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Abstract 1 

Objective: Acute mountain sickness (AMS) is defined by patient-reported symptoms 2 

using the Lake Louise Score (LLS), which does not necessarily provide insight into 3 

possible central nervous system (CNS) dysfunction. Our hypothesis was that AMS might 4 

be associated with cognitive impairment (CI) and may go undetected unless a sensitive 5 

test is applied. A standardized test for mild CI could provide a potential new tool to better 6 

characterize altitude-related CNS dysfunction.  7 

Methods: We compared a cognitive screening tool with the LLS. We recruited adult 8 

native English-speaking subjects visiting Himalayan Rescue Association aid posts in 9 

Nepal at 3520m (11,550ft) and 4550m (14,930ft). Subjects were administered the LLS 10 

and a slightly modified version of the Quick Mild Cognitive Impairment Screen (eQmci). 11 

Medication use for altitude illness was recorded. LLS and eQmci scores were compared 12 

using the Spearman correlation coefficient. A cut-off of  ≥3 with at least 1 point for 13 

headache was used for the LLS to diagnose AMS and 67 or less for the eQmci to 14 

diagnose CI. Data also included medication use.  15 

Results: Seventy-nine subjects were enrolled. Twenty-two (28%) subjects met criteria for 16 

AMS and 17 (22%) subjects met criteria for CI. There was a weak correlation (r2=0.06, 17 

p=0.04) between eQmci score and LLS. In matched subjects with identical LLS, recent 18 

acetazolamide use was significantly associated with more frequent CI.  19 

Conclusion: Field assessment of CI using a rapid standardized tool demonstrated a 20 

substantial number of subjects had mild CI following rapid ascent to 3520-4550m 21 

(11,548-14,927ft). The weak correlation between the LLS and eQmci suggests that AMS 22 
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is not associated with CI. Use of acetazolamide may have an association with CI at all 1 

levels of AMS severity.  2 

  3 
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Introduction 1 

 2 

Acute mountain sickness (AMS) commonly occurs following acute exposure to high 3 

altitude (> 2,500m or 8200 ft) (Hackett & Roach, 2012; Wilson & Imray, 2009). AMS is 4 

defined by symptoms including headache, dizziness or lightheadedness, nausea and 5 

vomiting, difficulty sleeping, and fatigue. The Lake Louise self-reported score (LLS) is 6 

one of the most widely used diagnostic scoring systems to diagnose AMS (Roach et al., 7 

1993). 8 

 9 

Previous work has suggested the possibility of cognitive impairment (CI) in AMS. While 10 

it is known high altitude conditions can impair cognition, and alter executive, memory 11 

and language processes (Asmaro et al., 2013; Du et al., 1999; Kramer et al., 1993; Li et 12 

al., 2000; McCarthy et al., 1995; Petrassi et al., 2012; Turner et al., 2015; Virues-Ortega 13 

et al., 2004; Wu et al., 1998), it is generally accepted that altitude-related CI occurs 14 

independently of AMS (Kramer et al., 1993; Virues-Ortega et al., 2004). However, some 15 

studies do suggest CI and AMS are associated (Bian et al., 2015; Forster, 1985; Regard et 16 

al., 1991, Shukitt-Hale et al., 1991, Issa et al., 2016). AMS is a symptom complex that 17 

may be due to early, mild cerebral edema and increased intracranial pressure (Lawley et 18 

al., 2016; Sagoo et al., 2016). Cerebral manifestations of acute altitude illness span from 19 

common, benign AMS to potentially fatal high altitude cerebral edema (HACE).  AMS 20 

has no obvious neurologic signs (e.g., ataxia), but these are found in HACE. Because 21 

high altitude cerebral illnesses appear to be a continuum from the mild symptoms of 22 

AMS to severe symptoms with overt CNS findings of HACE, our hypothesis was that a 23 
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sensitive objective test for high altitude-related mild CI using an easily available field 1 

technique would correlate closely with the presence and severity of AMS. 2 

 3 

The Quick Mild Cognitive Impairment (Qmci) screen has potential to detect mild CI in 4 

the field at high altitude. The Qmci screen rapidly and reliably detects early mild CI 5 

(Molloy et al., 2005; O'Caoimh et al., 2012). We tested a slightly modified version of the 6 

Qmci (which we refer to as the Environmental Quick Mild Cognitive Impairment Screen 7 

(eQmci)) and sought to determine if AMS is associated with CI. We compared the eQmci 8 

to the LLS and screened for medication by use of drugs for prophylaxis of AMS.  9 

 10 

Methods 11 

Study Population 12 

All of our subjects had recently and rapidly ascended by vehicle and foot to the two 13 

testing sites in the Annapurna region of the Nepalese Himalayas. Adult native English 14 

speaking subjects visiting the Himalayan Rescue Association aid post in Manang at 3520 15 

m (11,550 ft) or at a temporary aid post in Thorong Phedi at 4550 m (14,930 ft) were 16 

offered enrollment into the study. Surveys were only offered to clinically stable subjects 17 

at the end of their medical visit after clearance from the health professional caring for 18 

them. Inclusion criteria included native English-speaking adults between the ages of 18 19 

and 65 years trekking through Manang or Thorong Phedi. This included asymptomatic 20 

subjects who presented themselves to the clinic for education and prevention of illness. 21 

Subjects were not excluded for having minor ailments including joint pain, blisters, 22 

rashes, diarrhea and cough. Exclusion criteria included a history of dementia and 23 
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recreational drug or alcohol use. All recruited subjects were trekkers who had ascended 1 

from 8000 ft (2440 m) within 1 week. No permanent residents of high altitude were 2 

recruited.  3 

 4 

Study Procedures 5 

Subjects who presented to the aid posts meeting criteria were enrolled. A consent 6 

document with information about the study was presented to each volunteer and written 7 

consent was obtained. Information collected from each subject included age, years of 8 

education, history of dementia, fluency in English, rate of ascent, medication use, and 9 

self-rated high altitude experience. Subjects were asked about prophylactic and treatment 10 

medications for high altitude illness, analgesics and any potentially sedating drugs during 11 

their trek through the Annapurna region. Medications for general medical problems (e.g. 12 

antihypertensives, oral contraceptives, thyroid replacement, etc.) were not recorded. Each 13 

subject enrolled was administered the LLS and eQmci by a single investigator. This study 14 

was approved (Protocol number 2014P001803) by the Partners Institutional Review 15 

Board (Boston, MA, USA) and Nepali Health Research Council.   16 

 17 

Testing 18 

The LLS uses a 5-item scale, which surveys a subject’s assessment of headache, 19 

dizziness or lightheadedness, fatigue or weakness, gastrointestinal distress, and difficulty 20 

sleeping. Each symptom is graded on a scale of 0 (not present) to 3 (severe). The 21 

presence of a headache (score at least one for headache) and a total score of greater than 22 

or equal to 3 is required to diagnose AMS (Roach et al., 1993).  23 
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 1 

The Qmci consists of 6 subtests including orientation, registration, clock drawing, 2 

delayed recall, verbal fluency and logical memory. It has a median administration time of 3 

4.24 minutes (O'Caoimh et al., 2013). The range of score is 0 to 100. Two modifications 4 

were made to better apply this screen in high altitude wilderness settings. We removed 5 

the clock drawing task given the practical concern of needing to remove gloves to 6 

perform the test in a very cold environment. The clock drawing test is useful to assess 7 

visuospatial cognition, but is clinically a less useful subtest when compared to other 8 

elements in the Qmci (O'Caoimh et al., 2013). Instead, in order to maintain a distracting 9 

task before the verbal recall exam, subjects were asked to count backwards from 100 by 10 

sevens. A second modification was made in which proper names replaced common 11 

names for repetition and recall testing. Proper names were matched for frequency of 12 

occurrence in the English language. High altitude seems to have a more dramatic effect 13 

on the recall of proper names while recall of common names is relatively resistant to 14 

hypoxia (Pelamatti et al., 2003). The remaining subtests were unchanged. Subjects with 15 

normal cognition have a median score of 75 (O’Caoimh R, 2014). Subjects who score ≤ 16 

67 out of 100 meet criteria for mild CI and those who score ≤ 53 out of 100 meet criteria 17 

for dementia (O’Caoimh R, 2014).  18 

 19 

Statistical Analysis 20 

Continuous variables were compared using two-sample t-tests while categorical variables 21 

were measured using frequency and percentage and compared using chi-square tests. The 22 

relationship between the two measures was summarized using a Spearman correlation 23 
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coefficient. Two-sided p values ≤ 0.05 were considered as statistically significant. All 1 

analyses were conducted using SAS version 9.4 (SAS Institute, Cary, NC). 2 

 3 

Results 4 

Seventy-nine subjects were enrolled in the study. All subjects who enrolled completed 5 

the surveys. Twenty-two subjects (28 %) met criteria for AMS and 17 subjects (22 %) 6 

met criteria for mild CI.  7 

 8 

Table I presents demographic subject information stratified by presence of AMS and CI. 9 

We found a significant difference in recent acetazolamide use between groups with and 10 

without AMS. Twenty-three out of 79 (29 %) took acetazolamide in the last 24 hours. Of 11 

these subjects, 10 (43 %) had AMS and 11 (48 %) had CI. A higher percentage of 12 

subjects diagnosed with AMS had taken acetazolamide in the previous 24 hours 13 

compared to those without AMS (45 % vs. 23 %, p = 0.047). Similarly, a higher 14 

percentage of subjects with CI had taken acetazolamide in the last 24 hours compared to 15 

those without CI (65 % vs. 19 %, p = 0.0003).  Subjects with CI were slightly older (37 ± 16 

14 vs. 29 ± 9, p = 0.058) and there were no other significant differences in group 17 

characteristics [e.g. age, sex, nationality, education, days above 8000 ft, self-rated 18 

experience at high altitude, and paracetamol and non-steroidal anti-inflammatory 19 

(NSAID) use] in subjects with and without AMS, or with and without CI. 20 

 21 

As this study tested subjects at two different altitudes, we also analyzed the results from 22 

only Manang, where the majority of subjects were recruited (n = 62). When subjects from 23 



Acute Mountain Sickness and Cognition  

 

 9 

Thorong Phedi were excluded, there was still a significant difference in recent 1 

acetazolamide use between groups with and without AMS. Specifically, a higher 2 

percentage of subjects diagnosed with AMS had taken acetazolamide in the last 24 hours 3 

compared to those without AMS (44 % vs. 13 %, p = 0.009). Similarly, a higher 4 

percentage of subjects with CI had taken acetazolamide in the last 24 hours compared to 5 

those without CI (54 % vs. 12 %, p = 0.001).  There were no other significant differences 6 

in group characteristics. 7 

 8 

There was a very weak correlation between the eQmci score and LLS based on the 9 

Spearman correlation coefficient (r = - 0.24, p = 0.04) as only 5% of the variance in the 10 

eQmci can be attributed to LLS (see Figure 1). Among the 79 subjects, 6 (8 %) tested 11 

positive for both AMS and CI and 46 (58 %) tested negative for both. Sixteen subjects 12 

(20 %) met the LLS criteria for AMS but had no CI. The remaining 11 subjects (14 %) 13 

were cognitively impaired but did not have AMS.  Those with concordance between the 14 

eQmci and LLS were more likely to be male (69 % vs. 41 %, p = 0.014) and there was no 15 

other significant difference in subject demographic characteristics between those with 16 

and without concordance between the eQmci and LLS. 17 

 18 

Components of the LLS were also analyzed as presented in Table II. There was no strong 19 

correlation between the eQmci score and any of the LLS components, including 20 

headache. The strongest correlation was seen in gastrointestinal symptoms, which was 21 

still relatively weak (r = -0.28, p = 0.011).  22 

 23 
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We conducted a further analysis to examine the effect of acetazolamide on eQmci score. 1 

Figure 2 shows the distribution of eQmci from those subjects with and without 2 

acetazolamide use in the last 24 hours. The overall mean eQmci scores were lower in 3 

subjects who took acetazolamide (69 vs. 77, p = 0.0007). The finding was consistent 4 

when limited to subjects with the same LLS score.  Table III compares the prevalence of 5 

CI from subjects with and without acetazolamide use in the last 24 hours. Overall, CI 6 

were more common among subjects with acetazolamide use (47.8% vs. 10.7 %, p = 7 

0.0006). When stratified by AMS status, the finding remained consistent.  Among those 8 

without AMS, CI was significantly more frequent in subjects who took acetazolamide 9 

than in subjects who had not taken the drug (46.2 % vs. 11.4 %, p = 0.011). Similarly, 10 

among subjects with AMS, those who took acetazolamide showed a trend to have more 11 

CI (50.0 % vs. 8.3 %, p = 0.056) than those who had not taken the drug.   12 

 13 

Discussion 14 

Acute ascent to high altitude can impair CNS function including short-term memory, 15 

working memory, and executive functioning (Asmaro et al., 2013; de Aquino Lemos et 16 

al., 2012; Hornbein et al., 1989; Kennedy et al., 1989; Kramer et al., 1993; Petiet et al., 17 

1988; Petrassi et al., 2012; Shukitt-Hale et al., 1994; Turner et al., 2015; Virues-Ortega et 18 

al., 2004). We hypothesized that a field test for mild CI would provide an objective 19 

measure of altitude-related CNS dysfunction which would correlate with the presence 20 

and severity of AMS. Our results do not suggest a significant correlation between the 21 

eQmci and LLS to support this hypothesis. 22 

 23 
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Lack of relationship between cognitive impairment and acute mountain sickness 1 

The lack of correlation between the LLS and eQmci suggests that CI occurs 2 

independently of AMS.  This is consistent with previous research (Virues-Ortega et al., 3 

2004). Krammer et al. (1993) tested twenty climbers at 4360 m (14,304 ft) ascending 4 

Denali. While they demonstrated deficits in learning and retention in perceptual and 5 

memory tasks, they did not correlate with AMS. In one study that tested mental capacity, 6 

subjects with AMS were worse in pursuit aiming compared to subjects without AMS, but 7 

in the remaining battery of cognitive tests, no significant differences were found (Bian et 8 

al., 2015). It is possible that there is a difference in the aspects of cognitive deficits seen 9 

with and without AMS. In the study by Regard et al. (1991), subjects simulated ascent to 10 

4500 m (14,734 ft) over 24 hours in a hypobaric chamber. Those with AMS had 11 

deficiencies in short-term memory, but improved in conceptual tasks while those without 12 

AMS had improved short-term memory, but no improvement in conceptual tasks (Regard 13 

et al., 1991). 14 

 15 

The lack of any relationship in our study and in others between CI and AMS, both of 16 

which are inextricably linked to the hypoxemia of high altitude and are largely 17 

neurological in their expression, is somewhat counterintuitive.   However, hypoxemia can 18 

very rapidly lead to cognitive deficits (usually without symptoms) in a span of minutes 19 

even in healthy persons, whereas AMS develops more slowly and generally is not evident 20 

for many hours.  Furthermore, people differ widely in the risk for AMS as a result of 21 

varying sensitivity to hypoxemia involving pathways not fully understood, but possibly 22 

related to trigeminal nerve sensitivity and/or very mild brain swelling that may not 23 
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necessarily impair neuronal functioning.  Thus CI at high altitude and AMS likely have 1 

different pathophysiological bases, but may coexist in some people on any occasion.  2 

 3 

Cognitive impairment at altitude 4 

 Our study found a surprisingly high prevalence of CI: 17 subjects (22 %) met criteria for 5 

mild CI. In subjects with an age range similar to that in our study, no subject tested at 6 

sea-level was found to have CI (Molloy, 2015). An incidental finding of our study was 7 

that acetazolamide use, independent of the severity of AMS was associated with CI at 8 

high altitude.  9 

 10 

The discriminating power of the Qmci for detecting CI is influenced by age; specifically 11 

it is less accurate for subjects older than 75 years (O’Caoimh, 2014). The cut-off of 67 12 

used in this study is recommended for younger adults (≤ 75 years) with more education 13 

(≥ high school). All subjects in our study were in this category. At this cut-off the Qmci 14 

has 86 % sensitivity and 89 % specificity for detecting the presence of mild CI. CI is not 15 

seen in a young healthy educated population (Molloy, 2015). Sex does not significantly 16 

affect cut-off scores (O’Caoimh R, 2014). 17 

 18 

Acetazolamide and cognitive impairment 19 

In subjects taking acetazolamide, we found a high incidence of both AMS and of CI. 20 

Acetazolamide has been associated with confusion (Swenson, 2014). In a randomized 21 

study of subjects at high altitude, subjects who received prophylactic acetazolamide (125 22 

mg twice per day) had impaired neuropsychological measures of concentration, cognitive 23 
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processing speed, reaction time, short-term memory, and working memory (Wang et al., 1 

2013). In a similar study, subjects who took acetazolamide (500 mg slow release, once 2 

per day) actually showed improvement in certain psychological tests (White, 1984). In 3 

addition to higher daily acetazolamide dosing, this second study differed from the former 4 

in that subjects traveled on foot rather than being airlifted to a higher altitude which may 5 

be a confounding factor. A more recent study found that at sea level, acetazolamide use is 6 

associated in a dose-dependent fashion with a spectrum of psychometric impairments, 7 

including poor concentration, imbalance and slower reaction time responses (Collier, 8 

2016). Our study did not differentiate between prophylactic or treatment doses, but a 9 

future study can be designed to match groups with regard to this variable. Physiologically, 10 

acetazolamide functions as a carbonic anhydrase (CA) inhibitor. CA plays a role in signal 11 

processing, synaptic plasticity, memory, nerve conduction and cerebral oxygenation and 12 

consumption (Brechue et al., 1997; Sun & Alkon, 2002; Wang et al., 2015). CA 13 

inhibition is likely responsible for the deficits in cognition. Whether CI arises from the 14 

drug-induced metabolic acidosis that partially compensates for the magnitude of the 15 

respiratory alkalosis (hypocapnia) or from more direct effects in the CNS is not easily 16 

resolved, but a combination of the two may be likely. At sea level only 50 % of patients 17 

taking acetazolamide (250 mg, four times a day) have relief of common CNS side effects 18 

with concurrent bicarbonate supplementation sufficient to correct the metabolic acidosis 19 

(Lichter, 1981). 20 

 21 

Limitations of the study 22 
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There are several limitations in this investigation. First, we made modifications to the 1 

eQmci (the clock drawing task was replaced by reciting serial sevens and the repetition 2 

and recall of names were changed from common to proper). Though the Qmci has been 3 

validated against the Montreal Cognitive Assessment and Standardized Mini-Mental 4 

State Exam, the two minor changes in the eQmci were not validated prior to testing. This 5 

potentially could have an effect on the cut-off values originally tested for the Qmci. 6 

Second, traveling to a distant, culturally unfamiliar location may alter one’s performance 7 

on a cognitive test. Third, there was a relatively small sample size. Other trends may be 8 

been seen with a more robust sample. Unfortunately, our recruitment was limited as a 9 

result of the devastating 2015 earthquake in Nepal, which resulted in premature 10 

termination. Fourth, there may be several secondary influences on neuropsychological 11 

function including fatigue, hypothermia, desynchronosis, upper respiratory infections, 12 

and exposure to a new environment. An individual diagnosis was not recorded for every 13 

patient. However, most presentations to the clinic that were unrelated to altitude were 14 

quite minor (e.g. blisters) and would not be expected to affect cognitive function. Fifth, 15 

there was no low-altitude control group, nor were our subjects tested at low altitude to 16 

examine baseline scores. Sixth, there were no measurements of arterial oxygenation 17 

saturation by pulse oximetry. In future studies, this would be a better indicator of cerebral 18 

hypoxic stress than the actual altitude. Seventh, there were no longitudinal data to 19 

determine if low eQmci scores correlate with the development of HACE. Defining the 20 

clinical significance of mild CI and determining whether it can it be used to predict those 21 

that will develop HACE or experience other clinical relevant sequelae are areas of future 22 

research. In addition, there were no longitudinal data on the discontinuation of 23 
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acetazolamide. Eighth, subjects were studied at two different altitudes. However, the 1 

results were not significantly changed when the data were limited to Manang, where most 2 

subjects were tested. Ninth, in a convenience sample, in which subject self-selection 3 

exists (researchers have no control or insight in subjects’ decisions to continue to ascend 4 

or not), unmeasured confounding variables may exist that could reduce the validity of our 5 

conclusions.   6 

 7 

Future Studies 8 

Regardless of AMS, screening of mild CI may be useful for early detection of impaired 9 

cognition and poor decisional judgment at high altitude. Our study, however, does not 10 

demonstrate any clinical significance of having mild CI diagnosed by a cognitive 11 

function test, since we did not measure rates of adverse health events or poor decision-12 

making, but this is a potential area of future research. Cognitive tests are sensitive and 13 

have the potential to screen for hypoxic impairment at early stages before subjects 14 

develop symptoms or demonstrate poor judgment (Stepanek et al., 2013). Other cognitive 15 

tests have been employed at high altitude such as clock drawing (Quigley & Zafren, 16 

2016). The eQmci can be administered in less than five minutes, does not require any 17 

special equipment, and has multiple versions available to minimize a learning effect 18 

when administered to the same subject over different points in time (Cunje et al., 2007). 19 

Future longitudinal studies in trekkers, as well as validation of the eQmci and comparison 20 

to other cognitive tests, may be useful to investigate the clinical relevance of mild CI. 21 

Further study of secondary influences on CI at high altitude (e.g. exercise, medications, 22 

sleep quality) are also needed. Lastly, the comparison of CI with other objective 23 
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measures (e.g., optic nerve sheath diameter, ultrasonography, cerebral magnetic 1 

resonance imaging, serum biomarkers) might help advance a better understanding of 2 

acute altitude-related CNS disease.  3 

 4 

In summary, our data demonstrate only a weak correlation between the LLS and eQmci, 5 

but a surprising prevalence of CI, an objective measure of CNS dysfunction, at high 6 

altitude. CI was prevalent in subjects both with and without AMS. The presence of CI in 7 

otherwise asymptomatic trekkers raises concerns for unrecognized CI at altitude. 8 

Furthermore, we found that acetazolamide use, independent of the severity of AMS was 9 

associated with CI at high altitude. Further research using CI testing may help define 10 

objective measures of CNS dysfunction at altitude.  11 

 12 

  13 
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 17 

 18 

 19 

Table and Figure Legend 20 

Table I: Basic demographics. Percentages are reported with respect to different subgroups 21 

(LLS <3, LLS ≥ 3, eQmci > 67, eQmci ≤ 67). 22 

 23 
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Table II: Analysis of components of the LLS Associated with the eQmci score is 1 

demonstrated with relatively weak correlation. 2 

 3 

Table III: The relationship between eQmci scores and acetazolamide use were analyzed. 4 

The overall mean eQmci scores were significantly lower in subjects that took 5 

acetazolamide. 6 

 7 

Figure 1: A scatter plot was created between LLS and eQmci scores. There was poor 8 

correlation between the eQmci score and the LLS based on the Spearman (-0.24) 9 

correlation coefficients. 10 

 11 

Figure 2: A graphic display of the range of values for the eQmci in subjects with and 12 

without acetazolamide use in the last 24 hours. eQmci scores were lower in subjects who 13 

took acetazolamide (p<0.001). 14 

 15 

 16 

 17 

 18 

References 19 

Asmaro, D., Mayall, J., & Ferguson, S. (2013). Cognition at altitude: impairment in 20 

executive and memory processes under hypoxic conditions. Aviat Space Environ 21 

Med, 84:1159-65. 22 

Bian, S. Z., Jin, J., Zhang, J. H., Li, Q. N., Yu, J., Yu, S. Y., Chen,  J. F., Yu, X. J., Qin, 23 

J., Huang, L. (2015). Principal component analysis and risk factors for acute 24 

mountain sickness upon acute exposure at 3700 m. PLoS One, 10(11), e0142375. 25 

doi:10.1371/journal.pone.0142375 26 



Acute Mountain Sickness and Cognition  

 

 18 

Brechue, W. F., Koceja, D. M., & Stager, J. M. (1997). Acetazolamide reduces peripheral 1 

afferent transmission in humans. Muscle Nerve, 20(12), 1541-1548.  2 

Cunje, A., Molloy, D. W., Standish, T. I., & Lewis, D. L. (2007). Alternate forms of 3 

logical memory and verbal fluency tasks for repeated testing in early cognitive 4 

changes. Int Psychogeriatr, 19(1), 65-75.  5 

Collier D. J., C. B. W., Anne-Marie Hedges, John Nathan, Rod J. Flower, James S. 6 

Milledge, and Erik R. Swenson. (2016). Benzolamide improves oxygenation and 7 

reduces acute mountain sickness during a high altitude trek and has fewer side 8 

effects than acetazolamide at sea level. Pharmacol Res Perspect, 4(3), doi: 9 

10.1002/prp2.203.  10 

de Aquino Lemos, V., Antunes, H. K., dos Santos, R. V., Lira, F. S., Tufik, S., & de 11 

Mello, M. T. (2012). High altitude exposure impairs sleep patterns, mood, and 12 

cognitive functions. Psychophysiology, 49(9), 1298-1306.  13 

Du, J. Y., Li, X. Y., Zhuang, Y., Wu, X. Y., & Wang, T. (1999). Effects of acute mild 14 

and moderate hypoxia on human short memory. Space Med Medical Engineering, 15 

12(4), 270-273.  16 

Forster, P. J. (1985). Effect of different ascent profiles on performance at 4,200 m 17 

elevation. Aviat Space Environ Med, 56(8), 758-764.  18 

Hackett, PH, Roach, RC, High-altitude medicine. In: Wilderness Medicine. P.A. 19 

Auerbach, Editor. 2012, Elsevier: New York, p. 1-35. 20 

Hornbein, T. F., Townes, B. D., Schoene, R. B., Sutton, J. R., & Houston, C. S. (1989). 21 

The cost to the central nervous system of climbing to extremely high altitude. N 22 

Engl J Med, 321(25), 1714-1719.  23 

Issa, A. N., Herman, N. M., Wentz, R. J., Taylor, B. J., Summerfield, D. C., & Johnson, 24 

B. D. (2016). Association of Cognitive Performance with Time at Altitude, Sleep 25 

Quality, and Acute Mountain Sickness Symptoms. Wilderness Environ Med, 26 

27(3), 371-378.  27 

Kennedy, R. S., Dunlap, W. P., Banderet, L. E., Smith, M. G., & Houston, C. S. (1989). 28 

Cognitive performance deficits in a simulated climb of Mount Everest: Operation 29 

Everest II. Aviat Space Environ Med, 60(2), 99-104.  30 

Kramer, A. F., Coyne, J. T., & Strayer, D. L. (1993). Cognitive function at high altitude. 31 

Hum Factors, 35(2), 329-344.  32 

Lawley, J. S., Levine, B. D., Williams, M. A., Malm, J., Eklund, A., Polaner, D. M., . . . 33 

Roach, R. C. (2016). Cerebral spinal fluid dynamics: effect of hypoxia and 34 

implications for high-altitude illness. J Appl Physiol (1985), 120(2), 251-262.  35 

Lichter, P. R. (1981). Reducing side effects of carbonic anhydrase inhibitors. 36 

Ophthalmol, 88(3), 266-269.  37 

Li, X. Y., Wu, X. Y., Fu, C., Shen, X. F., Yang, C. B., & Wu, Y. H. (2000). Effects of 38 

acute exposure to mild or moderate hypoxia on human psychomotor performance 39 

and visual-reaction time. Space Med  Medical Engineering, 13(4), 235-239.  40 

McCarthy, D., Corban, R., Legg, S., & Faris, J. (1995). Effects of mild hypoxia on 41 

perceptual-motor performance: a signal-detection approach. Ergonomics, 38(10), 42 

1979-1992.  43 

Molloy, D. W., Standish, T. I., & Lewis, D. L. (2005). Screening for mild cognitive 44 

impairment: comparing the SMMSE and the ABCS. Can J Psychiatry, 50(1), 52-45 

58.  46 



Acute Mountain Sickness and Cognition  

 

 19 

Molloy, D. W. (Oct 15th, 2015). personal communication.  1 

O'Caoimh, R., Gao, Y., Gallagher, P. F., Eustace, J., McGlade, C., & Molloy, D. W. 2 

(2013). Which part of the Quick mild cognitive impairment screen (Qmci) 3 

discriminates between normal cognition, mild cognitive impairment and 4 

dementia? Age Ageing, 42(3), 324-330.  5 

O'Caoimh, R., Gao, Y., McGlade, C., Healy, L., Gallagher, P., Timmons, S., & Molloy, 6 

D. W. (2012). Comparison of the quick mild cognitive impairment (Qmci) screen 7 

and the SMMSE in screening for mild cognitive impairment. Age Ageing, 41(5), 8 

624-629.  9 

O’Caoimh R., Gallagher P, Eustace J, Molloy W. . (2014). Cognitive Screening Tests 10 

Need to be Adjusted for Age and Education in Patients Presenting with 11 

Symptomatic Memory Loss. Irish J of Med Sci, 183 S(7) p314.  12 

Pelamatti, G., Pascotto, M., & Semenza, C. (2003). Verbal free recall in high altitude: 13 

proper names vs common names. Cortex, 39(1), 97-103.  14 

Petiet, C. A., Townes, B. D., Brooks, R. J., & Kramer, J. H. (1988). Neurobehavioral and 15 

psychosocial functioning of women exposed to high altitude in mountaineering. 16 

Percept Mot Skills, 67(2), 443-452.  17 

Petrassi, F. A., Hodkinson, P. D., Walters, P. L., & Gaydos, S. J. (2012). Hypoxic 18 

hypoxia at moderate altitudes: review of the state of the science. Aviat Space 19 

Environ Med, 83(10), 975-984.  20 

Quigley, I., & Zafren, K. (2016). Subtle cognitive dysfunction in resolving high altitude 21 

cerebral edema revealed by a clock drawing test. Wilderness Environ Med, 27(2), 22 

256-258.  23 

Regard, M., Landis, T., Casey, J., Maggiorini, M., Bartsch, P., & Oelz, O. (1991). 24 

Cognitive changes at high altitude in healthy climbers and in climbers developing 25 

acute mountain sickness. Aviat Space Environ Med, 62(4), 291-295.  26 

Roach R. C., Bartsch P., Hackett P. H., et al. The Lake Louise acute mountain sickness 27 

scoring system. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and 28 

Mountain Medicine 1993. Burlington, VT; Queen City Printers Inc. p. 272-4. 29 

Sagoo, R. S., Hutchinson, C. E., Wright, A., Handford, C., Parsons, H., Sherwood, V.,  30 

Wayte, S., Nagaraja, S., Ng'Andwe, E., Wilson, M. H. Imray, C. H. (2017). 31 

Magnetic Resonance investigation into the mechanisms involved in the 32 

development of high-altitude cerebral edema. J Cereb Blood Flow Metab, 37(1), 33 

319-331. 34 

Shukitt-Hale, B., Banderet, L. E., & Lieberman, H. R. (1991). Relationships between 35 

symptoms, moods, performance, and acute mountain sickness at 4,700 meters. 36 

Aviat Space Environ Med, 62(9 Pt 1), 865-869.  37 

Shukitt-Hale, B., Stillman, M. J., Welch, D. I., Levy, A., Devine, J. A., & Lieberman, H. 38 

R. (1994). Hypobaric hypoxia impairs spatial memory in an elevation-dependent 39 

fashion. Behav Neural Biol, 62(3), 244-252.  40 

Stepanek, J., Cocco, D., Pradhan, G. N., Smith, B. E., Bartlett, J., Studer, M., Kuhn, F., 41 

Cevette, M. J. (2013). Early detection of hypoxia-lnduced cognitive impairment 42 

using the King-Devick test. Aviat Space Environ Med, 84(10), 1017-1022.  43 

Sun, M. K., & Alkon, D. L. (2002). Carbonic anhydrase gating of attention: memory 44 

therapy and enhancement. Trends Pharmacolog Sci, 23(2), 83-89.  45 



Acute Mountain Sickness and Cognition  

 

 20 

Swenson, E. R. (2014). Safety of carbonic anhydrase inhibitors. Expert Opin Drug Saf, 1 

13(4), 459-472.  2 

Turner, C. E., Barker-Collo, S. L., Connell, C. J., & Gant, N. (2015). Acute hypoxic gas 3 

breathing severely impairs cognition and task learning in humans. Physiol Behav, 4 

142, 104-110.  5 

Virues-Ortega, J., Buela-Casal, G., Garrido, E., & Alcazar, B. (2004). 6 

Neuropsychological functioning associated with high-altitude exposure. 7 

Neuropsychol Rev, 14(4), 197-224.  8 

Wang, J., Ke, T., Zhang, X., Chen, Y., Liu, M., Chen, J., & Luo, W. (2013). Effects of 9 

acetazolamide on cognitive performance during high-altitude exposure. 10 

Neurotoxicol Teratol, 35, 28-33.  11 

Wang, K., Smith, Z. M., Buxton, R. B., Swenson, E. R., & Dubowitz, D. J. (2015). 12 

Acetazolamide during acute hypoxia improves tissue oxygenation in the human 13 

brain. J Appl Physiol (1985), 119(12), 1494-1500.  14 

White, A. J. (1984). Cognitive impairment of acute mountain sickness and acetazolamide. 15 

Aviat Space Environ Med, 55(7), 598-603.  16 

Wilson MH, Imray CH (2009). The cerebral effects of ascent to high altitudes. Lancet 17 

Neurol., 8(8), 175.  18 

Wu, X., Li, X., Han, L., Wang, T., & Wei, Y. (1998). Effects of acute moderate hypoxia 19 

on human performance of arithmetic. Space Med Med Eng, 11(6), 391-395.  20 

 21 

 22 


	Findings of Cognitive Impairment at High Altitude: Relationships to Acetazolamide Use and Acute Mountain Sickness.
	Let us know how access to this document benefits you
	Recommended Citation

	tmp.1500304677.pdf.rUVUd

