Implementing Decision Support Tools to Enhance Care for Older Adults

Kathryn H. Bowles, PhD, RN, FAAN
Professor and Ralston House Endowed Term Chair in Gerontological Nursing
Director of the Center for Integrative Science in Aging

University of Pennsylvania School of Nursing, Philadelphia, PA
Objectives and content outline

- State the barriers to effective discharge referral decision making
 - Background and significance of the problem
 - Development and use of the tool

- Discuss the implementation of decision support tools into discharge planning workflow
 - Study design

- Examine the impact of discharge referral decision support on 30 and 60 day readmissions among medical patients
 - Results
 - Implications and Future Research
Significance

- Within 30 days of discharge:
 - 19% of Medicare beneficiaries are re-hospitalized (Jencks, Williams, Coleman, 2009)
 - Up to 76% of these readmissions may be preventable (MedPAC Report, 2007)

- Of the Medicare beneficiaries readmitted within 30 days:
 - 64% received no post acute care between discharge and readmission (MedPAC Report, 2007)

- Eliminating just 5.2% of preventable Medicare readmissions could save an estimated $5 billion annually (Lubell, 2007)

- Suggested interventions to prevent these re-admissions:
 - Identify and refer high risk patients before discharge
 - Improve care coordination and communication across settings
 - Provide transitional care
Significance (Cont’d)

- Improving transitions in care is a national priority
- Affects over 14 million older adults per year
- Discharge planners are overwhelmed
- Models vary as to which patients are assessed or screened by a discharge planner (DP)
- Huge variation in risk tolerance among clinicians
- There are no evidence-based decision support tools for discharge planning
Barriers to Effective Discharge Planning

- Lack of protocol exacerbated by:
 - Shortened lengths of stay
 - Inconsistent assessments
 - Varying levels of expertise & risk tolerance

- Discovered lack of post acute referrals
 - Confirmed with 2 pilot studies
 - Quantitative
 - Qualitative

- Potential outcomes:
 - Increased costs and poor discharge outcomes
NIH study

- Factors to Support Effective Discharge Decision Making
 - Funded by the National Institute of Nursing Research
 RO1-007674
 - Dr. Kathy Bowles, PI
 - Co-Investigators
 - Mary Naylor
 - Matthew Liberatore
 - John Holmes
 - Sarah Ratcliffe
Discharge Decision Support System: D²S²

- Decision support tools bring standardization to discharge planning

- Supports a critical decision point:
 - D²S² assists in identifying patients who should be **referred for post acute care** to avoid missing people who need care or wasting resources on over-referral

- The tool reforms how discharge planning assessment priorities and referral decision making are conducted
Discharge Decision Support System: D²S²

- Developed and tested in National Institute of Nursing Research funded study (RO1-NR07674) using care summaries of hospitalized older adults to elicit interdisciplinary experts’ post acute referral decisions

- Experts reviewed the cases
 - Yes/No referral decision
 - Reasons for referral

- Regression analysis of the important reasons for referral resulted in a predictive model of six factors associated with the expert PAC referral decision (AUC .86)

- The D²S² takes five minutes to complete
Discharge Decision Support System: D²S²

- Two clinically relevant versions:
 - Cognitively intact patients
 - Cognitively impaired patients completed with a caregiver/proxy

- The items on the two versions vary slightly

- Has a threshold cut off score that suggests a post acute referral to the clinician

- Administered any time prior to discharge, but, preferably within 24 to 48 hours of admission to get the process started early

- Since the D²S² score increases when the length of stay reaches day eight, the D²S² is repeated every eight days
Discharge Decision Support System (D²S²)

- Screening tool completed on day 1-3 and every 8 days:

<table>
<thead>
<tr>
<th>COGNITIVELY INTACT VERSION</th>
<th>COGNITIVELY IMPAIRED VERSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking ability</td>
<td>Walking ability</td>
</tr>
<tr>
<td>Self rated health</td>
<td>Self rated health</td>
</tr>
<tr>
<td>Length of stay</td>
<td>Length of stay</td>
</tr>
<tr>
<td>Age in years</td>
<td>Caregiver availability</td>
</tr>
<tr>
<td>Number of co-morbid conditions</td>
<td>Number of co-morbid conditions</td>
</tr>
<tr>
<td>Depression</td>
<td>Annual income</td>
</tr>
</tbody>
</table>

- Cut off score determines those who the discharge planner should consider for post acute referral

(Bowles, et al., 2009)
Study Design: Two phase quasi-experimental

- Four medical units
- Usual care control phase 8 months
- Experimental phase one year

Phase 1
Usual care without decision support

Phase 2
With decision support
Sample and data collection

- Eligibility criteria
 - Patients admitted to four medical units
 - Age 55 and older
 - Living in the community
 - English speaking
 - Not on dialysis or hospice

- Baseline in-person
 - Socio-demographic and clinical data
 - D²S²

- After discharge from hospital database
 - Readmissions up to 60 days after index discharge
 - APR-DRG
 - Primary diagnosis
 - LOS
 - Discharge disposition
Control phase without the decision support

- Usual care included assessment for discharge planning needs by unit based nurse or social work discharge planners.
- Daily discharge planning rounds with hospitalists, physicians and staff nurses.
- Assessments were guided by a self-developed assessment forms.
- Referral decision making was not structured and was made by individuals.
- The D^2S^2 was collected by the research team to know how the patients scored on the D^2S^2, but the results were not shared with clinicians.
Implementation considerations

Guided by Osheroff and colleagues’ implementation steps:

- Identify the stakeholders
- Stakeholder meeting
 - Determine the goals and objectives of the decision support
 - Understand how tools were developed and validated, purpose, how they perform
 - Develop trust
- Identifying local champions
 - Gain and maintain momentum
 - Monitor quality
 - Promote communication about and support for the practice change
 - Serve as strong advisors to the implementation team

(Osheroff, et al., 2005)
Experimental phase with decision support

- Discharge planners and staff nurses were educated about the D²S²
 - how it was developed
 - what the scores meant
 - to bring the information to discharge planning rounds for discussion

- Workflow was analyzed to determine best way to share the decision support with the clinicians

- Support staff inserted the information into the EHR

- Every instance of information transfer was checked for quality and appropriateness prior to inclusion in the data analysis
Data Analysis

- Subjects in each phase were stratified into two score groups
 - do not refer (low risk)
 - refer (high risk)

- Within and between group comparisons were made using
 - two-sample t-tests and Fisher’s Exact tests
 - adjusted survival curves and Cox proportional hazards model parameter estimates for time to readmission by D²S² referral
 - to test for differences in patterns of hospital readmission by study phase, a comprehensive Cox regression model was generated with a group x D²S² referral interaction term, with adjustment for APR-DRG, significant control variables, and clustering at the medical unit level
Usual care phase results

- D²S² recommended referral for 61% and no referral for 39%

- Compared to do not refer patients, refer patients were:
 - older (mean 70 vs. 67) p=.037
 - on more meds (mean 10.5 vs. 8.4) p=.001
 - with more co-morbid conditions (mean 6.8 vs. 5.7) p=.003
 - with more major or extreme APR-DRG scores (48% vs. 29%) p<.001
 - seeing their physicians 2 or more times in the past six months (92% vs. 64%) p=.038
 - having 2 or more hospital admissions in the past six months (36% vs. 20%) p<.001
Usual care phase results: time to readmission

![Graph showing probability of readmission over days for two groups.]

- Group 0 (No Referred) with a probability of 0.18% at 30 days.
- Group 1 (D2S2 Referred) with a probability of 0.23% at 30 days.

N = 281
P = 0.021
Experimental phase results

- D^2S^2 recommended referral for 69% and no referral for 31%

- Compared to do not refer patients, refer patients were:
 - older (mean 71 vs. 66) $p<.0001$
 - with more conditions (mean 7.6 vs. 6.5) $p=.039$
 - insured by Medicare (55% vs. 35%) $p=.001$
 - with more major or extreme APR-DRG scores (55% vs. 34%) $p<.001$
 - having 2 or more hospital admissions in the past six months (28% vs. 14%) $p<.001$
Exp phase results: time to readmission

![Graph showing time to readmission with N=252, P=.495, and probabilities of 16%, 17%, and 24% at specific days.](image)
Between phase differences in time to readmission

Usual Care Phase
With Decision Support

![Graphs showing probability of readmission over days for Usual Care and With Decision Support phases.](image)
Conclusions and implications

- Supplying decision support for PAC referral decision making is associated with better DC plans as evidenced by an increase in time to readmission.

- Between the two phases there was a 6% decline in readmissions by 30 days and 9% by 60 days.
 - 26% relative reduction at both time points.

- The tool differentiated patients on common risk factors such as previous admissions, age and severity.

- Unique contribution:
 - Boost, Project Red, and Coleman do not emphasize attention to post acute referral beyond PCP follow-up.
Limitations and threats to validity

- Limitations:
 - One hospital
 - Age 55 and older
 - Medical patients
 - One discharge planning model

- Threats: Two phase design but had:
 - Careful control for group and phase differences
 - Accounting for clustering by units
 - Transitional care interventions were stable
Automating the process

- Automating the process electronically is one of the largest challenges to CDS implementation.
- Disparate EHRs makes scaling difficult.

- The CDS implementation team must:
 - catalogue the information systems
 - decide where it best fits
 - determine the workflow for automatic delivery of the CDS
 - ensure that use does not require extra steps logging on to a separate application
 - our approach is to install as an EHR add-on
Lessons learned

- Timely sharing of the tools is critical to deliver the decision support at the right time to the right person.

- Close scrutiny required to:
 - maintain quality relative to how the tools are collected and scored
 - assure that results are accurately shared with the discharge planners

- Clinicians reported the tools were helpful to:
 - either guide or confirm their discharge planning decision making
 - identify high risk patients early in the hospital stay
Future Directions

- Rich data on:
 - How the tools perform
 - How they fit into the workflow
 - Ways to improve both the tools and patient outcomes

- Continue to test and develop decision support applications for discharge planning

- D^2S^2
 - RightCare Solutions is licensing and installing the D^2S^2
 - Smart capabilities
 - Dashboard reporting
 - Next generation “where to refer” current NIH grant
Conclusions

- Implementing decision support is a complex process requiring:
 - careful adherence to established steps such as assessing/assuring stakeholder involvement
 - an information system inventory and workflow analysis
 - formative and summative evaluations

- Providing decision support with the D²S² demonstrated:
 - feasibility of delivery electronically and accurately
 - usability by clinicians to support decision making
 - helpfulness in identifying patients likely to have readmissions
 - An impact on time to readmission

- Use of decision support tools such as this can bring expert advice to important decisions in an otherwise complex and variable process
Installation and further development is ongoing at:

- Johns Hopkins University Hospital
- New York University Hospital
- Thomas Jefferson University Hospital
- University of Pennsylvania Health System

NIH SBIR grant pending

bowles@nursing.upenn.edu
References

Please fill out your evaluation

Thank You!
For more discussion on this topic and other cutting-edge health care issues, visit the Nash on Health Policy blog at:
http://nashhealthpolicy.blogspot.com

Did you know you can listen to past Health Policy Forums online? Check out Health Policy Forum Podcasts at: http://jdc.jefferson.edu/hpforum/