to determine the effect of voxelotor on the frequency of VOC events (85). Voxelotor was generally safe and well tolerated with a safety profile similar to that of placebo; there was also no substantial differences in the percentage of patients with sickle cell disease-related adverse events (85).

Treatment of pain, especially chronic pain, with opioids does not address the underlying disease processes, and may lead to hyperalgesia, dependence, and tolerance (86). Indeed, opioids may adversely affect the membrane structure of RBCs, increase mast cell degranulation-induced inflammation, and activation of tyrosine kinases, all of which may contribute to VOC (86). Prevention of pain associated with VOC is a preferred approach whenever possible. Avoidance of VOC triggers such as cold, fatigue, and stress can help to reduce the frequency of VOCs (58,87). Another prevention strategy is avoidance of agents that may lead to initiation of VOC. For example, animal studies have suggested that vasoconstrictive agents such as \(\alpha\)-adrenergic receptor agonists (including
phenylephrine) may precipitate VOC (88). Such agents should therefore be avoided in patients with SCD.

Conclusions

Vaso-occlusive crisis in patients with SCD is a multifactorial process characterized by inflammation, adhesion, and multicellular aggregation of sickled RBCs, endothelial cells, platelets, and other blood cells, resulting in vaso-occlusion and acute severe pain. While management protocols to abort or ameliorate VOC by administration of opioids have been developed, the focus should shift to prevention of onset and reduction in frequency of pain crises, especially in those at higher risk. Research has identified a number of quantitative leads for identifying those patients at high risk of VOC. These patients may be good candidates for therapies in combination with hydroxyurea, such as L-glutamine, and crizanlizumab, which take advantage of the underlying mechanisms of VOC and are able to reduce the frequency of this debilitating consequence of SCD.

Acknowledgments

The authors were responsible for all content and editorial decisions and received no honoraria related to the development of this manuscript. Editorial support in the preparation of this manuscript was provided by Phase Five Communications, supported by Novartis Pharmaceuticals Corporation.
Disclosures

Dr. Deepika S. Darbari is an advisory board member for Hilton Publishing Inc. and a steering committee member for the Novartis SPARTAN study, and has served on the advisory board for Global Blood Therapeutics.

Dr. Vivien Sheehan is an advisory board member for Pfizer.

Dr. Samir K. Ballas has served on the speakers bureau for Novartis and has received honoraria from Novartis.
References [maximum: 80; we have 88]

66. Sarray S, Saleh LR, Lisa Saldanha F, Al-Habboubi HH, Mahdi N, Almawi WY. Serum IL-6, IL-10, and TNFalpha levels in pediatric sickle cell disease patients during vasoocclusive crisis and steady state condition. Cytokine 2015;72:43–47.

76. McGann PT, Ware RE. Hydroxyurea therapy for sickle cell anemia. Expert Opin Drug Saf 2015;14:1749–1758.

Table 1. Risk factors associated with VOCs and other SCD-related complications

(24,27,46,59–72)

<table>
<thead>
<tr>
<th>Triggers</th>
<th>Patient factors: hypoxia, infection, fever, acidosis, dehydration, pregnancy, menstruation, obstructive sleep apnea, pain, anxiety, depression, alcohol consumption, physical exhaustion (46,59,60,70)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Environmental factors: exposure to temperature extremes, high wind speed and humidity (46,59,61)</td>
</tr>
<tr>
<td></td>
<td>Comorbidities: sarcoidosis, diabetes, cholecystitis, herpes (59)</td>
</tr>
<tr>
<td>Biomarkers</td>
<td>Blood parameters: high platelet and neutrophil counts, high hemoglobin levels, unbound extracellular hemoglobin, increased levels of plasma platelet factors 3 and 4, platelet hyperactivity (24,27,62–64)</td>
</tr>
<tr>
<td></td>
<td>Serum factors: high lactate dehydrogenase levels, elevated levels of fractal kinase and fractalkine (Fkn) gene expression (65,68)</td>
</tr>
<tr>
<td></td>
<td>Inflammatory factors: reduced interleukin 10 (IL-10) secretion, levels levels of soluble CD163 >1400 ng/mL, secretory phospholipase A2 (65–67,69)</td>
</tr>
<tr>
<td>Genetic predictors</td>
<td>Single nucleotide polymorphisms: +191 and +292 in galectin-3 gene (LGALS3) (71)</td>
</tr>
<tr>
<td></td>
<td>Mutations in the γ-globin gene promoter that disrupt binding of major fetal globin repressors (72)</td>
</tr>
</tbody>
</table>

SCD, sickle cell disease; VOC, vaso-occlusive crisis.