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Abstract
The blood–brain barrier (BBB) describes the unique 
properties of endothelial cells (ECs) that line the central 
nervous system (CNS) microvasculature. The BBB 
supports CNS homeostasis via EC-associated transport 
of ions, nutrients, proteins and waste products between 
the brain and blood. These transport mechanisms also 
serve as physiological barriers to pathogens, toxins and 
xenobiotics to prevent them from contacting neural 
tissue. The mechanisms that govern BBB permeability 
pose a challenge to drug design for CNS disorders, 
including pain, but can be exploited to limit the 
effects of a drug to the periphery, as in the design of 
the peripherally acting μ-opioid receptor antagonists 
(PAMORAs) used to treat opioid-induced constipation. 
Here, we describe BBB physiology, drug properties that 
affect BBB penetrance and how data from randomized 
clinical trials of PAMORAs improve our understanding of 
BBB permeability.

Introduction
Maintenance of the central nervous system (CNS) 
environment is important for its function and is 
accomplished via three protective layers that parti-
tion the blood from neural tissue. The choroid 
plexus epithelium forms the blood–cerebral spinal 
fluid (CSF) barrier by secreting CSF into the cere-
bral ventricles, while the arachnoid epithelium 
separates the blood from the subarachnoid CSF.1–3 
The blood–brain barrier (BBB) is the third struc-
ture that separates the blood and neural tissue, and 
refers to the unique properties of the endothelial 
cells (ECs) that line the microvasculature of the 
CNS.4 Here, we describe contributions of the BBB 
to CNS homeostasis, particularly its differential 
permeability to drugs and other substances. We 
discuss the pharmacology of peripherally acting 
μ-opioid receptor antagonists (PAMORAs), whose 
design capitalizes on this differential permeability.

Physiology of the BBB
Blood vessels are composed of ECs and mural cells 
(ie, vascular smooth muscle cells and pericytes; 
figure  1A). The diverse functions of the BBB are 
mediated primarily by ECs, which form the walls 
of capillaries and have unique properties compared 
with ECs in other tissues.4–11 ECs of the BBB have a 
greater concentration of mitochondria, which may 
be related to the energy required to maintain ion 
gradients necessary for transport functions.12 ECs 

of the BBB also have fewer pinocytotic vessels than 
ECs found elsewhere, which results in a low level 
of passive solute movement out of the bloodstream 
and into the interstitial fluid.9 Finally, very low 
levels of leukocyte adhesion molecules in ECs of 
the BBB restrict inflammatory immune cells from 
entering the CNS.4

ECs of the BBB rely on tight junctions (TJs) 
and an assortment of transport proteins to 
control movement of substrates into and out of 
the capillary lumen.4 6–8 10 11 TJs are multiprotein 
complexes that connect neighboring ECs via their 
lateral membranes. They consist of transmem-
brane proteins of the claudin and occludin families. 
Protein–protein interactions within and between 
cells create the functional core of the TJ, which has 
a central pore of a few nanometers. The TJ pore 
will allow transport of some small molecules, but 
paracellular transport between ECs is generally 
constrained. The core proteins of the TJ associate 
with membrane-associated cytoskeletal proteins 
and adaptor proteins that may regulate TJ stability 
and permeability.4 TJs are stabilized by the glia 
limitans, a basement membrane formed by astro-
cytic end-feet, and by astrocyte-mediated signaling 
to ECs.2 4 Astrocytes also contribute to BBB health 
by metabolizing drugs or other toxic compounds 
that leave the ECs.13

While TJs regulate paracellular movement 
between blood and brain, ECs are equipped with 
efflux pumps and solute carrier transporters that 
mediate transcellular passage (figure  1B). Because 
TJs create well-separated luminal and abluminal 
domains, the directionality of transcellular move-
ment for many substances is determined by the 
domain in which the transporter is located.14 
Efflux pumps in the luminal membrane of the ECs 
move many small lipophilic molecules out of the 
EC cytoplasm into the blood, thus limiting their 
passive diffusion into the CNS. Among the best-
characterized efflux pumps are members of the 
ATP-binding cassette (ABC) transporter family: 
the P-glycoprotein transporter (P-gp),15 multidrug 
resistance-associated proteins (MRP),16 and breast 
cancer resistance protein.17 18 Solute carrier trans-
porters deliver glucose, large amino acids, and 
other nutrients across the EC from blood to brain, 
and eliminate metabolic waste products, glutamate, 
and toxins via transport from brain to blood.19 20 
Receptor-mediated transcytosis is another means 
by which proteins such as insulin are moved across 
ECs of the BBB.19
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Figure 1  Cellular and structural components of the blood–brain 
barrier. (A) A single layer of ECs line the capillaries of the brain’s 
vasculature. ECs are connected by a network of tight junctions 
that inhibit paracellular transport. Pericytes and astrocytes provide 
mechanical and functional support to the BBB by ensheathing ECs 
at the abluminal walls. (B) Transcellular transport of nutrients and 
waste is mediated by solute carrier transporters. ABC transporter 
is an efflux pump that pumps drugs from ECs to blood. Receptor-
mediated transcytosis mediates transport of macromolecules such 
as insulin across the BBB. Adapted from Ohtsuki et al.19 Quantitative 
targeted proteomics for understanding the blood-brain barrier: towards 
pharmacoproteomics. Expert Rev Proteomics. 2014;11:303–313. 
Reprinted by permssion of the publisher (Taylor & Francis, Ltd, http://
www.tandfonline.com). ABC, ATP-binding cassette; BBB, blood–brain 
barrier; EC, endothelial cell; SLC, solute carrier.

Similar to astrocytes, pericytes provide mechanical and func-
tional support to the BBB by ensheathing ECs at the abluminal 
wall within the basement membrane.4 21 Pericytes form peg–
socket contacts with ECs that allow for the exchange of ions, 
metabolites, second messengers, and ribonucleic acids between 
the 2 cell types.21 Evidence suggests that pericytes aid BBB 
stability via their roles in angiogenesis, deposition of extra-
cellular matrix, and blood flow response to neural activity.4 21 
Coordinated paracrine interactions between ECs and the peri-
cytes, astrocytes, microglia and neurons that surround them 
form the ‘neurovascular unit’, whose disruption accompanies 
cerebrovascular disease.22

Determinants of BBB permeability
To ensure proper function and maintain the homeostatic envi-
ronment of neural tissue, the BBB must closely regulate entry 
to and exit from the CNS. This includes not only endoge-
nous molecules such as peptides, glucose and other nutrients, 

and waste products, but also therapeutic medications. Studies 
of drug databases indicate that only ~10% of drugs are CNS 
active.23 The BBB maintains its highly restrictive nature via 
passive and active mechanisms. Drugs that successfully use 
passive diffusion to traverse the lipid bilayer of the BBB fulfill 
several criteria related to their intrinsic and biochemical proper-
ties.23–28 One of the intrinsic properties governing permeability 
is molecular weight. Molecules that weigh more than 400 Da are 
generally not able to access the brain by crossing the BBB,23 29 
although some larger molecules in the range of 500–600 Da are 
not excluded.25 30 Another determinant of permeability is molec-
ular volume, which affects permeability in a non-linear manner. 
Fisher et al found a 100-fold decrease in penetration between 
molecules with volumes of 100 Å vs 50 Å.23 31 A compound’s 
hydrophilicity is the third major determinant of permeability. 
Water-insolvent substances that form seven or fewer bonds with 
water are thought to be able to diffuse through the lipid bilayers 
of ECs to reach the brain.23 32–34

While lipid insolubility prevents many drugs from reaching the 
brain via passive diffusion, active transport by the BBB’s efflux 
pumps is equally important to maintain the brain’s integrity. The 
P-gp transporter is characterized by a broad substrate specificity 
that is made possible by aromatic, polar, and non-polar residues 
within the substrate binding domains.35 The presence of multiple 
substrate binding sites that are both overlapping and nonover-
lapping ensures that P-gp transporters at the BBB function 
efficiently without reaching saturation.28 36 37 Most substrates 
that interact with P-gp are weakly amphipathic and relatively 
hydrophobic, and are able to enter cells through passive diffu-
sion across the cellular membrane.38 P-gp intercepts substrates 
within the membrane before they enter the cytosol and pumps 
them into the extracellular space via an energy-dependent trans-
port cycle driven by ATP hydrolysis.38 39 P-gp can thus prevent 
diffusion of drugs to the brain and, more globally, can alter the 
clinical efficacy of the drugs it interacts with by altering their 
absorption and tissue distribution. Additionally, for drugs that 
are substrates of P-gp and rely on the interaction with P-gp for 
exclusion from the brain, exposure to P-gp inhibitors or condi-
tions that cause P-gp deficiency can allow increased entry into 
the brain.

Unlike drug–receptor interactions, interactions between a 
drug and the BBB involve multiple components that contribute 
positively or negatively to its permeability. As discussed previ-
ously, the impact of the EC membrane varies with the degree of 
lipophilicity of the drug, being negative or positive, while the 
ABC efflux transporters have a negative effect. Besides these, 
the many solute carrier proteins present at the BBB will increase 
the permeability of any drug that can bind to them.14 Because 
a drug’s permeability profile is influenced by multiple compo-
nents, subtle changes in structure can yield substantial changes in 
permeability, and drugs with similar functions do not penetrate 
the BBB equally. The comparison of morphine and codeine is 
an example of how the BBB shows differential permeability to 
structurally similar drugs. Although codeine might be expected 
to display a poorer permeability profile than morphine because 
of the methyl side chain, it penetrates the brain much more 
quickly (single-pass clearance of drug as a percentage of a simul-
taneously injected tritiated water internal standard: morphine, 
2.6%±0.2%; codeine, 26.0%±2.0%).40–42 BBB penetrance of 
morphine and its active metabolites is governed by all three 
factors discussed here.43 Morphine is able to diffuse through 
the EC membrane, and it also reaches the brain via active trans-
port; however, it is subject to efflux via MRP and P-gp.44–49 In 
contrast, codeine is not a substrate for MRP or P-gp and easily 
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Table 1  Summary of permeability profiles for currently marketed 
opioid receptor agonists and antagonists

Generic drug name
Degree of BBB 
penetrance*

Structural 
class†

Mechanism of restriction or 
transport

Opioid receptor agonists

Semisynthetic

 � Hydrocodone Complete 1 Diffusion48

 � Oxycodone Complete 1 Carrier-mediated influx47 122

Synthetic

 � Alfentanil Partial 2 P-gp-mediated efflux47

 � Fentanyl Partial 2 P-gp-mediated efflux47

 � Meperidine Partial 2 P-gp-mediated efflux47

 � Methadone Partial 3 P-gp-mediated efflux47

 � Sufentanil Complete 2 Diffusion48

Non-synthetic

 � Buprenorphine Partial 1 P-gp-mediated efflux47

 � Butorphanol Complete 1 Diffusion47

 � Codeine Complete 1 Diffusion48

 � Hydromorphone Partial 1 P-gp-mediated efflux123

 � Morphine Partial 1 Active influx, MRP-mediated and 
P-gp-mediated efflux43 47

 � Oxymorphone Partial 1 MRP-mediated efflux47

 � Tramadol Complete 2 Carrier-mediated influx124

Opioid receptor antagonists

 � Alvimopan None 3 N-substituted side chain and 
zwitterion90 117

 � Methylnaltrexone None 1 N-methyl quaternary amine87

 � Naldemedine None 1 Side chain89

 � Naloxegol None 1 PEG-ylated88

 � Naloxone Complete 1 Carrier-mediated influx125

 � Naltrexone Complete 1 Diffusion47

Opioid receptor agonists–antagonists

 � Nalbuphine Partial 1 P-gp-mediated efflux126

*Degree of penetrance was estimated as follows: complete, substrate for carrier-mediated influx and/
or not a substrate for MRP-mediated or P-gp-mediated efflux; partial, substrate for MRP-mediated or 
P-gp-mediated efflux but not a substrate for carrier-mediated influx; none, substrate for MRP-mediated 
or P-gp-mediated efflux and/or demonstrated lack of transport across the blood–brain barrier.
†Chemical structure class: 1, class 1, 4,5-epoxymorphinan ring; 2, class 2, phenylpiperidines; 3, class 3, 
diphenylheptylamines. Adapted from Drewes et al, 2014.127

BBB, blood–brain barrier; MRP, multidrug resistance-associated protein; PEG, polyethylene glycol; P-gp, 
P-glycoprotein.

Figure 2  Mechanism of peripherally acting µ-opioid receptor antagonists.69 Reprinted from The Lancet, 373, Becker G, Blum HE, Novel opioid 
antagonists for opioid-induced bowel dysfunction and postoperative ileus, 1198–1206, Copyright 2009, with permission from Elsevier.  
CNS, central nervous system.

diffuses across the BBB.48–50 Table 1 presents a summary of the 
permeability profiles for morphine, codeine and other currently 
marketed opioid receptor agonists and antagonists.

Causes of BBB dysfunction
When the BBB is compromised by stroke, total brain injury 
(TBI), or normal aging, patterns of BBB permeability are altered. 
Cerebral damage from ischemic stroke is generated immediately 
after the event and further develops over the next few days. This 
biphasic nature of injury, which can depend on the degree of 
hypoxia, occurs not only in the grey and white matter but also 
at the BBB. Studies in animal models suggest that as early as a 
few hours after a stroke, the permeability of the BBB increases. 
Further changes in permeability are detected days later.4 51 52

The response of the BBB to TBI has several similarities to the 
response to stroke. First, the timeline of response is biphasic, 
with the earliest changes observed in hours, and delayed-onset 
disruptions in permeability over days.53–58 Second, the abnor-
malities that are observed are similar, with upregulation of 
transcytosis.59 60 However, TBI results in extensive physical 
disruption of the vasculature, as some studies have reported 
localized swelling or constriction, ectasia, and membrane thick-
ening of both capillaries and larger vessels.54 55

Aging, unlike stroke and TBI, results in uniform changes 
in the BBB across brain regions. Age-related BBB dysfunction 
is compounded by diminished function of the choroid plexus, 
which produces less CSF and transports less materials out of 
the ventricles.61–63 In the cerebrovasculature, blood flow and 
blood volume, and the corresponding level of oxygenation, 
are diminished in brains of older versus younger persons,64 
and some studies have reported changes in capillary structure 
and density.65 The ECs of older individuals show alterations in 
their most highly specialized adaptations. These changes include 
reduced EC mitochondrial density, reduced capacity to trans-
port waste from brain to blood, accumulation of extracellular 
matrix components and stiffening of the vessel wall, and loos-
ening of TJs. Furthermore, a loss of pericytes compromises BBB 
integrity and causes hypoperfusion and secondary neurodegen-
eration.66 As a result, the aged have a generally leaky BBB, with 
increased permeability to many substances. Recent studies in 
humans and in animal models have reported decreased expres-
sion of P-gp as a result of aging.67 68 Therefore, a heightened 
response to many opioid medications would most likely be 
observed in both healthy and infirm older people. These results 
could potentially affect the tissue distribution of drugs such as 
PAMORAs that rely, at least partially, on P-gp activity to restrict 
its diffusion to the brain. Potential effects of aging and other 
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Figure 3  Chemical structures of (A) morphine, (B) codeine, (C) 
naloxone, (D) methylnaltrexone, (E) naloxegol, (F) naldemedine, and (G) 
alvimopan.

causes of BBB compromise on CNS exposure to PAMORAs have 
not been extensively explored to date but are currently under 
investigation.

Peripheral opioid antagonism
One of the advantages of a highly impermeable BBB is that it can 
be exploited to limit the activity of a drug to the periphery. This 
strategy was used to develop PAMORAs,69 which are prescribed 
primarily for opioid-induced constipation (OIC). OIC frequently 
occurs with opioid use and is caused by activation of opioid 
receptors in the gastrointestinal tract. Signaling from μ-opioid 
receptors in the mucosal epithelium results in inhibition of 
neurons of the myenteric plexus, a key regulator of gastroin-
testinal motility (figure 2).69–75 Although many patients develop 
tolerance to opioid analgesia and require increasing doses for 
pain relief, little tolerance to OIC develops over time.76

While laxatives are often the first treatment option for OIC, 
they frequently yield complications and poor outcomes.77–79 
OIC can be also improved by use of opioid antagonists such as 
naloxone80 81; however, naloxone crosses the BBB and decreases 
opioid analgesia.72 82–84 PAMORAs are able to reduce the symp-
toms of OIC while maintaining the efficacy of opioid agonists in 
the CNS.73 76 85 86 Three PAMORAs have been developed to treat 
OIC: methylnaltrexone (Relistor),87 naloxegol (Movantik),88 
and naldemedine (Symproic).89 A fourth PAMORA, alvimopan 
(Entereg), is indicated to accelerate the time to upper and lower 
gastrointestinal recovery following surgeries that include partial 
bowel resection with primary anastomosis.90 These PAMORAs 
exhibit distinct clinical profiles and employ different mecha-
nisms that restrict their movement across the BBB. The chemical 
structures of each PAMORA, as well as the chemical structures 
for morphine, codeine and naloxone, for reference, are depicted 
in figure  3. Comparison of efficacy among the PAMORAs is 
difficult because clinical outcomes were not the same in all trials. 
However, there are several publications that have reviewed the 
efficacy and safety of this class.73 91–94

One of the first PAMORAs to be developed was methylnal-
trexone. As the name suggests, this drug is a modified form of 
naltrexone, with a methyl group added to the compound’s sole 
nitrogen. Because the resulting quaternary amine on methylnal-
trexone is too polar to cross the BBB, exposure is predicted to 
be limited to peripheral receptors, including those in the gastro-
intestinal tract.87 95–97 Methylnaltrexone and its metabolites are 
not substrates for P-gp.

Methylnaltrexone was approved by the US Food and Drug 
Administration (FDA) in 2008 as an injection, and in 2016 as a 
tablet formulation. Both formulations are approved to treat OIC 
in adults with chronic non-cancer pain (CNCP). The injectable 
form is additionally approved for the treatment of OIC in adults 
with advanced illnesses or pain caused by active cancer who 
require opioid dosage escalation for palliative care.87 Multiple 
clinical trials conducted over the past 10 years have examined 
the maintenance of analgesia and the degree of withdrawal 
among patients taking methylnaltrexone for OIC,98–102 and these 
endpoints are key in vivo indicators of the ability of the BBB to 
restrict entry of methylnaltrexone. Two of these trials, reported 
by Webster et al in 2015 and Webster and Israel in 2018, exam-
ined analgesia and withdrawal by assessing the patients’ median 
morphine equivalent dose (MED) in addition to their pain inten-
sity and symptoms of withdrawal as measured by the Subjective 
Opioid Withdrawal Scale and/or the Objective Opioid With-
drawal Scale. For patients receiving a 150, 300, or 400 mg oral 
dose of methylnaltrexone QD, the mean MED remained stable 

throughout 4 weeks of QD dosing and 8 weeks of as-needed 
(PRN) dosing.98 Among patients who received a 12 mg subcu-
taneous dose QD or QOD during 48 weeks of open-label treat-
ment, the median daily MED also showed little variation (12 mg 
QD range: 150.0–180.0 mg/day; 12 mg QOD range: 144.0–
162.6 mg/day).99 The authors also found no statistically signifi-
cant difference in scores for pain intensity or withdrawal after 2 
or 4 weeks of treatment with either the oral or injectable formu-
lation.98 99 Two additional randomized methylnaltrexone trials 
examined analgesia and withdrawal by assessing the patients’ 
pain intensity and symptoms of withdrawal as measured by the 
modified Himmelsbach Scale.101 102 In both studies, patients with 
advanced illnesses and OIC received subcutaneous methylnal-
trexone or placebo. During the double-blind phase of the study 
by Slatkin et al, patients received a single subcutaneous dose of 
0.15 mg/kg methylnaltrexone, 0.30 mg/kg methylnaltrexone, 
or placebo.101 In the study by Thomas et al, patients received 
subcutaneous methylnaltrexone 0.15 mg/kg or placebo every 
other day for 2 weeks.102 No significant changes from base-
line in pain scores or modified Himmelsbach scale scores were 
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demonstrated at any time point in either study. Similar results 
have been observed in earlier trials of methylnaltrexone adminis-
tered intravenously at doses of up to 24 mg every 6 hours103 and 
0.3 mg/kg every 6 hours.104 Even with the high intravenous doses 
administered in these trials, signs of opioid withdrawal103 and 
pain intensity104 were similar to placebo.

The FDA approved another PAMORA derived from naltrexone. 
Naldemedine, approved in 2017, consists of a naltrexone back-
bone with a large steric side chain added at the ketone group. The 
side chain renders naldemedine highly polar, and with a molecular 
weight of 742.84 Da, it is unlikely to cross the BBB.89 105 Unlike 
methylnaltrexone, naldemedine is a substrate for P-gp.87 89 In phar-
macokinetic studies, a single dose of the P-gp inhibitor cyclospo-
rine resulted in mild increases in naldemedine Cmax and area under 
the plasma concentration time curve (AUC) (1.45-fold increase and 
1.78-fold increase, respectively).89 A recent animal study suggested 
that while naldemedine is a substrate for P-gp, it is primarily 
excluded from the brain due to its limited ability to cross the BBB 
rather than efflux by P-gp.106

Oral naldemedine is indicated only for patients with OIC and 
CNCP.89 The evidence for naldemedine’s lack of central penetra-
tion was gathered from four clinical trials.107–110 The COMPOSE 
trials were phase III trials evaluating 0.2 mg daily naldemedine 
over 2 weeks of randomized treatment (COMPOSE-4), 12 weeks 
of randomized (COMPOSE-1 and COMPOSE-2) or open-label 
treatment (COMPOSE-5), or 52 weeks of randomized treatment 
(COMPOSE-3).108 109 111 All of the COMPOSE trials assessed 
withdrawal and the maintenance of analgesia. Over 12 weeks 
of treatment, scores on the Clinical Opioid Withdrawal Scale 
(possible scores, 0–48) showed little variation and were gener-
ally less than 1.0, with no statistically significant between-group 
differences in COMPOSE-1, COMPOSE-2, and COMPOSE-5. 
Scores on the pain numerical rating scale and the total weekly 
opioid dose (assessed in COMPOSE-1 and COMPOSE-2) were 
also similar.108 111 A 4-week randomized study by Webster et al 
confirmed that patients receiving naldemedine had levels of pain 
and withdrawal that were similar to those receiving placebo.110 
The results of the COMPOSE-3 study also demonstrated that 
long-term use of naldemedine did not result in opioid with-
drawal or decreased analgesia.109

Prior to approval of naldemedine in 2017, the FDA approved a 
PAMORA derived from naloxone. Naloxegol, approved in 2014, 
differs from naloxone by the addition of a PEG side chain.88 Like 
naldemedine, naloxegol is thought to be restricted from crossing the 
BBB because of its size (742 Da), its polar nature, and the activity of 
P-gp.88 Also like naldemedine, the drug’s pharmacokinetics can be 
influenced by treatment with P-gp inhibitors; when coadministered 
with the strong P-gp inhibitor ketoconazole, naloxegol Cmax and 
AUC increased 9.6-fold and 12.8-fold, respectively. Coadministra-
tion with the weak P-gp inhibitor quinidine increased naloxegol 
Cmax and AUC 2.5-fold and 1.4-fold, respectively.88 Naloxegol is 
manufactured as a tablet, with a dosage of 12.5 or 25 mg QD indi-
cated for patients with OIC and chronic pain.88 Evidence of the 
lack of CNS penetration of naloxegol has been generated by clin-
ical studies in patients with OIC and in healthy volunteers.112–116 
A crossover, ascending dose study of naloxegol, conducted by 
Eldon et al, determined the pharmacokinetic and clinical proper-
ties of 8–1000 mg of daily naloxegol in healthy adult men. The 
authors reported that pupillary miosis, a readout of centrally 
acting morphine, was intact at doses up to 125 mg.112 Naloxegol’s 
performance in patients with OIC and chronic pain was evalu-
ated in the phase III KODIAC trials (KODIAC-04, KODIAC-05, 
KODIAC-07, and KODIAC-08).113–116 Patients enrolled in two 
12-week randomized studies (KODIAC-04 and KODIAC-05)115 

and one 12-week randomized extension study (KODIAC-07)116 
who received either daily placebo, 12.5 mg naloxegol, or 25 mg 
naloxegol experienced statistically similar levels of both worst 
and average pain and showed similar patterns of their daily doses 
of opioid medications.113 115 116 The percentages of patients who 
experienced no change in symptoms of withdrawal were similar 
among the treatment groups (72%–85%), and increased to 
>91% for all groups in the extension study.113 116 In the 52-week 
KODIAC-08 trial, the only one to compare naloxegol (25 mg QD) 
to an investigator-chosen laxative regimen, patients also reported 
similar levels of pain and daily opioid doses.114 However, it has 
been reported that a higher frequency of gastrointestinal adverse 
events potentially related to opioid withdrawal were observed in 
naloxegol-treated patients receiving methadone compared with 
other opioids for pain management.88 Additionally, possible opioid 
withdrawal, defined as at least three adverse reactions potentially 
related to opioid withdrawal that occurred on the same day and 
were not all related to the gastrointestinal system, was noted in 3% 
of patients who received naloxegol 25 mg vs 1% of patients who 
received naloxegol 12.5 mg and <1% of patients who received 
placebo in two studies regardless of maintenance opioid treat-
ment.88 Collectively, the data indicate that the BBB functions as 
it should when naltrexone-based or naloxone-based PAMORAs 
are prescribed to patients with advanced illness or chronic pain. 
However, the package inserts for all of these opioid antagonists 
warn of complications of withdrawal among those with a leaky 
BBB.87–89

Alvimopan was approved in 2008 as a 12 mg capsule and is 
indicated for short-term, in-hospital use to accelerate gastrointes-
tinal recovery after surgical bowel resection with primary anas-
tomosis.90 Like other PAMORAs, it displays a highly preferential 
distribution to peripheral opioid receptors.117 The BBB restricts 
passage of alvimopan because an N-substituted side chain intro-
duces a zwitterion, which renders the molecule large and highly 
lipophobic.90 117 In vitro studies suggest that alvimopan and its 
metabolite are substrates for P-gp; however, coadministration of 
mild-to-moderate P-gp inhibitors has not been demonstrated to 
influence alvimopan pharmacokinetic parameters, and clinical 
studies examining coadministration of a strong P-gp inhibitor 
have not been conducted.90Alvimopan is associated with a risk 
evaluation and mitigation strategy because patients in a 12-month 
trial of 0.5 mg two times per day alvimopan experienced a higher 
rate of myocardial infarction than did those in placebo groups.90 
Although several phase III trials were undertaken to examine 
alvimopan’s effectiveness to treat OIC,118 development for OIC 
was discontinued due to a lack of consistent efficacy data among 
patients with chronic pain.76 119–121

Conclusion
The selective permeability of the BBB is integral to the main-
tenance of CNS homeostasis. Although the permeability of 
the BBB is resistant to manipulation, it can be used as a tool to 
restrict the activity of a drug to the periphery. The development 
of PAMORAs to treat OIC illustrates the success of this approach, 
which has tremendous implications for drug design. However, 
the potential of a permeability-driven approach can only be real-
ized when we have a thorough understanding of how the BBB is 
disrupted in the most common neurological conditions.
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