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Abstract

Background

Methods for comparing hospitals regarding cardiac arrest (CA) outcomes, vital for improving

resuscitation performance, rely on data collected by cardiac arrest registries. However,

most CA patients are treated at hospitals that do not participate in such registries. This

study aimed to determine whether CA risk standardization modeling based on administra-

tive data could perform as well as that based on registry data.

Methods and results

Two risk standardization logistic regression models were developed using 2453 patients

treated from 2000–2015 at three hospitals in an academic health system. Registry and

administrative data were accessed for all patients. The outcome was death at hospital dis-

charge. The registry model was considered the “gold standard” with which to compare the

administrative model, using metrics including comparing areas under the curve, calibration

curves, and Bland-Altman plots. The administrative risk standardization model had a c-sta-

tistic of 0.891 (95% CI: 0.876–0.905) compared to a registry c-statistic of 0.907 (95% CI:

0.895–0.919). When limited to only non-modifiable factors, the administrative model had a

c-statistic of 0.818 (95% CI: 0.799–0.838) compared to a registry c-statistic of 0.810 (95%

CI: 0.788–0.831). All models were well-calibrated. There was no significant difference

between c-statistics of the models, providing evidence that valid risk standardization can be

performed using administrative data.

Conclusions

Risk standardization using administrative data performs comparably to standardization

using registry data. This methodology represents a new tool that can enable opportunities to
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compare hospital performance in specific hospital systems or across the entire US in terms

of survival after CA.

Introduction

Cardiac arrest (CA) is a widespread and unexpected clinical condition that represents a chal-

lenge to prevent, manage, and study. Differences in definitions,[1] termination-of-resuscita-

tion rules,[2, 3] data collection[1, 4] and participation in registries,[5] as well as patient

heterogeneity[6] make even capturing the incidence of CA difficult.[1, 4, 7] This diversity can

lead to differences in outcomes that may be influenced by variations in care. [8–21] Recent ini-

tiatives to change both intra- and post-arrest care have led to improved outcomes,[22–28]

highlighting the importance of performing these assessments. Additionally, the National Acad-

emy of Medicine has recently recognized as a priority the need for better CA data collection

and outcomes improvement.[29]

An important step to better understand the management of CA involves comparing hospi-

tals.[30] Unfortunately, many US hospitals do not participate in a registry that provides such

outcomes; contributing can be prohibitive in terms of financial and time costs.[31, 32] As of

2016, out of the over 5000 hospitals in the United States[33], only 7% were contributing to the

largest in-hospital cardiac arrest registry in the country[34], and about 40% were providing

outcomes to EMS agencies regarding out-of-hospital cardiac arrest patients treated by that

EMS agency and delivered to their hospital.[35] Additionally, because these registries are vol-

untary, participation may lead to selection bias and other systematic errors.[36] As registry

data are the only current method for risk adjustment[37] in CA, there is no way to enable fair

comparison of observed mortality relative to expected mortality given patient characteristics

across all US hospitals treating CA.

Quality is compared nationwide through the Centers for Medicare and Medicaid Services

using administrative-type claims data to risk standardize the patient case mix of individual

hospitals, which potentially could point to an avenue through which to measure quality in CA.

To our knowledge, no studies have investigated whether administrative data on CA, shown to

be useful for risk standardization of sepsis patients[38] and potentially available for all hospi-

tals in the U.S., could perform as well as registry data to accomplish risk standardization to

study variability in CA outcomes. If administrative-type data perform as well as registry data

in this population, we will have evidence that a tool for risk standardization potentially can be

developed and applied to hospitals to compare quality across the US. We therefore aimed to

develop a method for risk-standardizing hospital survival after CA using administrative data

that is validated against one using registry data.

Methods

Data source

The registry data were from the Penn Alliance for Therapeutic Hypothermia (PATH) data-

base. PATH is an internet-based registry established by the University of Pennsylvania in

2010. PATH includes CA data from pre-hospital, emergency department, and in-hospital

settings. Potentially available to any US hospital, PATH supports the tracking of all patients

who experience CA and receive cardiopulmonary resuscitation. CA is defined in PATH as a

loss of pulse with subsequent chest compressions. Each patient record in PATH consists of 30

required data elements based on the Utstein template.[4, 39] One hundred additional data

Cardiac arrest risk standardization
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elements are required for research participation. Further optional data elements are also avail-

able to address specific research questions. Data are entered via a secure website and main-

tained on a password-protected encrypted server at the University of Pennsylvania. Data are

collected retrospectively at each of the participating institutions. Before entering data, data

abstractors undergo structured training including mock case entry and case review. All partici-

pants are provided with a standardized data dictionary and are subject to a formal auditing

process. PATH currently supports 34 member hospitals from 19 US states and includes data

from over 5000 CAs. Exclusion criteria for this study were age<18 years, traumatic etiology of

arrest, active do-not-resuscitate orders prior to arrest, and lack of administrative data.

Administrative data for this study were from the Penn Data Store, a research initiative at

the University of Pennsylvania that integrates clinical data on all University of Pennsylvania

Health System (UPHS) patients. All available administrative information on CA patients

(defined as having an ICD-9 code of 427.5) seen at three UPHS hospitals, the Hospital of the

University of Pennsylvania, Penn Presbyterian Medical Center, and Pennsylvania Hospital,

was queried, and consisted of demographics, procedure codes, diagnosis codes, and drug and

other orders. These data were then matched on medical record number to records from the

PATH database. Only patients with both data in PATH and Penn Data Store were included in

the risk standardization model building, creating a convenience sample of a granular dataset

matched with administrative-type data. This study was approved by the University of Pennsyl-

vania Institutional Review Board with a waiver of consent.

Model building

Recommended guidelines for conducting risk adjustment for trauma, another time-sensitive

critical illness, have been published, allowing comparison of trauma center outcomes.[40]

Using these methods as guidance, we applied and adapted that approach to develop two risk

standardization models.

First, we developed a method for risk-standardization using registry data for in- and out-

of-hospital CA patients using logistic regression with survival to discharge as the outcome.

Cox regression was not used because our interest was not in time to the outcome of interest

(death) but in whether death had occurred by hospital discharge. A total of 12 variables

(Table 1) were modeled as potential independent, adjustor variables. The variables were

selected to match, to the extent possible, the non-modifiable variables in the Utstein template.

[4, 39] These variables were modeled through a backward stepwise variable selection process

(using a p<0.25 to enter the model)[41, 42] to generate the most parsimonious model and

evaluate changes in predictive ability. Variables that did not contribute to prediction were

excluded from the final model. The final model included race, whether the arrest was wit-

nessed, initial rhythm, age, year of arrest, etiology of arrest, and whether the patient regained

Table 1. Variables explored for registry risk standardization.

Age* Sex* Race*

Location of arrest* Etiology of arrest Initial pulseless rhythm*

If patient was

transferred*
Year of arrest* If arrest was witnessed*

Duration of arrest Bystander CPR

provided*
Whether patient regained consciousness shortly post-

arrest*

*variables with a univariate p-value with the outcome of interest of <0.25

https://doi.org/10.1371/journal.pone.0182864.t001
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consciousness shortly post-arrest (defined as ineligibility for TTM due to purposeful following

of commands). Significant missing data (more than 5% but no more than 15%) were addressed

through multiple imputation, conducted using 20 iterations and then combined using the “mi

estimate” Stata command.[40, 43, 44] A final logistic regression model generated the risk-

adjusted predicted probability of death for each patient, ranging from 0 to 1, with higher values

indicating a higher predicted probability that a given patient had died by hospital discharge.

This final predictive model was assessed using conventional techniques including the Hosmer-

Lemeshow goodness-of-fit statistic to assess calibration, calibration curves, c-statistic to assess

discrimination, and Akaike information criterion value to compare model fit and composition

across multiple models. The resulting model was considered the gold standard for risk adjust-

ment for our study purposes. To accommodate multiple datasets created through multiple

imputation, we used two strategies, after arriving at a final model, to derive a predicted proba-

bility for each patient: the predicted value of each imputed dataset averaged per patient and

the predicted value of the imputed dataset closest to the median area under the curve with the

better Hosmer-Lemeshow goodness-of-fit statistic.

Next, we developed a method for risk-standardizing hospital survival using administrative

data. To identify candidate variables for exploration, we queried all available diagnostic codes,

procedure codes, demographics, and orders for all patients with an ICD-9 code for cardiac

arrest (427.5). We then isolated all unique diagnosis codes, procedure codes, and orders. These

were assessed by two physician-fellows in resuscitation science to determine, by consensus,

which of these should be explored as candidate variables due to their possible relationship to

survival. Only the non-modifiable factors, as assessed by the physician-fellows, associated with

CA were included. This was to limit controlling for features that are modifiable such as treat-

ment with targeted temperature management could adjust away differences in care that are

due to aspects of hospital performance that we would like to identify. Each identified candidate

variable then was tested in univariate logistic regression against the outcome of interest (death

at hospital discharge).

We next employed the same logistic regression methodology to the administrative data as

was employed with the registry data, developing a logistic regression model using death at hos-

pital discharge as the outcome. The administrative candidate variables were modeled as poten-

tial independent, adjustor variables through a manual forward stepwise variable selection

process (using a univariate p<0.25 to enter the model).[41, 42] Variables that did not contrib-

ute to prediction were excluded from the final model. Variance inflation factors were checked

and collinear variables were collapsed or omitted. There was no missing data in the adminis-

trative data set that was greater than 1%. The final logistic regression model generated the risk-

adjusted predicted probability of death for each patient; this model was used in comparison to

the “gold standard” registry model.

Finally, we assessed the performance of the risk standardization done using administrative

data to the performance of the “gold standard” risk standardization done using registry data.

The results for both sets of analysis were reported as c-statistics, calibration plots, and Bland-

Altman plots. To evaluate the models against each other, we used Bland-Altman plots to

assess mean difference in predicted values and the percentage of values outside the limits of

agreement, defined as two standard deviations of the mean difference,[45] a Hosmer-Leme-

show plot of the performance of the predicted values from each model compared to the

observed values, and tests of the equality of receiver operating characteristic (ROC) areas

between models. The last assessment, a test of the equality of ROC areas between models, was

chosen a priori as the final determination for model comparison, with significance assessed

at p<0.05.

Cardiac arrest risk standardization
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Results

Patient population

There were 2453 patients who had both administrative and registry data between 1/2000-4/

2015 with 1820 (74.2%) having the outcome of interest. This cohort had a median age of 63

(IQR: 51, 74) years; 57.8% of these patients were male, 44.1% white, 24.8% had an initial shock-

able rhythm of ventricular fibrillation or pulseless ventricular tachycardia (VF/VT), 60.6% had

a presumed cardiac etiology of arrest, 53.7% had an out-of-hospital CA (OHCA), 26.3% of

OHCAs received bystander CPR, 74.8% had a witnessed arrest, and 83.5% had intra-arrest epi-

nephrine given, with a median dose of 2 (IQR: 0, 3) mg. The median duration of arrest was 11

(IQR: 5, 25) minutes, 62.5% had return of spontaneous circulation (ROSC), 19.8% of patients

received TTM, 17.4% of patients regained arousal shortly post-ROSC, and 20.0% of patients

had a favorable neurologic outcome (as defined as a Cerebral Performance Category [CPC]

score of 1–2).[39, 46–48]

Registry risk standardization

There were 2622 cardiac arrests in PATH between 1/2000-4/2015 and 2453 of the arrests

matched with administrative data (93.6%). The patients that did not match with administra-

tive data were significantly more likely to have initial shockable rhythms, to be African-

American, to have a cardiac etiology of arrest, to have an OHCA, to have a witnessed arrest,

to not receive epinephrine intra-arrest and to receive a lower dose if given, to have a longer

duration of arrest, to achieve ROSC, to not receive TTM, to regain consciousness shortly

post-arrest, to survive to hospital discharge and to have an CPC score of 1 or 2 at hospital dis-

charge (S1 Table).

The final registry risk standardization model, when limited to non-modifiable variables,

contained six predictor variables (whether the arrest was witnessed, initial rhythm, age, year of

arrest, and whether the patient regained consciousness post-arrest). Evaluating the risk stan-

dardization models using Bland-Altman plots, we found a much worse fit in terms of Pitman’s

test of difference in variance when using the model composed of the average predicted values

from all imputations. Therefore, we chose to use the values from the median imputed dataset

as the “gold standard.” The c-statistic in the final model was 0.8097 (95% CI: 0.7882–0.8311)

with a Hosmer-Lemeshow goodness-of-fit statistic of 0.51.

Administrative risk standardization

Penn Data Store included 5424 patients between 1/2000-4/2015 with an ICD-9 code of 427.5.

These patients were 57.3% male, 50.1% white, and had a median length of hospital stay of 6

(IQR: 1, 17) days. Forty-five percent of the patients with an ICD-9 code for CA were matched

with registry data. On these 5424 arrests, there were 1423 unique procedure codes, 2001

unique drugs, 5632 unique orders, and 4723 unique diagnosis codes (13,792 candidate vari-

ables including race, sex, and age).

A list of all unique procedure codes, drug orders, other orders, and diagnosis codes was

compiled for assessment by two physician-fellows in resuscitation science involved in this

study. Both fellows eliminated any variables assessed as irrelevant for predicting survival

outcome in CA patients. Any variable eliminated by one fellow but not the other remained eli-

gible for exploration. After the fellows’ assessment, 1719 (12.5%) potential variables remained.

Each of these was then analyzed in univariate logistic regression with survival to discharge as

the outcome. Any variable with a p-value of<0.25 remained eligible for the model, which

resulted in 317 variables. Using manual forward selection in order of lowest p-value to highest,

Cardiac arrest risk standardization
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variables then entered the logistic regression model. Variables remained in the model if they

improved the predictive value and were removed if they worsened the predictive value or if it

remained the same. Of the 317 candidate variables with a p<0.25 in univariate association

with death, 170 were identified as being non-modifiable. After analyzing these variables, 97

remained in the model (S2 Table) with a c-statistic of 0.8182 (95% CI: 0.7987–0.8377) and a

Hosmer-Lemeshow goodness of fit of 0.11. Due to concerns of overfitting, we did a post hoc

assessment of the minimal number of variables that would be required for a c-statistic of 0.8,

which was 48 (S3 Table).

Comparing risk standardization models

Using the “rocgold” Stata command to compare the two models, there was an insignificant dif-

ference (p = 0.542; Fig 1). Controlling for trend with a Bland-Altman plot, we found that the

mean difference between the two methods of risk standardization was -0.02 (95% CI: -0.06–

0.02) with a non-significant Pitman’s test of difference in variance (p = 0.13), which we con-

clude represents good agreement; the line of equality falls within the confidence interval of the

mean difference and only 1.81% of the data points lie outside the recommended range of two

standard deviations of the mean difference (Fig 2). Both models had good calibration, as seen

in Figs 3 and 4 and by non-significant Hosmer-Lemeshow goodness-of-fit statistics.

Discussion

In developing two risk standardization models with extremely small differences between their

c-statistics (0.0085), we have identified that risk adjustment modeling for CA can be per-

formed using administrative data, which are readily available and less costly[31, 32] and less

challenging to compile and to access than registry data. We therefore have evidence that a tool

developed using administrative data is feasible and has the potential to be used for quality

Fig 1. Comparison of ROC curves between registry and administrative data.

https://doi.org/10.1371/journal.pone.0182864.g001
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Fig 2. Bland Altman Plot of agreement between registry and administrative risk standardization models.

https://doi.org/10.1371/journal.pone.0182864.g002

Fig 3. Calibration plot for registry data in all patients.

https://doi.org/10.1371/journal.pone.0182864.g003
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assessment in cardiac arrest. This tool also could be applied in research to identify variability

in the management of CA and to learn from effective modalities and protocols to allow hospi-

tals identify opportunities for improvement.

In the U.S., there is an estimated 42% difference in the odds of survival in in-hospital arrests

by hospital even after risk adjusting the patient population for comparison.[49] Hospital-level

interventions have been shown to be effective,[22–28] and hospitals that perform well with

regard to in-hospital CA have also been found to be better at preventing CA.[50] Therefore,

adequate comparisons, such as those provided using risk standardization, are vital to improve

patient care and outcomes.

A recent study called into question the utility of administrative data for identifying out-of-

hospital CA.[51] Investigators queried ICD-9 codes for cardiac arrest as well as VF, paroxys-

mal ventricular tachycardia, ventricular flutter, and respiratory arrest and found that only

40% of patients who had these ICD-9 codes had an out-of-hospital CA upon chart review.

However, 94% of the CAs in our registry matched to administrative data, although there were

some significant differences between the patients who were matched and those who were not.

Despite our ability to risk standardize in a comparable way to registry data in our convenience

sample of cardiac arrest patients, further work is needed to develop methods to identify this

population in administrative datasets as well as to generalize to a larger sample from more

than one health system.

The data from PATH have the limitations of data from any retrospective registry, including

the use of predefined data points and the risk of data entry errors or inconsistencies. Addition-

ally, while administrative data potentially are available from all institutions and can reflect

“real world” situations, the information in these databases are not collected for research pur-

poses, and often key variables are not recorded by administration, which have non-medical

and non-research motivations for collecting information; these motivations can lead to

Fig 4. Calibration plot for administrative data in all patients.

https://doi.org/10.1371/journal.pone.0182864.g004
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documentation that might not match with research documentation. Finally, the data collected

by the University of Pennsylvania Health System may differ from that collected at other insti-

tutions, despite having many common elements, limiting generalizability.

This study serves as evidence that risk standardization using administrative data is compa-

rable to that of registry data in the context of CA. The critical gap of only having information

on the performance of a subset of hospitals that participate in a registry potentially could be

addressed by providing support for a new method that may identify hospital performance and

variability. Next steps include identifying a set of administrative variables that consistently pro-

vide discriminatory and well-calibrated risk standardization from a set that are most likely to

be completely collected at hospitals and easily extractable for analysts performing research and

quality comparisons. Future investigations into expanding this methodology to include more

sites may lead to a new tool for nationwide risk standardization to allow benchmarking and

comparison of hospitals in terms of expected to observed mortality to identify high- and low-

performing hospitals.
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