
Thomas Jefferson University Thomas Jefferson University 

Jefferson Digital Commons Jefferson Digital Commons 

Department of Medical Oncology Faculty 
Papers Department of Medical Oncology 

6-19-2017 

Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 

in patients with acute myeloid leukemia. in patients with acute myeloid leukemia. 

Liuluan Zhu 
Capital Medical University; Penn State University College of Medicine 

Yaxian Kong 
Capital Medical University; Penn State University College of Medicine 

Jianhong Zhang 
Penn State University College of Medicine 

David F. Claxton 
Penn State University College of Medicine 

W. Christopher Ehmann 
Penn State University College of Medicine 

See next page for additional authors 

Follow this and additional works at: https://jdc.jefferson.edu/medoncfp 

 Part of the Oncology Commons 

Let us know how access to this document benefits you 

Recommended Citation Recommended Citation 
Zhu, Liuluan; Kong, Yaxian; Zhang, Jianhong; Claxton, David F.; Ehmann, W. Christopher; Rybka, Witold B.; 
Palmisiano, Neil D.; Wang, Ming; Jia, Bei; Bayerl, Michael; Schell, Todd D.; Hohl, Raymond J.; Zeng, Hui; and 
Zheng, Hong, "Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute 
myeloid leukemia." (2017). Department of Medical Oncology Faculty Papers. Paper 67. 
https://jdc.jefferson.edu/medoncfp/67 

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital 
Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is 
a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections 
from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested 
readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been 
accepted for inclusion in Department of Medical Oncology Faculty Papers by an authorized administrator of the 
Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu. 

https://jdc.jefferson.edu/
https://jdc.jefferson.edu/medoncfp
https://jdc.jefferson.edu/medoncfp
https://jdc.jefferson.edu/medonc
https://jdc.jefferson.edu/medoncfp?utm_source=jdc.jefferson.edu%2Fmedoncfp%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/694?utm_source=jdc.jefferson.edu%2Fmedoncfp%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://library.jefferson.edu/forms/jdc/index.cfm
http://www.jefferson.edu/university/teaching-learning.html/


Authors Authors 
Liuluan Zhu, Yaxian Kong, Jianhong Zhang, David F. Claxton, W. Christopher Ehmann, Witold B. Rybka, Neil 
D. Palmisiano, Ming Wang, Bei Jia, Michael Bayerl, Todd D. Schell, Raymond J. Hohl, Hui Zeng, and Hong 
Zheng 

This article is available at Jefferson Digital Commons: https://jdc.jefferson.edu/medoncfp/67 

https://jdc.jefferson.edu/medoncfp/67


RESEARCH Open Access

Blimp-1 impairs T cell function via
upregulation of TIGIT and PD-1 in patients
with acute myeloid leukemia
Liuluan Zhu1,2†, Yaxian Kong1,2†, Jianhong Zhang2, David F. Claxton2, W. Christopher Ehmann2, Witold B. Rybka2,
Neil D. Palmisiano3, Ming Wang4, Bei Jia2, Michael Bayerl5, Todd D. Schell2,6, Raymond J. Hohl2, Hui Zeng1*

and Hong Zheng2,6*

Abstract

Background: T cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif (ITIM) domain
(TIGIT) and programmed cell death protein 1 (PD-1) are important inhibitory receptors that associate with
T cell exhaustion in acute myeloid leukemia (AML). In this study, we aimed to determine the underlying
transcriptional mechanisms regulating these inhibitory pathways. Specifically, we investigated the role of
transcription factor B lymphocyte-induced maturation protein 1 (Blimp-1) in T cell response and transcriptional
regulation of TIGIT and PD-1 in AML.

Methods: Peripheral blood samples collected from patients with AML were used in this study. Blimp-1 expression
was examined by flow cytometry. The correlation of Blimp-1 expression to clinical characteristics of AML patients was
analyzed. Phenotypic and functional studies of Blimp-1-expressing T cells were performed using flow cytometry-based
assays. Luciferase reporter assays and ChIP assays were applied to assess direct binding and transcription activity of
Blimp-1. Using siRNA to silence Blimp-1, we further elucidated the regulatory role of Blimp-1 in the TIGIT and PD-1
expression and T cell immune response.

Results: Blimp-1 expression is elevated in T cells from AML patients. Consistent with exhaustion, Blimp-1+ T cells
upregulate multiple inhibitory receptors including PD-1 and TIGIT. In addition, they are functionally impaired
manifested by low cytokine production and decreased cytotoxicity capacity. Importantly, the functional defect is
reversed by inhibition of Blimp-1 via siRNA knockdown. Furthermore, Blimp-1 binds to the promoters of PD-1 and
TIGIT and positively regulates their expression.

Conclusions: Our study demonstrates an important inhibitory effect of Blimp-1 on T cell response in AML; thus,
targeting Blimp-1 and its regulated molecules to improve the immune response may provide effective leukemia
therapeutics.
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Background
Acute myeloid leukemia (AML) is the most common
acute leukemia in adults with around 20,000 new
diagnoses each year in the USA. The mainstream of
treatment for AML is induction chemotherapy
followed by post-remission consolidation. Allogeneic
hematopoietic stem cell transplantation in many
clinical settings can significantly improve survival.
However, the overall prognosis remains poor with a
5-year survival rate of only 25%. Novel effective
leukemia therapeutics is urgently needed.
Modulating the immune response to improve anti-

tumor immunity provides a promising strategy for
cancer treatment [1]. Studies using reagents inhibit-
ing negative immune regulatory pathways, such as
programmed cell death protein 1 (PD-1), have
achieved great success [2–5]. This strategy targets T
cell exhaustion, a status of T cell dysfunction that
contributes to compromised anti-tumor T cell re-
sponses. Exhausted T cells gradually lose their cap-
acity for cytokine production and cell killing,
eventually undergo apoptosis and deletion [6]. Upreg-
ulation of PD-1 and other inhibitory pathways such
as T cell immunoglobulin domain and mucin domain
3 (TIM-3), 2B4, Lymphocyte-activation gene 3 (LAG-
3), and T cell immunoglobulin and immunoreceptor
tyrosine-based inhibitory motif (ITIM) domain
(TIGIT) is not only a hallmark, but also an important
mechanism involved in the development of T cell ex-
haustion [7–18]. Studying the role of inhibitory path-
ways in AML is appealing. Several reports including
ours have shown that inhibitory receptors including
PD-1, TIM-3, and TIGIT are elevated on T cells and
associate with immune suppression in AML [19–26].
Combined blockade of PD-1 and TIM-3 pathways
synergistically reduced tumor burden and leukemia
death in a mouse model of AML [21]. These data
suggest that targeting the inhibitory pathways to re-
store T cell function and anti-tumor immune response
may represent an effective leukemia therapy. Moving
this strategy forward to clinical applications is under
active development, but it is also important to under-
stand the transcriptional mechanisms involved in the
regulation of these inhibitory receptors in AML,
which is currently unknown.
B lymphocyte-induced maturation protein 1

(Blimp-1) is a zinc finger-containing transcription
factor functioning as a decision maker for memory B
cell differentiation [27, 28]. Recent studies in mouse
models of infection uncovered its crucial role in
regulating CD8+ T cell exhaustion [29–31]. Here, we
examine the effect of Blimp-1 in the pathogenesis of
AML using blood samples collected from a cohort
(n = 24) of patients with AML at initial diagnosis.

We demonstrate an inhibitory role for Blimp-1 on T
cell response in AML. Elevated expression of Blimp-
1 in T cells associates with upregulation of inhibitory
receptors and reduced T cell capacity of cytokine
production and cytotoxicity, features which are con-
sistent with exhaustion. Importantly, Blimp-1 knock-
down by siRNA reverses these functional defects. In
addition, Blimp-1 binds to the promoters of PD-1
and TIGIT and upregulates their expression, suggest-
ing that the suppressive effect of Blimp-1 on the T
cell response is mediated by its transcriptional regu-
lation of PD-1 and TIGIT. Our studies demonstrate
that Blimp-1 is an important regulator of T cell ex-
haustion in AML and thus an attractive target for
effective leukemia therapeutics.

Methods
Patients
Peripheral blood collected from AML patients were ob-
tained from the tissue bank maintained by the Penn State
Hershey Cancer Institute of Penn State University College
of Medicine, Hershey, PA. The study was approved by the
Institutional Review Board of Penn State University Col-
lege of Medicine. Full informed consent was obtained
from all patients. Samples from 24 patients (10 males and
14 females, age 57 ± 15 years, range, 23–77 years) diag-
nosed with AML per WHO classification were used in the
study. Samples of 25 healthy volunteers (13 males and 12
females, age 55 ± 15 years, range, 21–77 years) were
obtained as controls.

Immunofluorescence staining and flow cytometric
analysis
For surface staining, cells were incubated at room
temperature with human Fc block (BD Biosciences, San
Diego, CA, USA) and followed by staining with directly
conjugated mAbs for 30 min at 4 °C. The mAbs used
were anti-human CD3-BV605, CD4-V500, CD8-APC-
H7, CD45RA-BV421, CCR7-PerCp-Cy5.5, PD-1-PE-Cy7,
CD160-Alexa Fluor 488 (BD Biosciences), CD4-FITC,
TIM-3-BV421, 2B4-PerCp-Cy5.5 (BioLegend, San Diego,
CA, USA), and TIGIT-APC (eBioscience, San Diego,
CA, USA). Data acquisition was performed on a LSR
Fortessa flow cytometer (BD Biosciences). FlowJo
Software (Tree Star, Ashland, OR, USA) was used in
data analysis.

SmartFlares
Lyophilized SmartFlare probe (Merck Millipore,
Guyancourt, France) was used to detect Blimp-1
mRNA following the manufacturer’s instruction.
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In vitro stimulation and intracellular staining
PBMCs were stimulated with anti-CD3/CD28 (2 and
5 μg/mL), plus Golgiplug (BD Pharmingen) for 5 h be-
fore intracellular staining Blimp-1-PE, IFN-γ-PE-CF594,
and IL-2-PerCp-Cy5.5 (BD Pharmingen). For perforin
study, perforin-PE-CF594 (BD Pharmingen) was used. A
Fixable Viability Dye eFluor 450 (eBioscience) was used
to assess cell viability.

siRNA transfection
SMARTpool of siRNA for Blimp-1 and control were ob-
tained from GE Dharmacon RNA Technologies (GE
Dharmacon, Lafayette, CO, USA). Control and specific
siRNAs were added at a final concentration of 1 μM per
well for 72 h. For functional assays, cells were further
stimulated with anti-CD3/CD28 for 5 h, followed by
flow analysis.

Plasmid construction, transfection, and real-time PCR
PRDM1α plasmid (RGS-6xHis-BLIMP-1-pcDNA3.1-)
was a gift from Adam Antebi [32]. PRDM1β cDNA was
cloned into pcDNA3.1+ plasmid. The PD-1 gene pro-
moter (−1063/+70 bp relative to the transcription start
site) and TIGIT promoter (−2228/+76 bp) were cloned
into pGL3-basic. PRDM1α and PRDM1β plasmids were
transfected using Lipofectamine 3000 (Thermo Fisher
Scientific, Waltham, MA, USA). Specific transcripts
were quantified by real-time PCR with TaqMan probes
according to the manufacturer’s instructions (Thermo
Fisher Scientific).

Luciferase reporter assay
293T cells were transfected with a mixture of the indi-
cated expression plasmids. After 24 h, luciferase assays
were performed using a dual-Luciferase Reporter Assay
System (Promega, Madison, WI, USA) according to the
manufacturer’s instructions.

Chromatin immunoprecipitation (ChIP) assay
ChIP assays were conducted as previously described
[33]. Briefly, T cells were stimulated in vitro with
anti-CD3 [34] for 48 h followed by cross-linking, son-
ication, and chromatin immunoprecipitation with
antibodies to Blimp-1 or normal goat IgG (Abcam,
Cambridge, UK). DNA was then quantified by real-
time PCR. Primer sequences were provided in
Additional file 1: Supplemental data.

Statistical analysis
GraphPad5 (GraphPad Software, La Jolla,CA, USA)
was used for statistical calculations. The normality of
each continuous variable was evaluated using the
Kolmogorov–Smirnov test. For data distributed nor-
mally, the comparison of variables was performed

using unpaired or paired (where specified) Student’s
t test. For data not distributed normally, the com-
parison of variables was performed with a Mann–
Whitney U test or a Wilcoxon signed-rank test for
unpaired and paired data, respectively. Comparisons
of categorical patient characteristics were analyzed
using Fisher’s exact test. To evaluate correlation,
Pearson’s correlation coefficients were used. All tests
are two-tailed with P values less than 0.05 consid-
ered statistically significant.

Results
Blimp-1 is upregulated in T cells from AML patients
To determine the effect of Blimp-1 on the T cell re-
sponse in patients with AML, we first assessed the
expression of Blimp-1 mRNA in both CD4+ and CD8
+ T cells. PBMCs collected from 24 AML patients at
initial diagnosis were examined. Samples from 25 age-
and gender-matched healthy donors (HD) served as
controls. We used a novel technology, the SmartFlare
system [35], to detect Blimp-1 mRNA by flow cytom-
etry. Importantly, this nanoparticle-based system al-
lows us to test the transcripts within individual living
cells. We observed a significant elevation of Blimp-1
mRNA in both CD4+ and CD8+ T cells from AML
patients, compared with those from HD. The mean
frequency (±SD) of Blimp-1+ cells among CD4+ T
cells was 41.2 ± 14.8% vs. 49.8 ± 9.5%, P = 0.0196
(Fig. 1a, b), while those of CD8+ T cells was 20.3 ±
7.9% vs. 35.4 ± 17.3%, P < 0.0001 (Fig. 1a, b). To deter-
mine the expression of Blimp-1 in protein level, we
performed intracellular staining of Blimp-1 in both
CD4+ and CD8+ T cells. Consistent with the mRNA
data, the frequency of Blimp-1+ T cells was signifi-
cantly higher in AML patients, compared with those
in HD (Fig. 1c, d). This data indicates a potential role
for Blimp-1 in AML.

Elevated Blimp-1 expression on CD4+ T cells correlates
with high circulating blasts in AML patients
We next analyzed the correlation of Blimp-1 expres-
sion with the clinical characteristics in AML pa-
tients. Based on the level of Blimp-1 mRNA
expression on T cells, we defined high-Blimp-1
(Blimp-1 ≥49.8% of CD4+ T cells, ≥35.4% of CD8+ T
cells) vs. low-Blimp-1 (Blimp-1 <49.8% of CD4+ T
cells, <35.4% of CD8+ T cells) subgroups in AML
patients. The median values of Blimp-1 expression
on T cells of the 24 AML patients evaluated in our
study were used to establish the cutoff values. Pa-
tients with high Blimp-1 expression in CD8+ T cells
had comparable clinical characteristics with that of
low Blimp-1 expression (Additional file 1: Table S1).
We further dissected the association of Blimp-1
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expression in CD4+ T cells to clinical characteristics
(Table 1). We found no significant difference be-
tween the two groups (high Blimp-1 vs. low Blimp-
1) in terms of age, gender, and cytogenetic features.
However, we observed that patients expressing a
high frequency of Blimp-1 mRNA in CD4+ T cells
presented with significantly higher white blood
counts (WBC) at initial diagnosis. A high, yet com-
parable proportion of WBCs were leukemia blasts in
both the high- and low-Blimp-1 groups. Therefore,
the absolute blast counts in the peripheral blood
were significantly higher in patients with high
Blimp-1-expressing CD4+ T cells compared to that
of patients with low Blimp-1 expression (Table 1).

Expression of Blimp-1 correlates with the upregulation of
inhibitory receptors on T cells from AML patients
To examine whether there is an association between the
expression of Blimp-1 and multiple inhibitory receptors
in AML, PBMCs collected from AML patients were co-
cultured with Blimp-1 probe followed by co-staining
with antibodies to inhibitory receptors including PD-1,
TIGIT, 2B4, CD160, and TIM-3. Multi-channel flow cy-
tometry analysis was performed to detect the expression
of inhibitory receptors on T cells that co-express Blimp-
1 mRNA. As shown in Fig. 2a, Blimp-1+ CD4+ T cells
expressed significantly higher levels of all inhibitory re-
ceptors tested than Blimp-1− CD4+ T cells. CD8+ T cells
demonstrated a similar expression pattern although only

Fig. 1 Blimp-1 is elevated in T cells from AML patients. PBMCs collected from AML patients at initial diagnosis as well as healthy donors were
assessed. a, b Expression of Blimp-1 mRNA was assessed by SmartFlare probe followed by flow cytometry analysis. a Representative histograms
displaying the expression of Blimp-1 mRNA gated on CD4+ (left) and CD8+ T cells (right). Data from one healthy donor and one AML patient are
shown. Scrambled SmartFlare probes were set as negative controls. b Plot of percentages of Blimp-1+ cells in CD4+ and CD8+ T cells from healthy
donors (n = 25) vs. AML patients (n = 24). c, d Expression of Blimp-1 protein was assessed by intracellular staining. c Representative flow cytometry
data. d Plot of percentages of Blimp-1+ cells in CD4+ and CD8+ T cells from healthy donors (n = 19) vs. AML patients (n = 14). Each spot represents
an individual patient or healthy donor. P values were obtained by unpaired t test.
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TIGIT and PD-1 achieved statistical significance (Fig. 2b).
Expression of Blimp-1 was positively correlated with the
expression of PD-1 and TIGIT in both CD4+ and CD8+

T cells from AML (Additional file 1: Figure S1). Thus,
expression of Blimp-1 associates with the upregulation
of multiple inhibitory receptors on T cells from AML
patients, suggesting a potential effect of Blimp-1 in
suppressing T cell function in AML.

Expression of Blimp-1 in CD8+ T cells associates with
increased differentiation of terminally differentiated
effector T cells in AML
We further performed phenotypic analyses to evaluate
the differentiation status of T cells that express Blimp-1
mRNA in patients with AML. Based on the expression
of CD45RA and CCR7, T cells can be divided into four
subpopulations: naïve T cells (TN, CCR7+CD45RA+),
central memory T cells (TCM, CCR7

+CD45RA−), effector

memory T cells (TEM, CCR7
−CD45RA−), and terminally

differentiated effector cells (TEMRA, CCR7−CD45RA+)
[36–39]. Consistent with a previous report that Blimp-1
is mainly expressed in T cells post antigen stimulation
[29, 40], we observed that the majority of Blimp-1+ T
cells are antigen-experienced cells in AML patients.
Blimp-1+ cells among both CD4+ and CD8+ T cells
showed significantly increased TCM and TEM compared
to that of Blimp-1− cells. In contrast, Blimp-1− T cells
were mostly naive (Fig. 3). Importantly, the frequency of
TEMRA was significantly higher in Blimp-1+ CD8+ T cells
(Fig. 3). TEMRA are considered as terminal effector cells
with limited functional capacity; thus, these data provide
further support that Blimp-1 negatively influences T cell
response in AML.

Blimp-1+ T cells from AML patients display functional
defects manifested by reduced cytokine production and
cytotoxic capacity
To evaluate the functional status of Blimp-1+ T cells
from the AML patients, we tested cytokine release
upon in vitro stimulation with anti-CD3 and anti-
CD28. Intracellular production of IFN-γ and IL-2
were assessed by flow cytometry analysis gated on
Blimp-1+ vs. Blimp-1− T cells. Of note, we were not
able to examine the mRNA expression of Blimp-1 in
this experiment as the RNA probe leaks post-
permeabilization during intracellular staining for cyto-
kines. Therefore, Blimp-1+ T cells were defined by
intracellular staining of Blimp-1 protein (Fig. 4a). As
shown in Fig. 4b, the Blimp-1+ subpopulation of both
CD4+ and CD8+ T cells had significantly lower intra-
cellular IFN-γ compared to Blimp-1− T cells. Blimp-1
+ CD4+ T cells also displayed less IL-2 production
compared to that of Blimp-1− CD4+ T cells. We next
assessed the cytotoxic potential by examining the
level of perforin expression in each T cell subpopula-
tion. Without in vitro stimulation, CD8+ T cells ap-
pear to express less Blimp-1 (Fig. 4c). Importantly, we
observed a significant lower expression of perforin
and Granzyme B in Blimp-1+ CD8+ T cells, compared
to that in Blimp-1− CD8+ T cells (Fig. 4d, Additional
file 1: Figure S2A). Collectively, these results demon-
strate that Blimp-1+ T cells have a decreased function
compared to Blimp-1− T cells in AML patients.

Inhibition of Blimp-1 improves T cell function
To further dissect the regulatory effect of Blimp-1 on T
cell function, we used a specific siRNA to knockdown
Blimp-1 expression in T cells from the AML patients. The
expression of Blimp-1 was reduced by 60% in both CD4+

and CD8+ T cells after transfection with Blimp-1 siRNAs
(Fig. 5a). Intracellular cytokine staining assays were per-
formed on T cells upon in vitro stimulation with anti-CD3

Table 1 High Blimp-1 expression on CD4+ T cells associates
with increased blast in AML

Total High-Blimp-1 Low-Blimp-1 P value

(n = 24) (n = 13) (n = 11)

Age, years

Median 61 59 0.797

Range 23–75 24–77

Gender

Male 6 4 0.628

Female 7 7

WBC, × 109/l

Median 82.9 24.9 0.033

Range 5.8–364.6 5.1–87

PB blast, %

Median 68 73 0.721

Range 1.9–93.8 18–90.8

Absolute blast counts, × 109/l

Median 41 16 0.026

Range 0.1–342 3–47

BM blast, %

Median 60 64.5 0.626

Range 1.5–88 34.5–79

Cytogeneticsa

Adverse 6 6 0.799

Intermediate 5 4

Favorable 1 1

WBC white blood cell, ANC absolute neutrophil counts, PB peripheral blood,
BM bone marrow, ITD internal tandem duplication.
aRisk stratification is based on the 2017 European Leukemia Net
Recommendations. Clinical information for risk stratification was not available
for one patient, thus data of 23 (12 of high Blimp-1, 11 of low Blimp-1)
are shown
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and anti-CD28. We observed a significant increase of
IFN-γ and IL-2 production after Blimp-1 inhibition by
siRNA; this occurred in both CD4+ and CD8+ T cells
(Fig. 5b). Consistently, CD8+ T cells expressed increased
levels of perforin and Granzyme B upon Blimp-1 knock-
down, indicating an improved cytotoxic capacity (Fig. 5c,
Additional file 1: Figure S2B). Of note, Blimp-1 did not
appear to regulate apoptosis as we observed no change of
CD95 expression on T cells upon Blimp-1 knockdown
(Additional file 1: Figure S3). These important data dem-
onstrate a pivotal role for Blimp-1 in inhibiting cytokine
release and cytotoxic capacity, thus suppressing T cell
function in AML patients.

Blimp-1 is a direct transcriptional regulator of PD-1 and
TIGIT
Our study demonstrated a tight correlation of Blimp-
1 expression to that of PD-1 and TIGIT in AML

(Fig. 2), we hypothesize that Blimp-1 suppresses T cell
function by regulating the expression of these two in-
hibitory receptors. There are two isoforms of Blimp-1
detected in the T cells from AML: isoforms 1 and 2,
which were encoded by transcript variant positive
regulatory domain containing 1 alpha (PRDM1α) and
PRDM1β, respectively (Additional file 1: Figure S4).
Blimp-1 isoform 2 has a truncated PR domain, lack-
ing the N-terminal 101 amino acids of isoform 1. We
performed a luciferase assay using PD-1 and TIGIT
luciferase reporters. Both PRDM1α and PRDM1β
exert a significant transcriptional activity for the ex-
pression of PD-1 and TIGIT. PRDM1β appears to be
more dominant (Fig. 6a). To test whether there is a
direct binding of Blimp-1 to the promoter of PD-1
and TIGIT, we analyzed the promoter sequences of
PD-1 and TIGIT. One and two binding sites for
Blimp-1 were located on the promoter of PD-1 and

Fig. 2 Expression of Blimp-1 correlates with the upregulation of inhibitory receptors on T cells from AML patients. Flow cytometry analysis of
expression of PD-1, TIGIT, 2B4, CD160, and TIM-3 on Blimp-1− vs. Blimp-1+ T cells from AML patients (n = 24). Blimp-1 mRNA expression are detected
by SmartFlare. Data of CD4+ (a) and CD8+ (b) T cells are shown. Panels on the right of each set of representative histograms are plots of expression of
each receptor on Blimp-1− vs. Blimp-1+ T cells. P values were obtained by paired t test and Wilcoxon signed-rank test.

Zhu et al. Journal of Hematology & Oncology  (2017) 10:124 Page 6 of 13



TIGIT, respectively (Fig. 6b). In a ChIP assay using T
cells purified from PBMCs of a healthy donor, we ob-
served a clear interaction between Blimp-1 and its
binding site on the PD-1 promoter. Between the two
putative binding sites on the TIGIT promoter, Blimp-
1 binds to site A, but not site B (Fig. 6c). Thus, there
is a direct binding of Blimp-1 to the promoters of
PD-1 and TIGIT.
To determine whether Blimp-1 regulates the expres-

sion of PD-1 and TIGIT in AML, we first assessed the
effect of Blimp-1 knockdown on the mRNA expression
of PD-1 and TIGIT using T cells purified from PBMCs
of AML patients. Consistent with our findings in Fig. 5a,
Blimp-1 knockdown efficiently silenced its mRNA
(Fig. 7a). Importantly, we observed a significant decrease
of PD-1 and TIGIT mRNA in both CD4+ and CD8+ T
cells upon Blimp-1 knockdown. As a control, BCL-6
mRNA was increased upon Blimp-1 knockdown (Fig. 7a).
We next performed a study overexpressing the tran-
scripts PRDM1α and PRDM1β in a human T cell line
MT4 cell. We observed a significant elevation of both
PD-1 and TIGIT mRNA. In contrast, BCL-6 mRNA was
decreased when PRDM1α or PRDM1β was overex-
pressed (Fig. 7b).
Taken together, these data demonstrate that the tran-

scription factor Blimp-1 can bind to the promoters of

PD-1 and TIGIT and positively regulate the expression
of these two inhibitory receptors.

Discussion
Blimp-1, encoded by the PRDM1 gene, was initially
identified as a transcriptional repressor regulating ter-
minal differentiation of B cells into plasma cells [41].
The effect of Blimp-1 in lymphoproliferative disorders
has been well studied [42–47]. Recent studies using
mouse models of virus infection elucidated its role in
T cell differentiation. During acute viral infections,
Blimp-1 promotes the differentiation of CD8+ T cells
into short-lived terminal effectors while dampening
the formation of long-lived central memory T cells
[40, 48–50]. During chronic viral infection, Blimp-1
enhances expression of inhibitory receptors and pro-
motes development of T cell exhaustion [29, 51, 52].
Notably, haploinsufficient mice which had intermedi-
ate expression of Blimp-1 controlled chronic virus in-
fection better than either wild type or Blimp-1fully
deficient mice, indicating that a moderate amount of
Blimp-1 facilitates effector mechanisms without caus-
ing T cell exhaustion [29, 30]. These findings suggest
a complex role for Blimp-1 in regulating T cell re-
sponse. Although well studied in viral infection, the T
cell regulatory role of Blimp-1 in tumor immunity

Fig. 3 Expression of Blimp-1 in CD8+ T cells associates with increased differentiation of terminal differentiated effector T cells in AML. Distribution
of TN, TCM, TEM, and TEMRA within Blimp-1− vs. Blimp-1+ T cells from AML patients (n = 14) are assessed by flow cytometry. Both CD4+ and CD8+ T
cells are evaluated. Representative flow data (a) and plots (b) of percentage of each T cell differentiation subset among Blimp-1− vs. Blimp-1+ T
cells are shown. P values were obtained by paired t test and Wilcoxon signed-rank test.
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has not been fully defined and the effect of Blimp-1
on anti-leukemia response is unknown. In this study,
phenotypic and functional analyses of PBMCs col-
lected from AML patients were performed. We fo-
cused on dissecting the role of Blimp-1 in modulating
the T cell response in AML. Our study demonstrates
that expression of Blimp-1 in both CD4+ and CD8+ T
cells is significantly increased in AML patients com-
pared to that in healthy donors. Consistent with ex-
haustion, Blimp-1+ T cells express high levels of co-
inhibitory receptors such as PD-1 and TIGIT. In
addition, they are phenotypically skewed toward
terminal effector differentiation and functionally im-
paired in their production of cytokines and potential
for cytotoxicity. Importantly, the functional defect is
reversed by inhibition of Blimp-1 via siRNA knock-
down. To our knowledge, this study is the first to

display an immune suppressive role of Blimp-1 in
AML. Our finding suggests that Blimp-1 associates
with T cell exhaustion and suppresses T cell function,
which may subsequently impair anti-leukemia im-
mune response. Therefore, targeting Blimp-1 may
provide effective therapeutics for AML.
We observed a wide variation of Blimp-1 expression

in T cells among AML patients. Clinically, the initial
presentation of AML is highly heterogeneous [53].
Some patients seek medical attention earlier during
the disease course due to their high sensitivity to
leukemia-related symptoms or occasionally incidental
abnormal laboratory findings; others present later
when the leukemia has developed for a longer period
of time. The large variation of Blimp-1 expression
among the AML patients may represent their differ-
ent disease status. In fact, we found a significant

Fig. 4 Blimp-1+ T cells from AML patients display functional defects by showing less cytokine production and capacity of cytotoxicity. a, b PBMCs
collected from AML patients were stimulated in vitro with anti-CD3 and anti-CD28 before intracellular staining with Blimp-1, IFN-γ, and IL-2. a
Flow cytometry data showing Blimp-1 expression in both CD4+ and CD8+ T cells. Fluorescence-minus-one (FMO) stains were used as negative
controls. b Intracellular production of IFN-γ and IL-2 among Blimp-1− vs. Blimp-1+ T cells from AML patients (n = 15) were dissected. Shown are
representative dot plots (left) and a plot of frequency (right) for IFN-γ and IL-2, respectively. Data of both CD4+ and CD8+ T cells are shown. c Flow
cytometry data showing Blimp-1 expression in CD8+ T cells without in vitro stimulation. d Intracellular stain of perforin by Blimp-1+CD8+ vs.
Blimp-1−CD8+ T cells from AML patients (n = 15). Representative flow data (left) and plot of the percentage of perforin+ CD8+ T cells (right) are
shown. P values were obtained by paired t test.
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association of Blimp-1 expression with the number of
circulating leukemia blast. Patients who express high
levels of Blimp-1 in their CD4+ T cells present with
high blast counts, indicating a correlation of Blimp-1
expression to late phase leukemia development. This
situation might provide persistent leukemia antigen
that is ideal for induction of T cell exhaustion, which
is consistent with our finding that Blimp-1+ T cells
associate with exhaustion and display functional im-
pairment. Thus, we speculate that treatment ap-
proaches targeting T cell exhaustion may be more
effective in patients with higher expression of Blimp-1
as T cells in this patient population are more likely
exhausted. Therefore, testing Blimp-1 expression in T
cells might provide a crucial biomarker for effective
leukemia treatment. Although promising, further stud-
ies of large size of samples are needed to make a de-
finitive conclusion.

The mechanisms by which Blimp-1 regulates T cell re-
sponses are not fully understood. In our study, we ob-
served a strong correlation between Blimp-1 expression
and upregulation of inhibitory receptors such as PD-1 and
TIGIT. Several studies have demonstrated an important
role of PD-1 in inhibiting anti-leukemia T cell responses
[20, 21, 24]. In addition, our recent study revealed that
TIGIT contributes to T cell impairment in AML and asso-
ciates with poor clinical outcomes [26]. We hypothesize
that in AML, Blimp-1 suppresses T cell function through
positive regulation of these inhibitory pathways. In the
present study, we demonstrated a strong binding of
Blimp-1 protein to the promoters of the genes encoding
PD-1 and TIGIT. Importantly, inhibition of Blimp-1 by
siRNA knockdown significantly decreased mRNA expres-
sion of PD-1 and TIGIT in T cells collected from AML
patients. Consistently, cells overexpressing Blimp-1
showed upregulation of PD-1 and TIGIT. Therefore,

Fig. 5 Blimp-1 knockdown with siRNA increases cytokine production and cytotoxicity capacity in T cells from AML patients. a Histograms of
Blimp-1 MFI show the efficiency of Blimp-1 siRNA knockdown. b Intracellular cytokine production by purified CD4+ and CD8+ T cells from AML
patients (n = 4) upon anti-CD3/anti-CD28 stimulation. c Intracellular production of perforin by purified CD8+ T cells from AML patients (n = 4) upon
Blimp-1 knockdown. Shown are representative flow data (left) and plot of frequency (right). P values were obtained by paired t test.
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Blimp-1 is a transcriptional regulator for these two im-
portant inhibitory receptors. This likely contributes to the
mechanisms by which Blimp-1 suppresses T cell function
in AML. An equally important question is how and why
Blimp-1 is upregulated in AML. In viral infection, Blimp-1
expression is induced during T cell activation upon viral
antigen stimulation [31]. Cytokines including IL-2 have
been reported to be crucial mediators for the upregulation
of Blimp-1. In AML, it has been observed that serum level
of IL-2 is increased in AML patients, and the level is
particularly higher in patients with high WBC at initial
presentation [54]. Consistently, we observed a positive
correlation between the high level of WBC and Blimp-1
expression in our study. We speculate that IL-2 and/or
other cytokines may contribute to the regulation of
Blimp-1 in AML. Further studies are warranted to address
this important question.
In contrast to our finding that Blimp-1 upregulates

the expression of PD-1, Lu et al. have reported that
Blimp-1 inhibits CD8+ T cell expression of PD-1[55].
Of note, their conclusion was drawn from a study of
acute viral infection, in which PD-1 was increased
shortly (hours) after antigen stimulation. The regula-
tion mechanisms may be significantly different in the
setting of chronic infections or cancer. Consistent

with our finding, it has been reported that PD-1+ T
cells expressed a high level of Blimp-1 in patients
with chronic lymphocytic leukemia [56]. In addition,
studies using mouse models of viral infection have
demonstrated that Blimp-1 enhanced the expression
of inhibitory receptors on exhausted T cells during
chronic viral infection and conditional deletion of
Blimp-1 reversed this process [29]. Collectively, these
observations highlight the importance of the context
(disease status)-specific transcriptional mechanisms
during T cell differentiation.
Majority of studies demonstrate a dominant role of

CD8+ T cells in host defense. Features of CD8+ T
cell exhaustion and its effect on dysfunctional im-
mune status have been extensively investigated [57].
Recent observations of CD4+ T cell exhaustion in
chronic viral infections suggest that CD4+ T cells are
also crucial for optimal infection control [58, 59].
Most recently, Hwang et al. reported that Blimp-1 is
upregulated and acts as a critical regulator for CD4+

T cell exhaustion during chronic toxoplasmosis. Con-
ditional deletion of Blimp-1 in CD4+ T cells regained
CD8+ T cell function and improved infection control
[60]. Contributions of CD4+ T cell in leukemia are
not well defined. Our findings demonstrate that, in

Fig. 6 Blimp-1 directly binds to the promoter of PD-1 and TIGIT genes. a 293 T cells were transfected with PD-1 promoter (−1063/+76 bp) or TIGIT
promoter (−2228/+70 bp), PRDM1α or PRDM1β expressing plasmid, and pRL-TK for 24 h. Luciferase activities were measured and normalized to
that of Renilla luciferase. b Schematic diagram of the PCR amplicons for the putative Blimp-1 binding sites in PD-1 and TIGIT promoters. c ChIP
assays were performed using T cells purified from PBMCs of a healthy donor. T cells were stimulated with anti-CD3 antibody for 48 h. Putative
Blimp-1 binding sites in the promoters of PD-1 and TIGIT were examined by qPCR using specific primers as described in the section of methods.
Nonspecific goat IgG was used as a negative control.
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addition to causing CD8+ T cell dysfunction, Blimp-1
plays an equally important role in mediating CD4+ T
cell suppression in AML. Blimp-1 upregulates co-
inhibitory receptors and associates with functional
defect in both CD4+ and CD8+ T cells. Interestingly,
high Blimp-1 expression in CD4+, not CD8+ T cells,
correlates with high circulating leukemia blast
(Table 1), suggesting a potential unique contribution
of CD4+ T cell dysfunction in AML pathogenesis.

Conclusions
Taken together, we demonstrate an inhibitory effect of
Blimp-1 on T cell response in AML patients. Blimp-1
can do so by transcriptionally upregulating inhibitory re-
ceptors including PD-1 and TIGIT. A clinical correlative
study showed an association between the elevated
Blimp-1 expression and high circulating blasts in AML
patients. Our findings have significant clinical impact as
Blimp-1 may be a useful biomarker and an important
target for effective novel leukemic therapeutics.
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