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RESEARCH Open Access

Matrix metalloproteinase activity in the
lung is increased in Hermansky-Pudlak
syndrome
Ross Summer1, Rachana Krishna1, DeLeila Schriner1, Karina Cuevas-Mora1, Dominic Sales1, Rachel Para1,
Jesse Roman1, Carl Nieweld1, Bernadette R. Gochuico2 and Freddy Romero1,3*

Abstract

Background: Hermansky-Pudlak syndrome (HPS) is a rare autosomal recessive disorder characterized by
oculocutaneous albinism and platelet dysfunction and can sometimes lead to a highly aggressive form of
pulmonary fibrosis that mimics the fatal lung condition called idiopathic pulmonary fibrosis (IPF). Although the
activities of various matrix metalloproteinases (MMPs) are known to be dysregulated in IPF, it remains to be
determined whether similar changes in these enzymes can be detected in HPS.

Results: Here, we show that transcript and protein levels as well as enzymatic activities of MMP-2 and -9 are
markedly increased in the lungs of mice carrying the HPS Ap3b1 gene mutation. Moreover, immunohistochemical
staining localized this increase in MMP expression to the distal pulmonary epithelium, and shRNA knockdown of
the Ap3b1 gene in cultured lung epithelial cells resulted in a similar upregulation in MMP-2 and -9 expression.
Mechanistically, we found that upregulation in MMP expression associated with increased activity of the serine/
threonine kinase Akt, and pharmacological inhibition of this enzyme resulted in a dramatic suppression of MMP
expression in Ap3b1 deficient lung epithelial cells. Similarly, levels and activity of different MMPs were also found to
be increased in the lungs of mice carrying the Bloc3 HPS gene mutation and in the bronchoalveolar lavage fluid of
subjects with HPS. However, an association between MMP activity and disease severity was not detected in these
individuals.

Conclusions: In summary, our findings indicate that MMP activity is dysregulated in the HPS lung, suggesting a
role for these proteases as biological markers or pathogenic players in HPS lung disease.

Keywords: Hermansky-Pudlak syndrome, Matrix metalloproteinase, Pulmonary fibrosis

Background
Hermansky–Pudlak syndrome (HPS) represents a het-
erogeneous group of rare autosomal recessive disorders
characterized by oculocutaneous albinism, platelet dys-
function and, in some cases, pulmonary fibrosis [1, 2].
To date, ten different HPS genes have been identified,
and each encodes for different proteins involved in the
biogenesis or trafficking of lysosomes or lysosome-

related organelles [2–5]. Although each HPS mutation
has been shown to affect pigment and platelet functions,
only those genes associated with the HPS-1, HPS-2, or
HPS-4 genetic subtypes are linked to pulmonary fibrosis
[1, 4]. Importantly, in these individuals the development
of pulmonary fibrosis is often a fatal complication, lead-
ing to death within just several years of its initial
detection.
Matrix metalloproteinases (MMPs) are a family of

zinc-dependent proteolytic enzymes that are best known
for their role in degrading extracellular matrix proteins,
although are also responsible for activating or inhibiting
a wide range of other effector molecules [6, 7]. Dysregu-
lated MMP activity has been linked to the pathogenesis
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of numerous chronic lung diseases, including asthma,
emphysema, cystic fibrosis, and fibrotic lung diseases
such as idiopathic pulmonary fibrosis (IPF) [7–11].
Although it remains unclear how alterations in this
group of enzymes can lead to such diverse lung patholo-
gies, it has been suggested that differences in the expres-
sion of enzymatic subtypes might play a contributory
role [7–11]. Indeed, levels of specific MMPs have been
shown to be elevated in the blood and bronchoalvelolar
lavage fluid (BALF) of patients with IPF [10–13], includ-
ing MMP-2, MMP-7 and MMP-9. While these changes
were originally thought to be important for limiting the
severity of fibrotic remodeling (by degrading extracellular
matrix proteins), targeted deletion of individual MMP
genes in mice has yielded mixed results [10, 14–16],
emphasizing the complex biology of MMPs in the lung.
MMP activity is under strict regulation by a variety of

mechanisms at the transcriptional and post-translational
levels. Recent work in several model systems has
demonstrated the importance of the phosphatidylinositol
3-kinase (PI3K)-Akt pathway in the regulation of MMPs
[17–19]. Akt is a serine/threonine kinase, which controls
a wide range of biological processes typified in fibrotic
tissues, including those intimately involved in growth,
proliferation, migration, and metabolic reprogramming
of fibroblasts [20, 21]. Additionally, Akt activity has also
been shown to be upregulated in type II alveolar epithe-
lial cells (AEC2) of patients with IPF, and inhibition of
enzymatic activity in these cells has proven to be effect-
ive in reducing tissue remodeling to bleomycin in the
mouse lung [21].
In this study, we employed in vitro and in vivo model

systems as well as utilized mouse and human tissues to
establish whether levels or activities of MMPs were al-
tered in the HPS lung and to determine whether these
changes occurred before or after the onset of pulmonary
fibrosis.

Methods
Animals
Wild-type, HPS1, and HPS2 mice (C57B/6 J, 8–10 weeks
old) were purchased from the Jackson Laboratory (Bar
Harbor, ME) and housed in a pathogen-free animal
facility at Thomas Jefferson University. HPS1 mice have
homozygous mutation of the Hps1 gene, which encodes
for a protein called BLOC-3, and HPS2 mice have homo-
zygous mutation in the adaptor protein 3b1 (Ap3b1) gene,
which is a subunit of the AP-3 protein complex. In
general, HPS mice are phenotypically normal, except for a
light coat appearance. HPS 1 and 2 mice also have large
lamellar bodies in the alveolar epithelial type II cells of
their lungs. Both strains of mice are also exquisitely sensi-
tive to bleomycin. Throughout the study period, wild-type
and HPS mice were maintained on a standard chow diet

(13.5% calories from fat, 58% from carbohydrates, and
28.5% from protein) and permitted to feed ad libitum.
Prior to the initiation of any study, the Institutional
Animal Care and Use Committee at Thomas Jefferson
University approved all animal protocols.

Human subjects
The diagnosis of HPS was established based on pub-
lished criteria [22, 23]. Healthy controls were individuals
without any known lung disease. Age, gender and smok-
ing history for subjects are listed in Additional file 1:
Table S1. All patients provided written informed consent
to protocols 95-HG-0193 (clinicaltrials.gov NCT00001456)
and 04-HG-0211 (clinicaltrials.gov NCT00084305). All
study protocols were approved by the Institutional Review
Boards at Thomas Jefferson University and the National
Human Genome Research Institute prior to the initiation
of any studies. BAL was performed and samples were
processed as previously described [24].

Bleomycin-induced lung injury
Lung injury was induced by instilling 0.025 U of bleo-
mycin into the posterior oropharynx of anesthetized
mice. Because HPS1 and HPS2 mice are more sensitive
to bleomycin, lower doses of bleomycin were required
for these investigations [2, 25, 26].

Measurement of MMP-2 and MMP-9 activity
The activity of MMP-2 and -9 was assessed by gelatin
zymography as previously described [8, 27]. Protein
concentration was determined by Pierce™ BCA assay kit
(Thermo Scientific, Rockford, IL). Murine and human
BALF and lung homogenates were separated by electro-
phoresis using 10% SDS-polyacrylamide gels containing
0.1% gelatin. Gels were then washed in 2.5% triton 100
renaturing buffer followed by overnight incubation in
developing buffer. To visualize bands gels were stained
with 0.5% Coomassie blue for 1 h and then destained
with 40% methanol/10% acetic acid until clear bands
were visualized. Densitometry was performed as previously
described and the MMPs activity were normalized for total
BALF and lung homogenates protein concentration.

Lung histology
Lungs were removed en bloc and immersed in fixative at
4 °C for 18 h. Tissues underwent a series of dehydration
steps prior to being embedded in paraffin. Prior to per-
forming immunohistochemical staining we performed
antigen retrieval and quenched endogenous peroxidases.
Primary antibodies to MMP-2 (Abcam, Cambridge, UK)
and MMP-9 (Thermo Scientific, Rockford, IL) were used
in our studies. To visualize antibody binding, sections
were exposed to Vectastain ABC (Vector Laboratories,
Burlingame, CA) followed by the addition of 3,39-
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diaminobenzidine. For negative control slides, the pri-
mary antibody was replaced by rabbit IgG, polyclonal-
isotype control (Abcam, Cambridge, UK).

RNA isolation and analysis
Gene transcript levels were quantified by real-time PCR
as previously described [28]. In brief, RNA was isolated
using RNeasy Mini-Kit (QIAGEN, Valencia, CA). All
reactions were performed with 1 μM of forward and
reverse primers along with SYBR Green I GoTaq qPCR
Master Mix (Promega, Madison, WI). Primer sets were
amplified using protocols previously described [28–30].
All values were normalized to a control gene such as
18S.

Cell culture and reagents
Murine lung epithelial 12 (MLE12) cells were obtained
from ATCC (Manassas, VA) and cultured as previously
described [28, 29]. Cells were plated in 6-well plates with
or without bleomycin (50 μg/ml) or Akt inhibitor (1 μM)
. After 24 h, supernatant was collected and centrifuged
to remove cellular debris and then stored at − 80 °C.
Whole cell lysates were also collected to measure tran-
script or protein levels.

Lentiviral shRNA generation and transduction to MLE12
cells
pLKO.1-based lentiviral Ap3b1 shRNA constructs
(RHS4533; clone ID, TRCN0000118642) were used to si-
lence the AP3 gene in MLE12 cells in order to create
cells reminiscent to those in the lungs of HPS-2 patients.
Scrambled shRNAs were used as a control. Lentiviral
transductions for both Ap3b1 and scrambled control
were performed as previously described [28].

Western blot analysis
Protein concentration was determined by Pierce™ BCA
assay kit (Thermo Scientific, Rockford, IL). Aliquots of
protein lysates were transferred onto nitrocellulose
membranes and then blocked with the Odyssey Blocking
Buffer (Li-Cor Biosciences, Lincoln, NE) for 1 h at RT.
This step was followed by an incubation step with a
specific polyclonal rabbit primary antibody directed
against MMP-2, MMP-9, Akt, phosphorylated Akt, or β-
actin (Sigma-Aldrich, St. Louis, MO). Next, membranes
were incubated in a solution containing a donkey anti-
rabbit or anti-mouse antibody (Li-Cor Biosciences, Lincoln,
NE). After three sequential washes with PBS, immunoblots

A

D

B

E

C

Fig. 1 Expression and activity of matrix metalloproteinases are increased in the lungs of HPS2 mice a) Transcript levels for Mmp-2, − 3, − 7, − 8, −
9, − 12, − 13 and − 14 in age-matched control and HPS2 mouse lungs (n = 4 each group, p < 0.05 vs control). b Western blot for MMP-2 and
MMP-9 in whole lung digests from control and HPS2 mice. c Gelatin zymography for MMP-2 and MMP-9 in whole lung digests from control and
HPS2 mice. d Western blot for MMP-2 and MMP-9 in bronchoalveolar lavage fluid from control and HPS2 mice. e Gelatin zymography for MMP-2
and MMP-9 in bronchoalveolar lavage fluid from control and HPS2 mice. Immunoblots are representative of at least two different blots and
densitometry analyses (bar graphs) are representative n = 5 or more mouse specimens (*p < 0.05 HPS2 vs. control). Data are expressed as mean ±
SE, and statistical significance was assessed using a Student’s unpaired t test or multiple comparisons
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were visualized using the Odyssey infrared imaging system
(Li-Cor Biosciences, Lincoln, NE).

Statistical analysis
Data are expressed as mean + SE. Differences between
groups were performed using an unpaired Student’s t-
test or multiple comparisons with the Bonferroni-Dunn
correction. Statistical significance was achieved when
P < 0.05 at 95% confidence interval.

Results
Matrix metalloproteinase activity is increased in the lungs
of HPS2 mice
To assess whether HPS alters MMP levels in the lung, we
first performed quantitative PCR to evaluate transcript
levels for several different MMPs known to be expressed
in the mouse lung and which have also been linked to
lung disease, including Mmp-2, − 3, − 7, − 8, − 9, − 12
and − 14. As demonstrated in Fig. 1a, we found that tran-
script levels for each of the Mmps evaluated were readily

detectable in the lungs of wild-type mice and that levels
for most, if not all, Mmps were upregulated in the lungs of
HPS2 mice. However, only transcript levels for Mmp-2
and -9 were found to be significantly increased (p-value <
0.05) relative to controls, and only levels of Mmp-2 and
Mmp-9 were increased by more than 2-fold. Consistent
with the marked upregulation in Mmp-2 and Mmp-9 ex-
pression, we found that protein levels and enzymatic activ-
ity for each of these enzymes were dramatically increased
in whole lung tissue digests of HPS2 mice (Fig. 1b, c). In
contrast, only levels and enzymatic activity of MMP-2
were increased in BALF (Fig. 1d, e). Altogether, these
findings indicate that expression and activity of MMPs, es-
pecially the gelatinases MMP-2 and MMP-9, are increased
in the lung of HPS mice.

MMP activity is increased in the lung epithelium of HPS2
mice
Because MMPs are produced by many different cell
types, we next sought to localize the expression of

A

C

B

Fig. 2 HPS2 deficiency leads to increased MMP expression in lung epithelial cells. a Immunohistochemical staining for MMP-2 and MMP-9 (brown
staining) in the lungs of wild-type and HPS2 mice. Staining is not detected in the lungs of wild-type mice and alveolar epithelial type II cells are
difficult to visualize due to normal size lamellar bodies. Expression of MMP-2 and MMP-9 appears to be increased most significantly in alveolar
epithelial type II cells, as indicated by high intensity brown staining in cells containing prominent lamellar bodies (arrows). Brown staining was
also evident in some alveolar macrophages (arrow heads) and in the interstitial space. b, c shRNA knockdown of the Ap3b1 gene in MLE12 cells
leads to a marked upregulation in transcript (n = 4, per group) and protein levels for MMP-2 and MMP-9. Immunoblot is representative of at least
two different blots and densitometry analyses (bar graphs) (n = 5 per group, *p < 0.05, HPS2 vs. control). Data are expressed as mean ± SE, and
statistical significance was assessed using a Student’s unpaired t test
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MMP-2 and -9 in the HPS2 mouse lung. As shown in
Fig. 2a, immunostaining for MMP-2 and -9 did not
detect significant protein expression in the lungs of
wild-type mice. In contrast, we found that levels of both
enzymes were readily detectable in the lungs of HPS2
mice and that staining was most abundant in AEC2 of
the distal pulmonary epithelium, as judged by the cellu-
lar location and presence of lamellar bodies (vacuolated
structures) in intensely stained cells (brown color)
(Fig. 2a). Of note, lower intensity staining was also ob-
served in other regions of HPS2 lung, including the pul-
monary interstitium and alveolar macrophages, suggesting
that mesenchymal cells might also contribute to elevated
MMP levels in the lungs of these mice.
Because expression of MMP-2 and -9 was readily ap-

parent in AEC2, we next sought to determine whether
epithelial deficiency of the Ap3b1 gene could by itself
increase the expression of MMP enzymes. To test this,
we performed shRNA knockdown of the Ap3b1 gene in
murine lung epithelial 12 (MLE12) cells, a cell line often
used to model AEC2 in culture [28, 29]. Consistent with
findings in vivo, we found that shRNA knockdown of
Ap3b1 readily increased MMP-2 and -9 expression, as

demonstrated by a greater than 2-fold increase in tran-
script levels and a nearly 50% increase in protein levels
for both MMP enzymes (Fig. 2b, c).

Matrix metalloproteinase activity is increased in the lung
of HPS2 mice after bleomycin
Expression of MMPs is known to increase in response to
pro-fibrotic pulmonary insults, leading us to examine
whether levels of these enzymes were further dysregu-
lated in the HPS2 lung after pulmonary challenge. To
test this, we administered a one-time, low dose (0.025 U)
of bleomycin into the oropharynx of wild-type and
HPS2 mice. The decision to use a low-dose of bleomycin
was based on the understanding that HPS mice are ex-
quisitely sensitive to this genotoxic insult, and that
higher doses are universally fatal [17, 18, 26]. Consistent
with this being a mild pulmonary insult, we found that
low-dose bleomycin had little to no effect on the expres-
sion of MMPs in the lungs of wild-type mice at day 7
after injury (data not shown). In contrast, transcript
levels for all of the MMPs assessed were significantly
increased in the lungs of HPS2 mice relative to injured
wild-type controls (Fig. 3a). Moreover, elevated transcript

A

C

B

D E

Fig. 3 MMP levels are increased in the lung of HPS2 mice after bleomycin. a Transcript levels for Mmp-2, − 3, − 7, − 8, − 9, − 12, − 13 and − 14 in
age-matched control and HPS2 lungs 7 days after bleomycin (n = 4 each group, p < 0.05 vs control). b Western blot for MMP-2 and MMP-9 in
whole lung digests from control and HPS2 mice at 7 days after bleomycin. c Densitometry from gelatin zymography for MMP-2 and MMP-9 in
whole lung digests from control and HPS2 mice at 7 days after bleomycin. d Western blot for MMP-2 and MMP-9 in bronchoalveolar lavage fluid
from control and HPS2 mice at 7 days after bleomycin. e Densitometry from gelatin zymography for MMP-2 and MMP-9 in bronchoalveolar
lavage fluid from control and HPS2 mice at 7 days after bleomycin. Immunoblots are representative of at least two different blots and
densitometry analyses (bar graphs) are representative n = 5 or more mouse specimens (*p < 0.05, HPS2 vs control). Data are expressed as mean ±
SE, and statistical significance was assessed using a Student’s unpaired t test
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levels were also associated a marked upregulation in pro-
tein expression (Fig. 3b, d) and a dramatic increase in en-
zymatic activity for MMP-2 and -9 in whole lung lysates
and BAL fluid (Fig. 3c, e).

Elevated MMP levels are associated with an increase in
Akt activation in HPS
Since broadly inhibiting MMP activity has been associ-
ated with significant toxicity in numerous cancer studies
[19], we sought to examine the effects of inhibiting an
upstream regulator of MMP activity. This would also
circumvent the need to simultaneously inhibit multiple
MMP enzymes. Recent work has shown that MMP ex-
pression can be regulated by the enzyme Akt [21, 31,
32], leading us to hypothesize that dysregulation of Akt
might contribute to altering MMP expression in the
HPS lung. To test this hypothesis, we compared levels of
total and phosphorylated forms of this enzyme in con-
trol and HPS tissues. Although we did not detect a sig-
nificant increase in total Akt levels, the activated form of
this enzyme was dramatically increased in whole lung di-
gests of HPS2 mice at baseline and at 7 days after bleo-
mycin. Similarly to whole lung tissues, we found that
phosphorylated Akt levels were also increased in AP3

deficient lung epithelial cells (Fig. 4b) at baseline and at
24 h after bleomycin exposure (Fig. 4c) and that this as-
sociated with an upregulation in MMP-2 and -9 expres-
sion (Fig. 4d). In order to determine whether Akt
regulates MMP expression, we exposed cells to a
pharmacological inhibitor of Akt to examine the effects
on MMP levels. As shown in Fig. 4e, we found that
pharmacological inhibition of Akt significantly reduced
MMP levels in bleomycin-exposed cells, supporting the
notion that chronic activation of Akt contributes to
elevated MMP expression in the HPS lung.

MMP activity is increased in the lungs of HPS1 mice
Next, to determine whether MMP expression is dysregu-
lated in other HPS models, we measured transcript
levels for various MMPs in the lungs of HPS1 mice.
Strikingly, we detected a marked upregulation in tran-
script levels for multiple MMPs in the lungs of HPS1
mice, including Mmp-2 and -9 as well as the Mmps 3, −
8, − 12 and − 14 (Fig. 5a). Similarly to HPS2 mice, we
also found that protein levels for MMP-2 and -9 were
increased in whole lung digests and that MMP-2 gelati-
nase activity was increased in the BALF fluid relative to
age-matched controls (Fig. 5b, c). Likewise, transcript

A

C

E
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D

Fig. 4 Akt activity is increased in HPS2 lung tissues. a Total and phosphorylated Akt levels in whole lung digests from control and HPS2 mice at
baseline and at 7 days after bleomycin (left). Ratio of phosphorylated to total Akt levels (right). b Total and phosphorylated Akt levels in control
and HPS2-like MLE12 cells at baseline (left). Ratio of phosphorylated to total Akt levels (right). c Total and phosphorylated Akt levels in control and
HPS2-like (Ap3b1 deficient) MLE12 cells at 24 h after bleomycin (left). Ratio of phosphorylated to total Akt levels (right) d) MMP-2 and -9 levels in
control and HPS2-like (Ap3b1 deficient) MLE12 cells at 24 h after bleomycin. e. Treatment with Akt inhibitor reduces MMP-2 and -9 levels in
control and HPS2-like (Ap3b1 deficient) MLE12 cells at 24 h after bleomycin. Immunoblots are representative of at least two different blots and
densitometry analyses (bar graphs) are representative n = 5 or more mouse specimens (*p < 0.05, HPS2 vs control). Data are expressed as mean ±
SE, and statistical significance was assessed using a Student’s unpaired t test
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levels for MMPs were also dramatically increased in the
lungs of HPS1 mice after bleomycin (Fig. 5d), and this
associated with elevated MMP-2 and -9 protein levels in
whole lung tissue digests (data not shown) and BALF
(Fig. 5e).

MMP activity is increased in the lung of HPS patients
Finally, to determine whether findings in mouse models
were relevant to human disease, we assessed whether
levels or activity of MMPs were altered in the lungs of
HPS patients. As shown in Fig. 6, we found that protein
levels for both MMP-2 and -9 were significantly in-
creased in BALF of HPS patients relative to controls.
Moreover, this associated with a significant upregulation
in MMP-2 activity (Fig. 7a), although MMP-9 activity
did not significantly differ between control and HPS pa-
tients (Fig. 7b). Interestingly, neither levels of MMP-2
and -9 nor activity of MMP-2 associated with the pres-
ence or absence of fibrosis or measures of lung function,
such as diffusing for carbon monoxide or forced vital
capacity (Fig. 7c, d).

Discussion
Mutations linked to HPS have been well-characterized
but how these mutations ultimately lead to the develop-
ment of pulmonary fibrosis remains unknown. In this
study, we demonstrated that mutations in two different
HPS genes lead to a similar upregulation in the expres-
sion and activity of MMPs in the mouse lung. Further-
more, we found that these changes occurred before the
onset of lung fibrosis and were magnified after instilla-
tion of a low-dose of bleomycin into the lung. Addition-
ally, we uncovered that increased MMP levels were also
observed in the BALF of subjects with HPS, and that
these changes, like in mice, were detectable in some
individuals with no evidence of lung disease. Taken
together, these findings indicate that HPS-related genes
are important for regulating MMPs in the lung, and
suggest that altered MMP expression due to HPS muta-
tions might contribute to lung disrepair and fibrotic
remodeling.
A large number of MMP genes exist within the mouse

and human genome [7]. For example, at least 23 differ-
ent MMP genes have been identified within the mouse

A B

C D E

Fig. 5 MMP levels are increased in the lungs of HPS1 mice. a Transcript levels for Mmp-2, − 3, − 8, − 9, − 12, − 13 and − 14 in age-matched
control and HPS1 lungs at baseline (n = 4 each group, p < 0.05 vs control). b Western blot (left) for MMP-2 and MMP-9 in whole lung digests from
control and HPS1 mice at baseline. c Gelatin zymography for MMP-2 and MMP-9 in lungs of control and HPS1 mice (top). Activity of MMP-2 but
not MMP-9 was significantly increased in the lungs of HPS1 mice. d Transcript levels for Mmp-2, − 3,-7, − 8, − 9, − 12, − 13 and − 14 in age-matched
control and HPS1 lungs 7 days after bleomycin (n = 4 each group, p < 0.05 vs control). e Western blot for MMP-2 and MMP-9 in whole lung digests
from control and HPS1 mice at 7 days after bleomycin. Immunoblots are representative of at least two different blots and densitometry analyses (bar
graphs) are representative of n = 5 or more mouse specimens (*p < 0.05, HPS2 vs control). Data are expressed as mean ± SE, and statistical significance
was assessed using a Student’s unpaired t test or multiple comparisons
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genome and even more are believed to exist in humans.
In this study, we used a targeted approach to examine
MMP levels in the lung, measuring only those enzymes
known to be expressed in mouse or human respiratory
tissues [7]. Using this targeted approach, we uncovered
the upregulation of multiple MMPs in the lungs of HPS
mice. Interestingly, although transcript levels for MMP-2
and -9 were most significantly increased in HPS2 mice,
we detected a broad upregulation in many different
MMP transcripts in the lungs of HPS1 mice, including a
greater than 2-fold increase in levels for MMP-2, − 3, −
8, − 9,-12 and − 14. These findings suggest the intriguing
possibility that HPS is a heterogeneous group of disor-
ders, and that pathological processes contributing to the
development of pulmonary fibrosis might differ among
individuals carrying different HPS mutations.
Although MMPs are produced by many different cell

types in the lung, our findings suggest that epithelial
cells are an important source of MMP production in the
HPS lung. This was demonstrated by the marked in-
crease in MMP-2 and -9 expression in the distal pul-
monary epithelium of HPS mice and by the striking
increase in MMP expression in cultured lung epithelial
cells after knocking down the Ap3b1 gene. Importantly,

these findings support the current paradigm in both the
IPF and HPS fields that epithelial dysfunction and abnor-
mal crosstalk of epithelial cells with mesenchymal cells
contributes to the development of disease [26, 33–36].
Akt is emerging as an important pathogenic player in

pulmonary fibrosis [20, 21]. For example, Akt activation
has been tightly linked to growth, survival and differenti-
ation of activated lung fibroblasts and inhibition of this
enzyme has been shown to reduce experimentally-
induced pulmonary fibrosis in mice [20, 31, 32, 37]. In
addition, Akt activity is also known to be increased in
the lung epithelium of mice with pulmonary fibrosis as
well as the lung epithelium of patients with IPF [21]. In
epithelial cells, chronic activation of Akt is thought to
prime the lung for injury through reducing the expres-
sion of cell-cell junctional proteins and impairing
epithelial barrier protection. Consistent with this, our
study provides further support for the concept that
hyperactivation of Akt contributes to the development
of pulmonary fibrosis in HPS and that targeting this
kinase might be a strategy for preventing or treating this
disease.
Classically, levels of MMP enzymes are relatively low

in healthy tissues and dramatically increase in response

A

B

Fig. 6 MMP-2 and MMP-9 levels are increased in bronchoalveolar lavage fluid of HPS patients. a Western blot for MMP-2 in bronchoalveolar
lavage fluid from control and HPS patients. b Western blot for MMP-9 in bronchoalveolar lavage fluid from control and HPS1 patients. Dot plot
depicting relative levels of MMP-2 and -9 in BAL fluid of control and HPS patients. Immunoblots are representative of at least two different blots
(*p < 0.05, HPS vs control). Data are expressed as mean ± SE, and statistical significance was assessed using a Student’s unpaired t test
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to tissue insults or disease states [6, 7, 10, 38]. However,
to our surprise, we found that levels of MMP enzymes
were markedly increased in the HPS lung under homeo-
static conditions. This included the lungs of HPS1 and
HPS2 mice as well as the lungs of HPS subjects without
evidence of disease. Interestingly, we did not observe a
relationship between MMP activity and lung function
(diffusion capacity or forced vital capacity) in our cohort
of HPS patients, suggesting the intriguing possibility that
chronically elevated MMP levels might contribute to the
onset rather than the progression of disease. In this sce-
nario, we wonder whether elevated MMP levels might
either prime the lung for injury or make it susceptible to
disrepair. Importantly, our study investigated only a
limited number of MMPs, leaving the possibility that as-
sociations might be identified between other MMPs and
disease activity.
Our study has several notable limitations. First, we

focused only on HPS mouse models known to be
susceptible to pulmonary fibrosis, preventing us from
determining whether MMP levels are also dysregulated
in the lungs of mice harboring other HPS mutations.
Second, we measured activity of only MMP-2 and -9 in
our samples, which does not allow us to comment on
whether activity of other MMPs are elevated in the HPS
lung. Third, our study measured MMP levels in a small
cohort of patients and our population included a mix-
ture of different HPS populations, including two individ-
uals with HPS4 mutations. Finally, although bleomycin
is considered the gold-standard pulmonary fibrosis

model, it has significant limitations, including the fact
that inflammation drives much of the fibrotic remodel-
ing and tissue remodeling is completely reversible to this
insult. Despite these shortcomings, the observation that
similar MMPs are dysregulated in both the HPS mouse
and human lung supports the validity of using this
model in our investigations.

Conclusions
In summary, our findings indicate that MMP levels are
upregulated in the HPS lung and that these changes
precede the development of pulmonary fibrosis. Future
studies determining whether elevated MMP levels assist
in the diagnosis of HPS will be important. Furthermore,
understanding whether dysregulation of MMPs contrib-
utes to the onset or progression of HPS lung disease will
ultimately be important for advancing understanding of
disease and laying the foundation for new and more
effective treatments.

Additional file

Additional file 1: Clinical Demographics of HPS and control subjects.
(PDF 133 kb)
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Fig. 7 MMP activity in the bronchoalveolar lavage fluid of HPS patients. a Gelatin zymography for MMP-2 and -9 in the bronchoalveolar lavage
fluid of control and HPS patients. b Dot plots depicting levels of MMP-2 in BAL fluid of control patients and HPS patients with and without
known lung fibrosis. c, d, e Dot plot depicting the relationship between MMP-2 activity and diffusion capacity of lung for carbon monoxide and
forced vital capacity in HPS patients, respectively
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