

Department of Urology Faculty Papers

Department of Urology

10-14-2019

Comparison of MRI- and TRUS-Informed Prostate Biopsy for Prostate Cancer Diagnosis in Biopsy-Naive Men: A Systematic Review and Meta-Analysis.

Hanan Goldberg University of Toronto; SUNY Upstate Medical University

Ardalan E. Ahmad University of Toronto

Thenappan Chandrasekar Thomas Jefferson University

Laurence Klotz Sunnybrook Health Sciences Centre Follow this and additional works at: https://jdc.jefferson.edu/urologyfp

Comparing the second se

See next page for additional authors Recommended Citation

Goldberg, Hanan; Ahmad, Ardalan E.; Chandrasekar, Thenappan; Klotz, Laurence; Emberton, Mark; Haider, Masoom A.; Taneja, Samir S.; Arora, Karan; Fleshner, Neil; Finelli, Antonio; Perlis, Nathan; Tyson, Mark D.; Klaassen, Zachary; and Wallis, Christopher J.D., "Comparison of MRI- and TRUS-Informed Prostate Biopsy for Prostate Cancer Diagnosis in Biopsy-Naive Men: A Systematic Review and Meta-Analysis." (2019). *Department of Urology Faculty Papers*. Paper 52. https://jdc.jefferson.edu/urologyfp/52

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Urology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.

Authors

Hanan Goldberg, Ardalan E. Ahmad, Thenappan Chandrasekar, Laurence Klotz, Mark Emberton, Masoom A. Haider, Samir S. Taneja, Karan Arora, Neil Fleshner, Antonio Finelli, Nathan Perlis, Mark D. Tyson, Zachary Klaassen, and Christopher J.D. Wallis

Author's Accepted Manuscript

Comparison of MRI- and TRUS-Informed Prostate Biopsy for Prostate Cancer Diagnosis in

Biopsy-Naive Men: A Systematic Review and Meta-Analysis

Goldberg H, Ahmad A, Chandrasekar T, Klotz L, Emberton M, Haider MA, Taneja SS, Arora K,

Fleshner N, Finelli A, Perlis N, Tyson MD, Klaassen Z and Wallis CJD

DOI: <u>10.1097/JU.000000000000595</u> Reference: JU-19-1341

To appear in: *The Journal of Urology* Accepted Date: 20 August 2019

Please cite this article as: Goldberg H, Ahmad A, Chandrasekar T, Klotz L, Emberton M, Haider MA, Taneja SS, Arora K, Fleshner N, Finelli A, Perlis N, Tyson MD, Klaassen Z and Wallis CJD, Comparison of MRI- and TRUS-Informed Prostate Biopsy for Prostate Cancer Diagnosis in Biopsy-Naive Men: A Systematic Review and Meta-Analysis, *The Journal of Urology*® (2018), doi: 10.1097/JU.00000000000595.

DISCLAIMER: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our subscribers we are providing this early version of the article. The paper will be copy edited and typeset, and proof will be reviewed before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to The Journal pertain.

Embargo Policy

All article content is under embargo until uncorrected proof of the article becomes available online. We will provide journalists with PDF copies on request so that stories can be researched and written. Media inquiries should be directed to LippincottJournalsMedia@Wolterskluwer.com.

Comparison of MRI- and TRUS-informed prostate biopsy for prostate cancer diagnosis in biopsy-naïve men: a systematic review and meta-analysis

Hanan Goldberg^{1,2}* MD, Ardalan E. Ahmad¹* MD, Thenappan Chandrasekar³ MD, Laurence Klotz⁴ MD, Mark Emberton⁵ MD, Masoom A. Haider⁶ MD, Samir S. Taneja⁷ MD, Karan Arora⁸ MD, Neil Fleshner¹ MD, MPH, Antonio Finelli¹ MS, MSc, Nathan Perlis¹ MD, MSc, Mark D. Tyson⁸ MD, Zachary Klaassen⁹, MD, MSc, Christopher J.D. Wallis¹ MD, PhD

*Contributed equally

¹ Urology Division, Surgical Oncology Department, Princess Margaret Cancer Center, University Health Network, University of Toronto, Toronto, Ontario, Canada

² Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA

³ Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia PA, USA

⁴ Division of Urology Sunnybrook Health Sciences Centre. Toronto. ON. Canada.

⁵ Division of Surgery and Interventional Science, University College London, London, UK.

⁶ Department of Medical Imaging, Princess Margaret Cancer Center, Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada

⁷ Department of Urology and Radiology, NYU Langone Health, New York, NY, USA

⁸ Department of Urology, Mayo Clinic Hospital, Phoenix, AZ

⁹ Division of Urology, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA, USA; Georgia Cancer Center, Augusta, GA, USA.

Correspondence:

Hanan Goldberg, MD Department of Surgical Oncology, Division of Urology Princess Margaret Cancer Centre 610 University Ave, Toronto, Ontario, Canada, M5G 2M9 Mobile: +1-647-204-0206 E-Mail: <u>gohanan@gmail.com</u>

Keywords:

Multiparametric MRI; Prostate cancer; Systematic biopsy; Targeted biopsy

Running Head: mpMRI-informed targeted vs. Systematic prostate biopsy meta-analysis

<text>

Abstract

Purpose: Multiparametric magnetic resonance imaging (mpMRI) with informed targeted biopsies (TGBX) has changed the paradigm of prostate cancer (PCa) diagnosis. Randomized studies have demonstrated a diagnostic benefit of Clinically significant (CS) for TGBX compared to standard systematic biopsies (SBX). We aimed to evaluate whether mpMRI-informed TGBX has superior diagnosis rates of any-, CS-, high-grade (HG)-, and clinically insignificant (CI)-PCa compared to SBX in biopsy-naïve men.

Methods: Data was searched in Medline, Embase, Web of Science, and Evidencebased medicine reviews-Cochrane Database of systematic reviews from database inception until 2019. Studies were selected by two authors independently, with disagreements resolved by consensus with a third author. Overall 1951 unique references were identified, and 100 manuscripts underwent full-text review. Data were pooled using random-effects models. The meta-analysis is reported according to the PRISMA statement. The study protocol is registered with PROSPERO (CRD42019128468).

Results: Overall 29 studies (13,845 patients) were analyzed. Compared to SBX, use of mpMRI-informed TGBX was associated with a 15% higher rate of any PCa diagnosis (95% CI 10-20%, p<0.00001). This relationship was not affected by the study methodology (p=0.11). Diagnosis of CS and HG PCa were more common in the mpMRI-informed TGBX group (risk difference of 11%, 95% CI 0-20%, p=0.05, and 2%, 95% CI 1-4%; p=0.005, respectively) while there was no difference in diagnosis of CI PCa (risk difference of 0, 95% CI -3-3%, p=0.96). Notably, the exclusion of SBX in the mpMRI-informed TGBX arm significantly modified the association between a mpMRI strategy and lower rates of CI PCa diagnosis (p=0.01) without affecting the diagnosis rates of CS- or HG-PCa.

Conclusions: In comparison to SBX, a mpMRI-informed TGBX strategy results in a significantly higher diagnosis rate of any-, CS-, and HG-PCa. Excluding SBX from

mpMRI-informed TGBX was associated with decreased rates of CI-PCa diagnosis without affecting diagnosis of CS- or HG-PCa.

1. Introduction

Prostate cancer (PCa) diagnosis by systematic random histologic sampling of the prostate has, until recently, been the standard of care¹. Transrectal ultrasound (TRUS)-guided 12-core template systematic biopsy (SBX) has been widely recommended for men at risk for PCa² <u>ENREF 2</u>. However, SBX templates are limited by inherent random and systematic errors. Specific regions of the prostate are consistently underesampled, including the anterior region and apex³, and, unless hypoechoic lesions are seen on TRUS, sampling occurs by chance. Thus, SBX can miss up to 20% of CS PCa, resulting in underdiagnosis⁴. Additionally, SBX detects a relatively high percentage of clinically insignificant (CI) PCa (Gleason grade group [GGG] 1), which may result in overtreatment², if proper use of active surveillance (AS) is not practiced.

With the introduction of multiparametric prostate magnetic resonance imaging (mpMRI), the pathways for PCa diagnosis have changed. MpMRI is unique in that it can both risk-stratify men for prostate biopsy (PB) and allow anatomic guidance for biopsy. The spatial information provided by mpMRI allows for precise mpMRI-informed targeted biopsy (TGBX), where clinically significant (CS) PCa (≥GGG 2⁵) is detected with fewer biopsy cores⁶, and diagnosis of CI PCa decreases⁷. There are randomized studies demonstrating the superior diagnosis rate of TGBX in diagnosing CS PCa in biopsy-naïve men^{8, 9}. However, TGBX has limitations, missing CS PCa in 2.1-15% of cases¹⁰⁻¹³. Although the most recent European Association of Urology (EAU)² and the National institute for Health and Care Excellence (NICE)¹⁴ guidelines recommend performing mpMRI in biopsy-naïve men with suspected PCa, these recommendations are not

4

widely adopted in North-America, where mpMRI is usually reserved for men with a previous negative biopsy. Furthermore, the added benefit of combining SBX with TGBX remains unclear with conflicting data supporting both TGBX alone^{7, 15} and combining SBX with TGBX¹⁶. The combination appears to detect more CS PCa than TGBX alone^{4, 7}. Both the EAU and American Association of Urology (AUA) guidelines currently recommend adding SBX in men with a suspicious mpMRI lesion undergoing TGBX^{2, 17}.

To synthesize the available data on these questions, we undertook a systematic review and meta-analysis of all studies comparing SBX and TGBX, either alone or in combination with SBX, to assess the detection rate of any PCa, CS PCa, high grade (HG) PCa (GGG>=4) and CI PCa in biopsy-naïve men.

2. Methods

This systematic review and meta-analysis is reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement¹⁸. The study protocol was registered with PROSPERO CRD42019128468.

2.1. Research question

Is mpMRI-informed TGBX with or without SBX associated with higher rates of any-, CI-, CS-, and HG-PCa diagnosis than SBX alone in biopsy-naïve men at risk of PCa?

2.2. Types of Studies

Randomized clinical trials and observational cohort studies were included. Other publications including editorials, commentaries, review articles, meeting abstracts and publications not subject to peer-review (ie, reports of data from vital statistics and dissertations or theses) were excluded. Only studies with paired cohorts, with patients with a positive mpMRI receiving either TGBX alone or together with SBX were included. To prevent duplication of patients used in our analyses, we selected one study (when more than one was published on the same patient cohort), based on contemporary timing, cohort size, and granularity of data reported. Our main interest was to compare the outcomes of mpMRI-informed TGBX alone or in combination with SBX to SBX outcomes in biopsy-naïve men. Thus, studies comparing mpMRI-guided TGBX and SBX in biopsy-naïve men were included and those in men with prior negative biopsy or with prior PCa diagnosis were excluded.

2.3. Outcome measures

The primary outcome of interest was the rate of any PCa diagnosis. Secondary outcomes were rates of CS PCa (GGG \geq 2), HG PCa (GGG \geq 4) and CI PCa (GGG=1).

2.4. Search strategy

Medline, EMBASE, Web of Science, Scopus and EBM Reviews Cochrane Database of Systematic Reviews databases were searched using the OvidSP platform for studies indexed from database inception to February 15, 2019 by a professional medical librarian. We used both subject headings and text-word terms for "prostate cancer", "prostate neoplasm", "biopsy"," no prior", "no previous", "naïve", "ultrasound", "magnetic resonance imaging", "systematic", "targeted", and related and exploded terms including MeSH terms in combination with keyword searching. A full search strategy is presented in appendix 1. Only English language publications were included, and all duplicates were excluded.

2.5. Study review methodology

The study selection was conducted by two authors (A.E.A. and T.C.) independently. Disagreements were resolved by consensus with a third author (H.G.). Titles and abstracts were used to screen for initial study inclusion. Full-text review was used where abstracts were insufficient to determine if the study met inclusion criteria. A data extraction form was created and piloted prior data extraction, which was performed by a single author (A.E.A.) and subsequently verified by two additional authors (H.G. and Z.K.) independently.

2.6. Risk of bias assessment

The Cochrane Collaboration's tool for assessing risk of bias¹⁹ and the Newcastle-Ottawa Scale (NOS) were used for risk of bias assessment in randomized clinical trials and cohort studies, respectively. The NOS assesses risk of bias in three domains²⁰: (1) selection of the study groups; (2) comparability of groups; and (3) ascertainment of exposure and outcome²¹. Studies with scores >=7 were considered as having a low risk of bias, scores of 4–6 as having a moderate risk of bias, and scores <4 as having a high risk of bias.

2.7. Assessment of heterogeneity

Heterogeneity was assessed using the Q test, and estimated using the DerSimonian-Laird method, and finally quantified using I² values²². Given the identified clinical heterogeneity, we employed random effects models for each of our analyses.

2.8. Data synthesis

7

We expressed the outcome as the risk difference for PCa diagnosis between mpMRI-informed TGBX and SBX. This was determined as the proportion of patients diagnosed with PCa in the SBX group minus the proportion of patients diagnosed in the mpMRI-informed TGBX group. Therefore, a risk difference less than zero (negative risk difference) indicates that PCa diagnosis was more frequent in the mpMRI-informed TGBX group while a risk difference greater than zero (positive risk difference) indicates that PCa diagnosis was more frequent in the SBX group.

We used the Mantel-Haenszel method for meta-analysis of dichotomous data using the risk difference as our measure of effect. For each outcome, we first performed meta-analysis among three strata defined by study methodology (randomized controlled trials, prospective cohort studies, and retrospective cohort studies) as differences in study methodology may reasonably be expected to affect study conclusions. We tested for subgroup differences between strata for each outcome using the Chi-squared test. Where the Chi-squared test for subgroup differences was insignificant, we pooled results for each outcome across the study methodologies to provide a single pooled effect estimate. Where the Chi-squared test for subgroup differences was significant (p<0.05), we deemed it inappropriate to pool results and thus reported pooled results among each stratum individually.

We performed *a priori* subgroup analysis to assess whether inclusion of SBX in the mpMRI-informed TGBX arm would affect the risk difference for PCa diagnosis between mpMRI-informed TGBX and SBX for each outcome. Again, we tested for subgroup differences between strata for each outcome using the Chi-squared test to assess for effect modification due to this factor.

8

Meta-analysis was performed using Review Manager 5.3 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2014) software. Statistical significance was determined at p<0.05.

3. Results

3.1. Literature search results

We identified 1951 unique references (Figure 1). 100 manuscripts underwent full-text review and 29 studies were selected for final analyses. Reasons for exclusion are provided in Figure 1. 19 studies (65.5%) enrolled patients prospectively, however only 5 studies (17.2%) randomly assigned patients to mpMRI-informed TGBX or SBX group. Publication details of all included studies can be found in Appendix 2.

3.2. Characteristics of identified studies

Studies were conducted in 4 continents (65.5% in Europe, 20.7% in Asia, 6.9% in the US, and 6.9% in Australia), and 89.7% were conducted after 2010 (Table 1). 21 studies (72.5%) were from single centers, three studies (10.3%) analyzed two centers and five studies (17.2%) were multicenter.

Across the 29 included studies, there were 13,845 patients, of whom 1,085 (7.8%) patients were enrolled in randomized trials. Nearly all studies included men based on an elevated prostate specific antigen (PSA) and/or an abnormal digital rectal exam (DRE) (Table 1).

With respect to MRI performance and interpretation, 21 studies (72.4%) used 3 Tesla mpMRI and 8 (27.6%) used 1.5 Tesla. The Prostate Imaging Reporting and Data System (PIRADS) was employed in most studies (21 [72.4%]), while 7 studies (24.1%) used the Likert and similar 4- or 5-point scales. 14 studies (48.3%) included SBX in addition to mpMRI-informed TGBX in the mpMRI arm. Targeted biopsy was performed with an ultrasound fusion biopsy technique in 18 studies (62.1%). Cognitive fusion biopsy and in-bore fusion biopsy were used in 8 (27.6%) and 2 studies (7%), respectively. Most studies (24, 82.7%) utilized transrectal biopsy.

All studies reported on overall PCa and CS PCa detection rate, defined based on Gleason score and/or maximum PCa core length (Table 1). However, for our analysis, we considered CS PCa to be GGG>=2 alone⁵.

3.3. Risk of bias assessment

All randomized controlled trials included concealed random sequence generation and were similarly at low risk of attrition and reporting bias (Supplementary Table 1). While all studies were unblinded and thus potentially at risk for performance and detection bias, it is improbable that this should influence the outcome of PCa diagnosis.

The risk of bias in the prospective and retrospective cohort studies was low in all included studies (supplementary table 2). In some studies, patients with negative mpMRI were excluded which may have potentially introduced selection bias. As the outcome of interest was overall PCa or CS PCa diagnosis rate, all studies were deemed to have adequate follow up.

3.4. Quantitative synthesis

3.4.1. Any prostate cancer diagnosis

Assessing the association between use of mpMRI-informed TGBX or SBX and rates of any PCa diagnosis, we pooled results from 29 studies representing 31 unique patient cohorts and 13,845 participants. Among randomized controlled trials (5 studies, 1,085 participants), the use of mpMRI-informed TGBX +/- SBX was associated with a 16% increased likelihood of PCa diagnosis (risk difference = -0.16, 95% CI -0.22 to -0.11; p<0.00001; $I^2 = 4\%$) when compared to SBX alone (Figure 2a). Among 14 prospective cohort studies (5,508 participants), the use of mpMRI-informed TGBX +/-SBX was associated with a 20% increased likelihood of PCa diagnosis (risk difference = -0.20, 95% CI -0.27 to -0.12; p<0.00001; $I^2 = 89\%$) compared to SBX alone (Figure 2a). Finally, among 10 retrospective cohort studies (7,252 participants), the use of mpMRIinformed TGBX +/- SBX was associated with a 9% increased likelihood of PCa diagnosis (risk difference = -0.09, 95% CI -0.16 to -0.01; p=0.03; $I^2 = 89\%$) compared to SBX alone (Figure 2a). The test for subgroup differences was insignificant (chi-squared = 4.40, p=0.11; I^2 = 54.5%). Thus, we pooled results across these strata: assessing all 13,845 participants from 29 studies, the use of mpMRI-informed TGBX +/- SBX was associated with a 15% increased likelihood of PCa diagnosis (risk difference = -0.15, 95% CI -0.20 to -0.10; p<0.00001; $I^2 = 89\%$) compared to SBX alone (Figure 2a).

We then assessed whether inclusion of SBX in the mpMRI-informed TGBX arm affected the observed association between mpMRI-informed TGBX and any PCa diagnosis. Among cohorts where data was available for patients in the mpMRI-informed TGBX arm who had targeted biopsy alone (22 studies, 75.9%), the use of mpMRIinformed TGBX was associated with a 12% increased likelihood of PCa diagnosis (risk

Copyright © 2019 American Urological Association Education and Research, Inc. Unauthorized reproduction of this article is prohibited.

11

difference = -0.12, 95% CI -0.18 to -0.07; p<0.00001; I^2 = 89%) compared to SBX alone (Figure 3a). For cohorts where data was available for patients who received both TGBX and SBX (14 studies, 48.3%), the use of mpMRI-informed TGBX was associated with a 17% increased likelihood of PCa diagnosis (risk difference = -0.17, 95% CI -0.24 to -0.09; p<0.00001; I^2 = 91%) compared to SBX alone (Figure 3a). The test for subgroup differences was insignificant (chi-squared = 0.78, p=0.38; I^2 = 0%) suggesting that the inclusion of SBX in patients undergoing mpMRI-informed TGBX does not modify the association between mpMRI-informed TGBX and rates of any PCa diagnosis.

3.4.2. Clinically significant prostate cancer diagnosis

Twenty-seven studies (13,089 participants) provided data for meta-analysis of the outcome of CS PCa. There was an increased likelihood of CS PCa diagnosis among randomized controlled trials (risk difference = -0.11, 95% CI -0.2 to 0.00; p=0.05; $I^2 = 78\%$), among prospective cohort studies (risk difference = -0.18, 95% CI -0.24 to -0.11; p<0.00001; $I^2 = 81\%$) and among retrospective cohort studies (risk difference = -0.18, 95% CI -0.24 to -0.07, 95% CI -0.12 to -0.02; p=0.004; $I^2 = 77\%$) (Figure 2b). However, the test for subgroup differences was significant (chi-squared = 6.35, p=0.04; $I^2 = 68.5\%$). Thus, we did not pool results across strata of study methodology. We found no evidence of effect modification due to inclusion of SBX in the mpMRI-informed TGBX arm on the relationship between mpMRI-informed TGBX, and rates of CS PCa diagnosis (test for subgroup differences chi-squared = 0.18, p=0.67; $I^2 = 0\%$) (Figure 3b).

3.4.3. Clinically insignificant prostate cancer diagnosis

Similarly, 27 studies (13,089 participants) provided data for meta-analysis of the outcome of CI PCa. The use of mpMRI-informed TGBX +/- SBX was associated with no meaningful difference in the likelihood of CI PCa diagnosis, whether assessed among randomized controlled trials (risk difference = 0.01, 95% CI -0.09 to 0.11; p=0.85) I^2 = 82%), prospective cohort studies (risk difference = 0.00, 95% CI -0.05 to 0.05; p=0.99; I^2 = 79%) or retrospective cohort studies (risk difference = -0.01, 95% CI -0.05 to 0.05; p=0.99; I^2 = 79%) or retrospective cohort studies (risk difference = -0.01, 95% CI -0.05 to 0.04; p=0.83; I^2 = 84%) (Figure 2c). The test for subgroup differences was insignificant (chi-squared = 0.08, p=0.96; I^2 = 0%). Thus, we pooled results across strata of study methodology and found no meaningful difference in the likelihood of CI PCa diagnosis (risk difference = 0.00, 95% CI -0.03 to 0.03; p=0.96; I^2 = 80%) (Figure 2c).

Interestingly, there was evidence of effect modification due to the inclusion of SBX in the mpMRI-informed TGBX arm for this outcome (test for subgroup differences chi-squared = 6.49, p=0.01; l^2 = 84.6%): while studies which included SBX in the mpMRI-informed TGBX arm demonstrated a 4% higher rate of diagnosis of CI PCa among patients who received mpMRI-informed TGBX+SBX, compared to SBX alone (risk difference = -0.04, 95% CI -0.08 to -0.00; p=0.05; l^2 = 77%), those which utilized TGBX alone demonstrated a 3% lower rate of diagnosis of CI PCa among patients who received mpMRI-informed to SBX alone (risk difference = 0.03, 95% CI -0.01 to 0.06; p=0.11; l^2 = 75%) (Figure 3c).

3.4.4. High-grade prostate cancer diagnosis

A smaller subset of 19 studies (9,811 participants) provided data for metaanalysis of the outcome of HG PCa. The use of mpMRI-informed TGBX +/- SBX was associated with a significantly higher likelihood of HG PCa diagnosis among randomized controlled trials, albeit with a small effect size (risk difference = -0.04, 95% CI -0.07 to -0.01; p=0.004; I^2 = 0%) compared to SBX alone (Figure 2d). Among prospective cohort studies (risk difference = -0.02, 95% CI -0.05 to 0.01; p=0.23; I^2 = 66%) and retrospective cohort studies (risk difference = -0.02, 95% CI -0.06 to 0.01; p=0.12; I^2 = 38%) (Figure 2d), this effect was not significant though the direction and magnitude were similar. The test for subgroup differences was insignificant (chi-squared = 1.72, p=0.42; I^2 = 0%). Thus, we pooled results across strata of study methodology and found the use of mpMRI-informed TGBX was associated with a small but significantly higher likelihood of HG PCa diagnosis (risk difference = -0.02, 95% CI -0.04 to -0.01; p=0.005; I^2 = 47%) compared to SBX alone (Figure 2d). We found no evidence of effect modification due to inclusion of SBX in the mpMRI-informed TGBX arm on the relationship between mpMRI-informed TGBX and rates of HG PCa diagnosis (test for subgroup differences chi-squared = 0.40, p=0.53; I^2 = 0%) (Figure 3d).

4. Discussion

In this meta-analysis of biopsy-naïve patients undergoing a PB, we compared rates of PCa diagnosis for patients undergoing standard SBX and mpMRI-informed TGBX. Our analyses demonstrate several findings. First, patients who underwent a mpMRI-informed TGBX +/- SBX were 15% more likely to be diagnosed with any PCa than patients who underwent standard SBX. Further, this improved diagnostic yield was not affected by whether a mpMRI-informed biopsy was performed with TGBX alone or combined with SBX. Second, patients who underwent mpMRI-informed biopsy were more likely to be diagnosed with CS PCa and HG PCa, with no difference in the

diagnosis rate of CI PCa compared to those who underwent SBX alone. Third, exclusion of SBX in the mpMRI-informed TGBX arm was associated with decreased rates of CI PCa diagnosis (p=0.01) without meaningfully affecting diagnosis rates of any-, CS-, or HG PCa.

Standard TRUS-guided SBX remains the most common technique used worldwide in biopsy-naïve patients deemed to warrant PB. While affected by characteristics of the population under study, PCa detection rates are approximately 40-45% for SBX²³. Despite this, TRUS-SBX harbors low sensitivity and specificity in the diagnosis of PCa¹²: repeat biopsy identifies PCa in 10-25% of men with an initially negative biopsy²⁴. Further, TRUS-SBX underestimates tumor grade in 36% of men when compared to radical prostatectomy (RP)²⁵. With the advent of mpMRI, the sensitivity of PCa imaging has improved²⁶. Previous meta-analyses have shown that mpMRI-informed TGBX detects more CS PCA, with fewer cores than utilized in TRUS-guided SBX¹³.

More than 70% of studies included in this analysis used 3 tesla mpMRI and incorporated the PIRADS system for interpretation of imaging. However similar results were seen in studies using 1.5 tesla mpMRI, and other reporting systems such as the Likert scale. Included studies utilized numerous strategies for TGBX including ultrasound-, cognitive-, and in-bore-fusion biopsies, all of which have demonstrated an increased detection rate of CS PCa when compared to SBX²⁷⁻²⁹. Presently, there is no consensus on which strategy is superior.

We identified a higher rate of CS PCa diagnosed with mpMRI-informed biopsy compared to SBX ranging from 7 to 18%, with an 11% higher diagnostic rate among

RCTs. This is on par with results of prior meta-analyses^{11-13, 30}. Uniquely, this analysis found mpMRI-informed biopsy identified higher rates of HG PCa.

More actionably, we found that exclusion of SBX in the mpMRI-informed TGBX arm significantly modified the association between mpMRI and CI PCa diagnosis (p=0.01), without meaningfully affecting diagnostic rates of CS- or HG PCa. Thus, in contrast to the common hypothesis that the combination of TGBX+SBX yields a higher diagnosis rate of any and CS PCa³¹, these data suggest that SBX may be safely omitted in men undergoing mpMRI-guided biopsy. This approach would be expected to decrease the over-detection of clinically indolent PCa. Further, using TGBX only, a lower number of biopsy cores are required to reach a diagnosis, leading to less discomfort and morbidity^{32, 33}. Lastly, emerging data suggest that decreased number of biopsy-cores can lead to less blood loss during RP³⁴.

This analysis strengthens the body of evidence supporting mpMRI as a riskstratification tool in biopsy-naïve men, showing that a positive mpMRI can lead to a higher detection rate of CS PCa. Our manuscript adds to the current knowledge and supports other recently published meta-analyses demonstrating that TGBX has a clear benefit over SBX alone in the diagnosis of CS PCa^{30, 35-37}. Over a million men in the US undergo TRUS-guided SBX each year³⁸, at a cost of nearly 1 billion dollars, with less than 10% of the 12 million biopsy core samples demonstrating cancer. According to the PROMIS study³⁹, approximately 25% of the biopsies (250,000) could be avoided in patients with a negative pre-biopsy mpMRI. But, for patients with a positive mpMRI, our study shows that they could go down from a 12-core biopsy to only a 4-core biopsy (provided there is only one mpMRI-targeted lesion), resulting in a reduction of 8 million cores processed per year. This supports the concept of an mpMRI-first strategy in biopsy-naïve men as an effective and cost-effective approach for the diagnosis of CS PCa⁴⁰. However, we must not forget that if an mpMRI-first strategy in biopsy-naïve men is adopted, the cost of mpMRI must be taken into consideration when analyzing the cost-effectiveness of this entire approach. Taken together, the added benefit of SBX is shown to be questionable in the setting of biopsy-naïve men suspected to have PCa, and its role must be reconsidered, possibly omitted, as recommended in men with a previous negative biopsy².

No difference was noted in the diagnosis rate of CI PCa between mpMRI-informed biopsy and SBX. In contrast, three prior meta-analyses have demonstrated a lower rate of CI PCa diagnosis with TGBX when compared to SBX^{11, 12, 30} while Valerio et al. showed that most studies demonstrated a higher rate of CI PCa in the mpMRI-informed biopsy pathology¹³. As discussed above, this may be affected using SBX in the TGBX group. In our meta-analysis, TGBX alone or combined with SBX demonstrate an equal rate of CS PCa diagnosis rate but TGBX alone resulted in a 4% reduction in CI PCa diagnosis. The definition of CI PCa varies between studies, ranging from the Epstein criteria⁴¹ to the combination of maximal cancer core length <6 mm with GGG 1⁴². In our analysis, we used the simplified definition of GGG=1 alone, which could explain some of the discrepancies between our analysis and others.

The strength of our analysis includes a comprehensive search strategy and actionable data due to the use of mpMRI protocols in accordance with the current recommended imaging guidelines. However, there are several limitations. First, mpMRIinformed biopsy procedure lacked standardization. There was significant variability

17

across the studies with regards to the interpretation of suspicious MRI lesions, the decision on when to biopsy, method of TGBX, the number of cores taken, and the different stages of the learning curve of the radiologists who interpreted the imaging. Second, there was significant heterogeneity among many of the comparisons included in this review. We used random effects models to pool these studies as a result. Third, this analysis focused on biopsy-naïve men and these results may not be applicable to those with a previous negative biopsy. Fourth, this analysis only applies to patients with a positive mpMRI. For patients with a negative mpMRI, the current role of SBX remains controversial. Notably, previous analyses have demonstrated a CS PCa diagnosis rate of 12% on systematic biopsy of men with negative mpMRI⁴³, making the role of SBX far from obsolete, especially with a negative mpMRI. SBX is still crucial in many settings and understanding when it is mandatory and when not is imperative. Furthermore, when considering management with focal therapy, SBX might have a critical role of ruling out additional disease outside the target lesion. Importantly, aside from the changing radiologist learning curve of interpreting mpMRI images, the ease of properly obtaining an mpMRI-targeted biopsy around the world varies due to a plethora of considerations, and thus the conclusion of this study may not be applicable worldwide. Lastly, there is a potential methodological error in assuming that one type of biopsy diagnoses more CS-PCa than another based on the results of PB alone. Deciphering which strategy is better from a diagnostic perspective, would be to analyze the RP specimens of all patients who underwent either a TGBX or SBX and compare the rate of CS PCa in the final specimen to the preoperative biopsy result. Indeed, a recently published study showed that TGBX can sample the highest grade of a dominant lesion, and perhaps even a

tertiary high-score location. This resulted in reporting a higher biopsy GGG and subsequent downgrading of the final pathologic specimen following RP⁴⁴.

5. Conclusions

Based on a comprehensive, current meta-analysis, a mpMRI-informed TGBX strategy in men undergoing their first PB resulted in a significantly higher diagnosis rate of any-, CS-, and HG-PCa, compared to SBX. Furthermore, exclusion of SBX for men undergoing mpMRI-informed TGBX was associated with decreased rates of CI PCa diagnosis without affecting diagnosis rates of CS- or HG PCa.

Author Contributions:

Design and conception: HG, CJDW

Study selection: AEA, TC, HG

Data extraction: AEA, HG, ZK, CJDW

Analysis and interpretation of data: CJDW, HG, AEA

Writing of manuscript: HG, AEA, CJDW

Editing and reviewing of manuscript: ZK, TC, NF, LK, ME, MAH, SST, NP, MDT, CJDW

Acknowledgements: We would like to show our gratitude to Ms. Diana Almader-Douglas from the Mayo Clinic, in the University of Arizona for her tremendous help in the search performed for this meta-analysis.

Conflict of Interests: None

Financial Disclosure:

a. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

b Dr. Mark Emberton receives research support from the United Kingdom's National Institute of Health Research (NIHR) UCLH/UCL Biomedical Research Centre. He is an NIHR Senior Investigator.

20

Figure legends:

Figure 1. – Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flow chart

Figure 2. Forest plot for meta-analysis of the difference in prostate cancer diagnosis between patients assessed using systematic biopsy or mpMRI-informed biopsy, stratified by study methodology: (a) any prostate cancer diagnosis, (b) clinically-significant prostate cancer diagnosis, (c) clinically-insignificant prostate cancer diagnosis, (d) high-grade prostate cancer diagnosis.

Figure 3. Forest plot for meta-analysis of the difference in prostate cancer diagnosis between patients assessed using systematic biopsy or mpMRI-informed biopsy, stratified by inclusion of systematic biopsy in the mpMRI-informed biopsy arm: (a) any prostate cancer diagnosis, (b) clinically-significant prostate cancer diagnosis, (c) clinically-insignificant prostate cancer diagnosis, (d) high-grade prostate cancer diagnosis.

ancer.

References

1. Hodge KK, McNeal JE, Terris MK et al: Random systematic versus directed ultrasound guided transrectal core biopsies of the prostate. J Urol 1989; **142:** 71.

2. Mottet N, Bellmunt J, Bolla M et al: EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 2017; **71:** 618.

3. Kongnyuy M, Sidana A, George AK et al: The significance of anterior prostate lesions on multiparametric magnetic resonance imaging in African-American men. Urol Oncol 2016; **34**: 254.e15.

4. Schouten MG, van der Leest M, Pokorny M et al: Why and where do we miss significant prostate cancer with multi-parametric magnetic resonance imaging followed by magnetic resonance-guided and transrectal ultrasound-guided biopsy in biopsy-naïve men? Eur Urol 2017; **71**: 896.

5. Zhao C, Gao G, Fang D et al: The efficiency of multiparametric magnetic resonance imaging (mpMRI) using PI-RADS Version 2 in the diagnosis of clinically significant prostate cancer. Clin Imaging 2016; **40**: 885.

6. Fütterer JJ, Briganti A, De Visschere P et al: Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 2015; **68:** 1045.

7. Siddiqui MM, Rais-Bahrami S, Turkbey B et al: Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 2015; **313**: 390.

8. Kasivisvanathan V, Rannikko AS, Borghi M et al: MRI-targeted or standard biopsy for prostatecancer diagnosis. N Engl J Med 2018; **378:** 1767.

9. Porpiglia F, Manfredi M, Mele F et al: Diagnostic pathway with multiparametric magnetic resonance imaging versus standard pathway: results from a randomized prospective study in biopsynaïve patients with suspected prostate cancer. Eur Urol 2017; **72**: 282.

10. Borofsky S, George AK, Gaur S et al: What are we missing? False-negative cancers at multiparametric MR imaging of the prostate. Radiology 2018; **286:** 186.

11. Schoots IG, Roobol MJ, Nieboer D et al: Magnetic resonance imaging-targeted biopsy may enhance the diagnostic accuracy of significant prostate cancer detection compared to standard transrectal ultrasound-guided biopsy: a systematic review and meta-analysis. Eur Urol 2015; **68**: 438.

12. Wegelin O, van Melick HHE, Hooft L et al: Comparing three different techniques for magnetic resonance imaging-targeted prostate biopsies: a systematic review of in-bore versus magnetic resonance imaging-transrectal ultrasound fusion versus cognitive registration. Is there a preferred technique? Eur Urol 2017; **71**: 517.

13. Valerio M, Donaldson I, Emberton M et al: Detection of clinically significant prostate cancer using magnetic resonance imaging-ultrasound fusion targeted biopsy: a systematic review. Eur Urol 2015; **68**: 8.

14. Wise J: NICE recommends MRI for suspected prostate cancer to reduce biopsies. BMJ 2018; **363**: k5290.

15. Baco E, Rud E, Eri LM et al: A randomized controlled trial to assess and compare the outcomes of two-core prostate biopsy guided by fused magnetic resonance and transrectal ultrasound images and traditional 12-core systematic biopsy. Eur Urol 2016; **69:** 149.

16. Rosenkrantz AB, Verma S, Choyke P et al: Prostate magnetic resonance imaging and magnetic resonance imaging targeted biopsy in patients with a prior negative biopsy: a consensus statement by AUA and SAR. J Urol 2016; **196**: 1613.

17. Fulgham PF, Rukstalis DB, Turkbey IB et al: AUA policy statement on the use of multiparametric magnetic resonance imaging in the diagnosis, staging and management of prostate cancer. J Urol 2017; **198:** 832.

18. Moher D, Liberati A, Tetzlaff J et al: Preferred reporting items for systematic reviews and metaanalyses: the PRISMA statement. J Clin Epidemiol 2009; **62**: 1006.

19. Higgins JPT, Altman DG, Gøtzsche PC et al: The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 2011; **343:** d5928.

20. Deeks JJ, Dinnes J, D'Amico R et al: Evaluating non-randomised intervention studies. Health Technol Assess 2003; **7:** iii.

21. Wells GA Shea B, O'Connell D et al: The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa, Ontario: Ottawa Hospital Research Institute 2019. Available at http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed March 24, 2019.

22. Higgins JP, Thompson SG, Deeks JJ et al: Measuring inconsistency in meta-analyses. BMJ 2003; **327:** 557.

23. Lane BR, Zippe CD, Abouassaly R et al: Saturation technique does not decrease cancer detection during followup after initial prostate biopsy. J Urol 2008; **179:** 1746.

24. Welch HG, Fisher ES, Gottlieb DJ et al: Detection of prostate cancer via biopsy in the Medicare-SEER population during the PSA era. J Natl Cancer Inst 2007; **99:** 1395.

25. Epstein JI, Feng Z, Trock BJ et al: Upgrading and downgrading of prostate cancer from biopsy to radical prostatectomy: incidence and predictive factors using the modified Gleason grading system and factoring in tertiary grades. Eur Urol 2012; **61:** 1019.

26. Wu LM, Xu JR, Gu HY et al: Usefulness of diffusion-weighted magnetic resonance imaging in the diagnosis of prostate cancer. Academic radiology 2012; **19:** 1215.

27. Pinto PA, Chung PH, Rastinehad AR et al: Magnetic resonance imaging/ultrasound fusion guided prostate biopsy improves cancer detection following transrectal ultrasound biopsy and correlates with multiparametric magnetic resonance imaging. J Urol 2011; **186**: 1281.

28. Moore CM, Robertson NL, Arsanious N et al: Image-guided prostate biopsy using magnetic resonance imaging-derived targets: a systematic review. Eur Urol 2013; **63**: 125.

29. Hoeks CM, Schouten MG, Bomers JG et al: Three-Tesla magnetic resonance-guided prostate biopsy in men with increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol 2012; **62**: 902.

30. Kasivisvanathan V, Stabile A, Neves JB et al: Magnetic resonance imaging-targeted biopsy versus systematic biopsy in the detection of prostate cancer: a systematic review and meta-analysis. Eur Urol 2019; **76**: 284.

31. Mannaerts CK, Kajtazovic A, Lodeizen OAP et al: The added value of systematic biopsy in men with suspicion of prostate cancer undergoing multiparametric MRI-targeted biopsy. Urol Oncol 2019; **37:** 298.e1.

32. Pepe P and Aragona F: Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology 2013; **81:** 1142.

33. Simsir A, Kismali E, Mammadov R et al: Is it possible to predict sepsis, the most serious complication in prostate biopsy? Urol Int 2010; **84:** 395.

34. Carneiro A, Sivaraman A, Sanchez-Salas R et al: Higher number of transrectal ultrasound guided prostate biopsy cores is associated with higher blood loss and perioperative complications in robot assisted radical prostatectomy. Actas Urol Esp 2017; **41:** 155.

35. Elwenspoek MMC, Sheppard AL, McInnes MDF et al: Comparison of multiparametric magnetic resonance imaging and targeted biopsy with systematic biopsy alone for the diagnosis of prostate cancer: a systematic review and meta-analysis. JAMA Netw Open 2019; **2**: e198427.

36. Drost FH, Osses D, Nieboer D et al: Prostate magnetic resonance imaging, with or without magnetic resonance imaging-targeted biopsy, and systematic biopsy for detecting prostate cancer: a Cochrane systematic review and meta-analysis. Eur Urol 2019; doi: 10.1016/j.eururo.2019.06.023.

Woo S, Suh CH, Eastham JA et al: Comparison of magnetic resonance imaging-stratified clinical 37. pathways and systematic transrectal ultrasound-guided biopsy pathway for the detection of clinically significant prostate cancer: a systematic review and meta-analysis of randomized controlled trials. Eur Urol Oncol 2019; doi: 10.1016/j.euo.2019.05.004.

Loeb S, Vellekoop A, Ahmed HU et al: Systematic review of complications of prostate biopsy. Eur 38. Urol 2013; 64: 876.

Ahmed HU, El-Shater Bosaily A, Brown LC et al: Diagnostic accuracy of multi-parametric MRI and 39. TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017; 389: 815. Faria R, Soares MO, Spackman E et al: Optimising the diagnosis of prostate cancer in the era of 40. multiparametric magnetic resonance imaging: a cost-effectiveness analysis based on the Prostate MR

Imaging Study (PROMIS). Eur Urol 2018; 73: 23.

Epstein JI, Walsh PC, Carmichael M et al: Pathologic and clinical findings to predict tumor extent 41. of nonpalpable (stage T1c) prostate cancer. JAMA 1994; 271: 368.

Rouvière O, Puech P, Renard-Penna R et al: Use of prostate systematic and targeted biopsy on 42. the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019; 20: 100.

Rouse P, Shaw G, Ahmed HU et al: Multi-parametric magnetic resonance imaging to rule-in and 43. rule-out clinically important prostate cancer in men at risk: a cohort study. Urol Int 2011; 87: 49.

Beksac AT, Sobotka S, Xu P et al: Downgrading of grade group after radical prostatectomy: 44. comparison of multiparametric magnetic resonance imaging guided fusion biopsy and standard 12-core

 Table 1-Characteristics of included studies

	Country/	Study	Inclusion	Study size	PSA (ng/ml)	Age (yr)	Biops	y approach	Biopsy	MRI	MRI	TGBX	
Author (yr)	Number of centers	interval	Criteria	(SBX/ TGBX)	(SBX/ TGBX)	(SBX / TGBX)	SBX	TGBX	- technique in MRI arm	machi ne	system	technique	Outcome
						Randomized cont	trolled trials	C,	,				
Baco (2016)	Norway/1	9/2011- 6/2013	Elevated PSA (PSA 4- 20ng/ml) and/or abnormal DRE	175 (89/86)	Median 7.6/Median 6.9	Median 65/Median 64	Transrectal	Transrectal	Systematic + targeted	1.5T	PIRADS v1	Software fusion	Overall PCa CS PCa
Kasivisvanathan (2018)	Multiple/25	2/2016- 8/2017	Elevated PSA and/or abnormal DRE	500 (248/252)	Mean 6.5/Mean 6.75	Mean 64.5/Mean 64.4	Transrectal	Transrectal Transperineal	Targeted only	1.5T, 3T	PIRADS v2	Software fusion Cognitive fusion	CS PCa Insignifican t PCa Negative mpMRI
Park (2011)	South Korea/1	7/2008- 12/2009	Elevated PSA and/or abnormal DRE	85 (41/44)	Mean 5.6/Mean 6.1	Mean 61/Mean 63	Transrectal	Transrectal	Systematic+ targeted	3T	NR	Cognitive fusion	Overall PCa Positive core rate
Porpiglia (2017)	Italy/2	11/2014- 3/2016	Elevated PSA (PSA <=15 ng/ml) Normal DRE	212 (105/107)	Median 6.7/Median 5.9	Median 66/ Median 64	Transrectal	Transrectal Transperineal	Targeted only	1.5T	PIRADS v1	Software fusion	Overall PCa CS PCa
Tonttila (2016)	Finland/1	4/2011- 12/2014	Elevated PSA (PSA	113 (60/53)	Median 6.2/Median	Median 62/ Median 63	Transrectal	Transrectal	Systematic+	3Т	4-point scale	Cognitive fusion	Overall PCa

			<20 ng/ml or		6.1				targeted				CS PCa
			free-to-total										D :::
			PSA ratio										Positive
			<=0.15 and						$\boldsymbol{\lambda}$				core rate
			PSA <10						\circ				
			ng/ml in						\times				
			6					Q-					
			repeated										
			measurement)										
						Prospective coh	ort studies	\sim					
			1	1				$\overline{\boldsymbol{\mathcal{C}}}$		-			Overall DCo
								7					Overall I Ca
			Elevated PSA				2		Systematic+				CS PCa
Borkowetz	Germany/2	1/2016-	and/or	384 (214/170)	Median 6.22	Median 63	Transrectal	Transperineal	Systematic	3T	PIRADS	Software	
(2018)		12/2017	abnormal					*	targeted		v2	fusion	Positive
			DRE										core rate
							*						
			Elevated PSA						Courte un etie t				Overall PCa
Castellucci	Spain/1	7/2011-	and/or	254 (168/86)	Mean 8 3	Mean 61 4	Transrectal	Transrectal	Systematic+	1 5T	PIRADS	Cognitive	CS PCa
(2017)	Spani/1	7/2014	abnormal	234 (100/00)	Wiedin 0.5	Mean 01.4	Transfectar	Tunsiceur	targeted	1.51	v1	fusion	corca
			DRE						C				
		1/2010-	Elevated PSA										Overall PCa
De Gorski	Eron 20/1	5/2014	(DSA < 10)	222	Man 65	Moon 64	Transraatal	Trongraatal	Systematic+	1.5T	Likort	Software	CS DCa
(2015)	FTance/1		(FSA < 10	232	Weat 0.5	Weall 04	Tansiectai	Transfectar	targeted	1.51	LIKEIT	fusion	CSFCa
			ng/ml)		0				angetea				
						Mean						Software	Overall PCa
			Elevated PSA	\sim	Mean	62.7/Mean	Tronorotol		Existematic			fusion	Insignifison
Delongchamps	France/1	1/2011-	and/or	605 (391/214)	8.1/Mean	64.6/ Mean	Transrectar	Transperineal	5 ysternatic+	1.5T	3-point	TUSIOII	nisigini ican
(2013)		3/2012	abnormal		8 3/Mean 9	64.5		F	targeted		scale	Cognitive	t PCa
			DRE	*	5.5/100m y				-			fusion	

3

Delongchamps (2016)	France/7	6/2014- 10/2014	Elevated PSA (PSA >4ng/ml)	108	Median 7.2	Median 65	Transrectal	Transrectal	Systematic+	1.5T 3T	PIRADS v1	Software fusion	Overall PCa CS PCa
Garcia Bennett (2017)	Spain/4	10/2014- 4/2016	Elevated PSA (PSA > 4 ng/mL, a PSA den-sity > 0.18 ng/mL/mL, a PSA velocity > 0.75 ng/mL/year) and/or abnormal DRE	92 (60/32)	Median 7.2	Mean 64.1	Transperineal	Transperineal	Systematic+ targeted	3Т	PIRADS v1	Cognitive fusion	Overall PCa CS PCa
Mozer (2015)	France/1	1/2010- 9/2013	Elevated PSA (PSA 4- 10ng/ml)	152	Median 6	Median 63.7	Transrectal	Transrectal	Systematic+ targeted	1.5T	Likert	Software fusion	CS PCa
Peltier (2015)	Belgium/1	3/2012- 9/2013	NR	110	Median 6.9	Median 65.8	Transrectal	Transrectal	Systematic+ targeted	3T	PIRADS v1	Software fusion	CS PCa
Pokorny (2014)	Australia/1	7/2012- 1/2013	Elevated PSA and/or abnormal DRE	365 (223/142)	Median 5.3	Median 63	Transrectal	Transrectal	Systematic+ targeted	3T	PIRADS v1	Cognitive fusion	Low risk PCa Intermediat e/high risk PCa
Quentin (2014)	Germany/1	11/2011- 10/2013	Elevated PSA (PSA >4	128	Median 6.7	Median 67	Transrectal	Transrectal	Systematic+	3T	PIRADS v1	In-bore fusion	CS PCa

ng/ml) targeted Elevated PSA and/or CS PCa Software 7/2015abnormal Systematic+ Transrectal Transrectal 1.5T fusion Insignifican 8/2016 DRE 457 (251/206) Rouviere (2019) France/16 Median 6.5 Median 64 Likert t PCa targeted 3T Cognitive Family fusion history of PCa Overall PCa 10/2014-Elevated PSA Transperineal Transrectal Systematic+ PIRADS Software 8/2016 Shoji (2017) Japan/1 (PSA 4-250 Median 6.7 Median 68 NR CS PCa v1fusion targeted 20ng/ml) Elevated PSA Transrectal Transrectal CS PCa Systematic+ Van der Leest Netherlands 2/2015-PIRADS (PSA >=3 626 (309/317) Median 6.4 Median 65 3T In-bore fusion (2018) /4 2/2018 v2 targeted ng/ml) Overall PCa Elevated PSA Transperineal Transperineal Systematic+ 12/2014and/or PIRADS Software Zhang (2017) 253 Median 69 Median 10.05 3T CS PCa China/1 2/2016 abnormal v1fusion targeted DRE Retrospective cohort studies Elevated PSA and/or abnormal Cognitive Mean DRE Systematic+ CS PCa 1/2012-PIRADS Mean fusion Acar (2015) Turkey/1 100 (37/63) 62.3/Mean Transrectal Transrectal 3T 2/2014 7.6/Mean 5.9 v1 Family targeted 60.4 In-bore fusion history of PCa Abnormal

			PSA adjunct tests										
Bryant (2019)	United Kingdom/1	1/2015- 7/2017	NR	1789 (997/792)	Median 7.9/Median 7.6	Median 69/Median 68	Transrectal	Transrected	Systematic+ targeted	1.5T 3T	PIRADS v2	Cognitive fusion	Overall PCa CS PCa CS PCa in patients with negative MRI
Chen (2015)	China/1	6/2008- 12/2013	Elevated PSA and/or abnormal DRE	420	Median 9.73	Median 67	Transperineal	Transperineal	Systematic+ targeted	3Т	5-point scale	Cognitive fusion	Overall PCa
Choi (2018)	South Korea/1	9/2013- 3/2017	Elevated PSA (PSA>=2.5 ng/ml) and/or abnormal DRE	1991 (1786/223)	Median 4.62/Median 4.51	Median 64/ Median 66	Transrectal	Transperineal		3Т	PIRADS v2	Software fusion Cognitive fusion	Overall PCa CS PCa
Kam (2018)	Australia/1	6/2014- 8/2016	NR	121	Mean 7.44	Mean 65.5	Transrectal	Transrectal Transperineal	Systematic+ targeted	1.5T	PIRADS v2	Software fusion Cognitive fusion	CS PCa
Maxeiner (2018)	Germany/1	1/2012- 12/2016	at least one suspicious lesion of the prostate according to the PI-RADS	A 348	Median 7.14	Median 68	Transrectal	Transrectal	Systematic+ targeted	3T	PIRADS v1 & v2	Software fusion	CS PCa

6

			classification in mpMRI defined as PI- RADS ≥3						~				
Mendhiratta (2015)	USA/1	6/2012- 6/2015	NR	382	Mean 6.8	Mean 64.5	Transrectal	Transrectal	Systematic+ targeted	3Т	Likert	Software fusion	Highest Gleason score CS PCa
Peltier (2016)	Belgium/1	mpMRI 2011-2013, TRUS 2006-2007	Elevated PSA and/or abnormal DRE	119	Median 6.98/Median 6.19	Median 65/Median 63	Transrectal	Transrectal	Systematic+ targeted	3Т	PIRADS v1	Software fusion	Overall PCa CS PCa
Washino (2018)	Japan/2	1/2010- 4/2014	Elevated PSA (PSA <15 ng/ml)	496 (281/215)	Median 6.7/Median 6.4	Median 68/Median 68	Transperineal	Transperineal	Systematic+ targeted	1.5T 3T	3-point scale	Cognitive fusion	Overall PCa CS PCa
Yarlagadda (2018)	USA/1	2014-2016	Elevated PSA (PSA > 4ng/ml) and/or abnormal DRE	69	Mean 7.71	Mean 64.33	Transrectal	Transrectal	Systematic+ targeted	3T	PIRADS v2	Software fusion	Overall PCa

CS=clinically significant; GGG=Gleason grade group; PSA=Prostate specific antigen, NR=Not reported; MRI=magnetic resonance imaging; PIRADS=Prostate Imaging Reporting and Data System; SBX = Systematic biopsy; T=Tesla; TGBX = Targeted biopsy

Figure 1. – Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) flow chart

Figure 2. Forest plot for meta-analysis of the difference in prostate cancer diagnosis between patients assessed using systematic biopsy or mpMRI-informed biopsy, stratified by study methodology: (a) any prostate cancer diagnosis, (b) clinically-significant prostate cancer diagnosis, (c) clinically-insignificant prostate cancer diagnosis, (d) high-grade prostate cancer diagnosis.

(b) clinically-significant prostate cancer diagnosis

	TRUS bi	opsy	mpMRI informed b	iopsy		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
1.3.1 Randomized controlled trial	S						
Baco 2016	44	89	38	86	18.7%	0.05 [-0.10, 0.20]	
Kasivisvanathan 2018	64	248	95	252	23.9%	-0.12 [-0.20, -0.04]	
Park 2011	2	41	11	44	19.0%	-0.20 [-0.35, -0.06]	
Porpiglia 2017	14	105	44	107	21.4%	-0.28 [-0.39, -0.16]	
Tonttila 2016	18	60	15	53	17.1%	0.02 [-0.15, 0.18]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		543		542	100.0%	-0.11 [-0.23, 0.00]	
Total events	142		203				
Heterogeneity: Tau ² = 0.01; Chi ² =	16.61, df=	= 4 (P =	0.002); I² = 76%				
Test for overall effect: Z = 1.94 (P =	: 0.05)						
1.3.2 Prospective cohort study							
Borkowetz 2018	74	214	81	170	7 4 %	-0.13[-0.23]-0.03]	
Castellucci 2017	22	168	41	88	6.9%	-0.73 [-0.25, -0.05]	
de Gorski 2015	91	232	113	232	7.6%	-0.09[-0.18]-0.00]	
Delongchamns 2013 - Cohort 1	18	127	18	54	6.2%	-0.19 [-0.33 -0.05]	
Delongchamps 2013 - Cohort 2	26	131	33	78	6.5%	-0.22[-0.35]-0.10]	
Delongchamps 2013 - Cohort 3	19	133	27	82	6.9%	-0.19[-0.30]-0.07]	
Delongchamps 2016	38	108	40	108	6.6%	-0.02[-0.15]0.11]	
Garcia Bennetta 2017	27	60	27	32	5.2%	-0.39 (-0.57 -0.22) +	_
Mozer 2015	34	152	33	152	7.6%	0.01 [-0.09, 0.10]	
Peltier 2015	8	110	19	110	7.8%	-0.10 [-0.19, -0.01]	
Pokorny 2014	79	223	93	142	7.4%	-0.30 -0.40 -0.201	
Rouviere 2019	75	251	94	206	7.7%	-0.16 [-0.25, -0.07]	
van der Leest 2018	146	626	180	317	8.3%	-0.33 [-0.40, -0.27]	_ _
Zhang 2017	35	224	59	224	8.8%	-0.11 [-0.18, -0.03]	_
Subtotal (95% CI)		2759		1993	100.0%	0.18 [-0.24, -0.11]	◆
Total events	703		858		\sim		
Heterogeneity: Tau ² = 0.01; Chi ² =	70.14, df=	= 13 (P ·	< 0.00001); I ^z = 81%		\sim		
Test for overall effect: Z = 5.51 (P <	0.00001)				N		
1.3.3 Retrospective cohort study							
Acar 2015	12	37	28	63	4.5%	-0.12 [-0.31, 0.07]	
Bryant 2019	481	997	388	792	13.2%	-0.01 [-0.05, 0.04]	
Chen 2015	13	420	43	420	14.0%	-0.07 [-0.10, -0.04]	
Choi 2018	323	1/86	96	223	11.7%	-0.25 [-0.32, -0.18]	
Kam 2018 Mausia an 2010	61	121	61	121	7.6%	0.00 [-0.13, 0.13]	
Maxelher 2018 Mandhivetta 2015	158	318	175	318	11.0%	-0.05 [-0.13, 0.02]	
Menuniralia 2015	102	382	22	382	12.0%	-0.04 [-0.10, 0.02]	
Peller 2010 Washing 2019	19	201	22	215	9.070	-0.03 [-0.12, 0.07]	
Vasimio 2016 Variagadda 2019	24	60	25	210	5.0%	-0.12 [-0.21, -0.04]	
Subtotal (95% CI)	24	4530	20	2722	100.0%	-0.07 [-0.12, -0.02]	•
Total events	1269		1040				•
Heterogeneity: Tau ² = 0.00° Chi ² =	39.68 df=	9.(P <	0 00001) 12 = 77%				
Test for overall effect: Z = 2.87 (P =	0.004)						
						÷	
						-(More events in mpMRI More events in standard
Test for subgroup differences: Chi	i² = 6.35, d	f= 2 (P	= 0.04), I² = 68.5%				

(c) clinically-insignificant prostate cancer diagnosis

	TRUS bi	opsy	mpMRI informed bi	opsy		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% CI
1.2.1 Randomized controlled trial	S						
Baco 2016	4	89	13	86	3.5%	-0.11 [-0.19, -0.02]	
Kasivisvanathan 2018	55	248	23	252	4.0%	0.13 [0.07, 0.19]	
Park 2011	2	41	2	44	3.4%	0.00 [-0.09, 0.09]	
Porpiglia 2017	17	105	10	107	3.4%	0.07 [-0.02, 0.16]	
Tonttila 2016	16	60	19	53	1.9%	-0.09 [-0.26, 0.08]	
Subtotal (95% CI)		543		542	16.3%	0.01 [-0.09, 0.11]	
Total events	94		67				
Heterogeneity: Tau* = 0.01; Chi* =	22.36, df =	= 4 (P =	0.0002); 1* = 82%				
Lest for overall effect: $Z = 0.19$ (P =	: 0.85)						
1.2.2 Prospective cohort study							
Borkowetz 2018	17	214	19	170	41%	-0.03 (-0.09, 0.03)	
Castellucci 2017	27	168	28	86	2.9%	-0.16[-0.28]-0.05]	
de Gorski 2015	38	232	30	232	4.0%		
Delongchamps 2013 - Cohort 1	37	127	12	54	2.5%	0.07 [-0.07 0.21]	
Delongchamps 2013 - Cohort 2	34	131	31	78	2.6%	-0.14 [-0.27, -0.01]	
Delongchamps 2013 - Cohort 3	25	133	35	82	2.7%	-0.24 [-0.36, -0.11]	
Delongchamps 2016	28	108	21	108	3.0%	0.06 [-0.05 0.18]	
Garcia Bennetta 2017	5	60	- 1	32	3.4%	0.05 [-0.04 0.14]	
Mozer 2015	52	152	49	152	3.1%	0.02 (-0.09, 0.13)	
Peltier 2015	42	110	38	110	2.6%	0.04 [-0.09, 0.16]	
Pokorny 2014	47	223	6	142	4.0%	0.1710.11.0.23	
Rouviere 2019	35	251	23	206	4.1%	0.03 1-0.03, 0.091	
van der Leest 2018	155	626	81	317	4.1%	0.01 (-0.07, 0.05)	
Zhang 2017	43	224	40	224	3.8%	0.01 (-0.06, 0.09)	
Subtotal (95% CI)		2759		1993	46.9%	-0.00 [-0.05, 0.05]	
Total events	585		414		</td <td></td> <td></td>		
Heterogeneity: Tau ² = 0.01; Chi ² =	60.63, df=	= 13 (P	< 0.00001); I ² = 79%				
Test for overall effect: Z = 0.01 (P =	: 0.99)						
1.2.3 Retrospective cohort study							
Acar 2015	7	37	9	63	2.2%	0.05 [-0.11, 0.20]	
Bryant 2019	84	997	68	792	4.7%	-0.00 [-0.03, 0.02]	
Chen 2015	15	420	61	420	4.5%	-0.11 [-0.15, -0.07]	
Choi 2018	199	1786	28	223	4.4%	-0.01 [-0.06, 0.03]	
Kam 2018	23	121	19	121	3.3%	0.03 [-0.06, 0.13]	
Maxeiner 2018	64	318	50	318	4.1%	0.04 [-0.02, 0.10]	
Mendhiratta 2015	86	382	49	382	4.2%	0.10 [0.04, 0.15]	
Peltier 2016	30	119	61	119	2.8%	-0.18 [-0.29, -0.06]	
Washino 2018	42	281	34	215	4.0%	-0.01 [-0.07, 0.06]	
Yarlagadda 2018 Subtotal (05% CI)	16	4530	13	2722	2.5%	0.04 [-0.09, 0.18]	
Total events	500	4330	202	2122	30.0%	-0.01 [-0.05, 0.04]	
Hotorogonoity: Touão 0.00: Chião	000 55 1 6 df -	0.00	382 0.00001\:IZ= 0.400				
Tect for everall effect: 7 = 0.22 (P =	-000) -000	- 9 ((* - 5	0.00001), 1 = 04%				
1631101 0Verall ellect. 2 = 0.22 (i =	. 0.00)						
Total (95% CI)		7832		5257	100.0%	0.00 [-0.03, 0.03]	•
Total events	1245		863				Ť
Heterogeneity: Tau ² = 0.00; Chi ² =	143.05. df	= 28 (F	? < 0.00001): ² = 80%	6			
Test for overall effect: Z = 0.05 (P =	: 0.96)	20 ()	0.00001/11 007	-			
Test for subgroup differences: Chi	i ² = 0.08. d	f = 2 (P	= 0.96), ² = 0%				More events in mpMRI More events in standard
V							

(d) high-grade prostate cancer diagnosis

Figure 3. Forest plot for meta-analysis of the difference in prostate cancer diagnosis between patients assessed using systematic biopsy or mpMRI-informed biopsy, stratified by inclusion of systematic biopsy in the mpMRI-informed biopsy arm: (a) any prostate cancer diagnosis, (b) clinically-significant prostate cancer diagnosis, (c) clinically-insignificant prostate cancer diagnosis, (d) high-grade prostate cancer diagnosis.

(a) any prostate cancer diagnosis

X

	Systematic I	biopsy	mpMRI informed	biopsy		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.5.1 Largeted biopsy only							
Acar 2015	19	37	37	63	2.0%	-0.07 [-0.28, 0.13]	
Castellucci 2017	60	168	48	86	2.6%	-0.20 [-0.33, -0.07]	
Chen 2015	24	420	41	420	3.1%	-0.04 [-0.08, -0.00]	
Choi 2018	522	1786	124	223	3.0%	-0.26 [-0.33, -0.20]	
de Gorski 2015	129	232	126	232	2.8%	0.01 [-0.08, 0.10]	
Delongchamps 2013 - Cohort 1	55	127	40	54	2.4%	-0.31 [-0.45, -0.16]	
Delongchamps 2013 - Cohort 2	60	131	64	78	2.6%	-0.36 [-0.48, -0.24]	
Delongchamps 2013 - Cohort 3	44	133	62	82	2.6%	-0.43 [-0.55, -0.30]	
Delongchamps 2016	66	108	61	108	2.5%	0.05 [-0.08, 0.18]	
Garcia Bennetta 2017	32	60	28	32	2.2%	-0.34 [-0.51, -0.17]	
Kam 2018	84	121	80	121	2.6%	0.03 [-0.08, 0.15]	
Kasivisvanathan 2018	150	248	200	252	2.9%	-0.19 [-0.27, -0.11]	
Maxeiner 2018	222	318	213	318	3.0%	0.03 [-0.04, 0.10]	
Mendhiratta 2015	188	382	166	382	3.0%	0.06 [-0.01, 0.13]	
Mozer 2015	86	152	82	152	2.7%	0.03 [-0.09, 0.14]	
Peltier 2015	50	110	57	110	2.5%	-0.06 [-0.20, 0.07]	
Pokorny 2014	126	223	99	142	2.8%	-0.13 [-0.23, -0.03]	
Porpiglia 2017	31	105	54	107	2.5%	-0.21 [-0.34, -0.08]	
Quentin 2014	68	128	68	128	2.6%	0.00 [-0.12, 0.12]	
Rouviere 2019	131	251	104	206	2.8%	0.02 [-0.08, 0.11]	
Shoji 2017	86	250	145	250	2.9%	-0.24 [-0.32, -0.15]	
van der Leest 2018	301	626	247	317	3.0%	-0.30 [-0.36, -0.24]	
Washino 2018	118	281	119	215	2.9%	-0.13 [-0.22, -0.05]	
Yarlagadda 2018	40	69	38	69	2.2%	0.03 [-0.14, 0.19]	
Subtotal (95% CI)		6466		4147	64.3%	-0.12 [-0.18, -0.07]	◆
Total events	2692		2303				
Heterogeneity: Tau ² = 0.02; Chi ² =	218.61, df = 23	3 (P < 0.0	0001); I² = 89%				
Test for overall effect: Z = 4.21 (P <	< 0.0001)						
1.5.2 Targeted + systematic biop	sy						
Baco 2016	48	89	51	86	2.4%	-0.05 [-0.20, 0.09]	
Borkowetz 2018	91	214	100	170	2.8%	-0.16 [-0.26, -0.06]	
Bryant 2019	565	997	456	792	3.1%	-0.01 [-0.06, 0.04]	
Castellucci 2017	60	168	69	86	2.7%	-0.45 [-0.56, -0.33]	
Chen 2015	24	420	104	420	3.1%	-0.19 [-0.24, -0.14]	
de Gorski 2015	129	232	143	232	2.9%	-0.06 [-0.15, 0.03]	
Maxeiner 2018	222	318	245	318	3.0%	-0.07 [-0.14, -0.00]	
Park 2011	4	41	13	44	2.3%	-0.20 [-0.36, -0.04]	
Peltier 2016	49	119	73	119	2.6%	-0.20 [-0.33, -0.08]	
Rouviere 2019	131	251	161	206	2.9%	-0.26 [-0.34, -0.18]	
Tonttila 2016	34	60	34	53	2.1%	-0.07 [-0.25, 0.11]	
van der Leest 2018 📃 🗾	301	626	261	317	3.1%	-0.34 [-0.40, -0.29]	
Zhang 2017	78	224	99	224	2.8%	-0.09 [-0.18, -0.00]	
Subtotal (95% CI)		3759		3067	35.7%	-0.17 [-0.24, -0.09]	◆
Total events	1736		1809				
Heterogeneity: Tau ² = 0.02; Chi ² =	130.91, df = 12	2 (P < 0.0	0001); I² = 91%				
Test for overall effect; Z = 4.37 (P <	< 0.0001)						
							•
Total (95% CI)		10225		7214	100.0%	-0.14 [-0.19, -0.09]	•
Total events	4428		4112				
Heterogeneity: Tau ² = 0.02; Chi ² =	358.56, df = 38	3 (P < 0.0	0001); l² = 90%				
Test for overall effect: Z = 6.06 (P <	< 0.00001)						More events in mpMRL More events in standard
Test for subgroup differences: Ch	i² = 0.78, df = 1	(P = 0.38	3), I² = 0%				and even of the manual and even of the standard

Copyright © 2019 American Urological Association Education and Research, Inc. Unauthorized reproduction of this article is prohibited.

(b) clinically-significant prostate cancer diagnosis

	Systematic	biopsy	mpMRI informed b	oiopsy		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
1.10.1 Targeted biopsy only							
Acar 2015	12	37	28	63	1.9%	-0.12 [-0.31, 0.07]	
Castellucci 2017	33	168	30	86	2.7%	-0.15 [-0.27, -0.04]	
Chen 2015	13	420	18	420	3.6%	-0.01 [-0.04, 0.01]	A
Choi 2018	323	1786	96	223	3.3%	-0.25 [-0.32, -0.18]	
de Gorski 2015	91	232	102	232	3.0%	-0.05 [-0.14, 0.04]	
Delongchamps 2013 - Cohort 1	18	127	18	54	2.4%	-0.19 [-0.33, -0.05]	
Delongchamps 2013 - Cohort 2	26	131	33	78	2.6%	-0.22 [-0.35, -0.10]	
Delongchamps 2013 - Cohort 3	19	133	27	82	2.7%	-0.19 [-0.30, -0.07]	
Delongchamps 2016	38	108	40	108	2.6%	-0.02 [-0.15, 0.11]	
Garcia Bennetta 2017	27	60	27	32	2.0%	-0.39 [-0.57, -0.22]	
Kam 2018	61	121	61	121	2.6%	0.00 [-0.13, 0.13]	
Kasivisvanathan 2018	64	248	95	252	3.1%	-0.12 [-0.20, -0.04]	
Maxeiner 2018	158	318	140	318	3.1%	0.06 [-0.02, 0.13]	
Mendhiraπa 2015	102	382	117	382	3.3%	-0.04 [-0.10, 0.02]	
Mozer 2015	34	152	33	152	3.0%	0.01 [-0.09, 0.10]	
Petter 2015	8	110	19	110	3.1%	-0.10 [-0.19, -0.01]	
Pokorny 2014 Reminis 2017	79	223	93	142	2.9%	-0.30 [-0.40, -0.20]	
Porpiglia 2017 Develope 2019	14	105	44	107	2.7%	-0.28 [-0.39, -0.16]	
Rouviere 2019	/5	251	81	206	3.0%	-0.09 [-0.18, -0.01]	
Van der Leest 2018	140	020	159	317	3.3%	-0.27 [-0.33, -0.20]	
Washino 2018	/6	281	85	215	3.1%	-0.12 [-0.21, -0.04]	
Yariagadda 2018 Subtotal (05% CI)	24	6000	25	3760	2.2%	-0.01 [-0.17, 0.15]	
Subtotal (95% CI)		0000	4074	5709	02.0%	-0.10[-0.10, -0.07]	•
Lotal events	1441		1371				
Heterogeneity: Taur = 0.01; Chir =	179.39, df = 2	(P < 0.0	0001);1=88%				
Test for overall effect: $Z = 4.70$ (P =	(0.00001)						
1 10 2 Targeted + systematic bio	nev						
Deep 2016	pay		20	0.01	2.20	0.051.040.0.201	
Bacu 2016 Barkewett 2010	44	244	38	4 20	2.3%	0.05[-0.10, 0.20]	
BURKUWELZ 2018	/4	214	81	200	2.9%	-0.13 [-0.23, -0.03]	
Bryant 2019	481	997	388	192	3.4%	-0.01 [-0.05, 0.04]	
Chop 2015	33	100	41	400	2.0%	-0.26 [-0.40, -0.16]	
de Cerelri 2015	13	420	43	420	 3.0% 	-0.07 [-0.10, -0.04]	
Meyeiner 2019	91	232	175	232	3.070	-0.09 [-0.16, -0.00]	
Maxemer 2010	100	310	17.0	1 310	3.170 3.404	-0.00[-0.13, 0.02]	
Faik 2011 Politice 2016	10	41	22	44	2.470	-0.20 [-0.30, -0.00]	
Peller 2016 Polyioro 2010	19	261	22	206	2.9%	-0.03[-0.12, 0.07]	
Top#ile 2019	70	201	94	200	3.070	-0.10[-0.20,-0.07]	
von der Leest 2019	146	6264	10	23	2.170	0.02 [-0.10, 0.10]	
Zhong 2017	140	2204	50	224	3.370	-0.33 [-0.40, -0.27]	
Subtotal (95% CI)	30	3759	59	3067	3.2%	-0.11[-0.18, -0.03]	A
Total quanta	1100	51.55	1000	5007	30.070	-0.11[-0.17,-0.05]	•
Hotorogonoitri Touão 0.01: Chião	0010 46-10	VD ~ 0.00	1200				
Tect for everall effect: 7 = 2.60 /P =	92.12, ui = 12	: (F < 0.00	⊎01), F = 07%				
restion overall ellect. Z = 5.55 (F =	. 0.0003)						
Total (95% CI)		9847		6836	100.0%	-0.12 [-0.16, -0.08]	•
Total events	2620		2631				•
Heterogeneity: Tau ² = 0.01: Chi ² =	266 65 df= 3	4 (P < 0 0	0001): IZ = 87%				
Test for overall effect: 7 = 6.20 /P =	200.00, 01 - 0	A (1 × 0.0	0001),1 = 01.0				-0.5 -0.25 0 0.25 0.5
Test for subgroup differences: Chi	P=018 df=1	1 (P = 0.67	7) IZ = 0%				More events in mpMRI More events in standard
restion subgroup uncrences, on	r = 0.10, di =	1 (1 = 0.01	7,1 = 0.0				
()							
V							

Copyright © 2019 American Urological Association Education and Research, Inc. Unauthorized reproduction of this article is prohibited.

(c) clinically-insignificant prostate cancer diagnosis

	Systematic	biopsy	mpMRI informed	biopsy		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.9.1 Targeted biopsy only	_		_				
Acar 2015	7	37	y	63	2.6%	0.05 [-0.11, 0.20]	
Castellucci 2017	21	168	18	86	4.0%	-0.05 [-0.15, 0.05]	
Cheri 2015	15	420	23	420	0.0% c.40/	-0.02 [-0.05, 0.01]	
de Cereki 2015	199	1760	28	223	0.1% 5.50		
Delongchampe 2012 - Cohort 1	30 27	107	24	232	2.2%	0.00 [-0.00, 0.12]	
Delongchamps 2013 - Cohort 2	37	127	21		2.0%	-0.14 [-0.07, 0.21]	
Delongchamps 2013 - Cohort 2	25	101	25	02	3.170	-0.14[-0.27,-0.01]	
Delongchamps 2013 - Conort 3 Delongchamps 2016	23	108	21	102	3.3%	0.24 [0.30, -0.11]	
Garcia Bennetta 2017	20	60	21	32	4 4 %	0.05 [-0.03, 0.16]	
Kam 2018	23	121	19	121	4.4%	0.03 [-0.04, 0.14]	
Kasivisvanathan 2018	55	248	23	252	5.5%		
Maxeiner 2018	64	318	54	318	5.6%	0.03 (-0.03, 0.09)	
Mendhiratta 2015	86	382	49	382	5.8%	0.10 [0.04, 0.15]	
Mozer 2015	52	152	49	152	3.9%	0.02 [-0.09, 0.13]	
Peltier 2015	42	110	38	110	3.3%	0.04 [-0.09, 0.16]	
Pokorny 2014	47	223	6	142	5.5%	0.17 (0.11, 0.23)	
Porpiglia 2017	17	105	10	107	4.5%	0.07 (-0.02, 0.16)	
Rouviere 2019	35	251	23	206	5.5%	0.03 [-0.03, 0.09]	
van der Leest 2018	155	626	88	317	5.6%	-0.03 [-0.09, 0.03]	-+
Washino 2018	42	281	34	215	5.4%	-0.01 [-0.07, 0.06]	
Yarlagadda 2018	16	69	13	69	3.0%	0.04 [-0.09, 0.18]	
Subtotal (95% CI)		6088		3769	100.0%	0.03 [-0.01, 0.06]	◆
Total events	1049		608				
Heterogeneity: Tau ² = 0.00; Chi ² =	82.48, df = 21	(P ≤ 0.00	001); I² = 75%				
Test for overall effect: Z = 1.62 (P =	: 0.11)						
1.9.2 Targeted + systematic biop	sy						
Baco 2016	4	89	13	86	7.6%	-0.11 [-0.19, -0.02]	
Borkowetz 2018	17	214	19	170	9.6%	-0.03 [-0.09, 0.03]	
Bryant 2019	84	997	68	792	11.8%	-0.00 [-0.03, 0.02]	*
Castellucci 2017	27	168	28	86	6.0%	-0.16 [-0.28, -0.05]	_
Chen 2015	15	420	61	420	11.1%	-0.11 [-0.15, -0.07]	-
de Gorski 2015	38	232	30	232	9.2%	0.03 [-0.03, 0.10]	
Maxeiner 2018	64	318	50	318	9.6%	0.04 [-0.02, 0.10]	
Park 2011	2	41	2	44	7.4%	0.00 [-0.09, 0.09]	
Peltier 2016	30	119	51	119	5.7%	-0.18 [-0.29, -0.06]	
Ionttila 2016	16	60	19	53	3.6%	-0.09 [-0.26, 0.08]	
Van der Leest 2018 Zhong 2017	155	626	81	317	9.7%	-0.01 [-0.07, 0.05]	
Znang 2017 Subtotal (95% CI)	43	3508	40	224	8.7%	0.01[-0.00,000]	
Total evente	405	3300	462	2001	100.0%	-0.04 [-0.00, -0.00]	•
Hotorogonoity: Tou ² = 0.00: Chi2 =	490 40.00 df = 11	/B ~ 0.00	402				
Tact for everall effect: 7 = 1.07 (P =	40.20, ui = 11 • 0.05)	(= = 0.00	001, 1 = 77%				
Testilor overall ellect. Z = 1.97 (F =	0.00)						
						-	
	~						-0.5 -0.25 Ó 0.25 0.5
Test for subgroup differences: Chi	7 = 6 4 9 df = 1	(P = 0.01	I) I≊ = 84.6%				More events in mpMRI More events in standard
restion subgroup unterences. On	- 0.45, di - 1	- 0.01	17,1 = 04.070				
	$\langle \vee \rangle$						
	-						

(d) high-grade prostate cancer diagnosis

	Systematic t	piopsy	mpMRI informed b	iopsy		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.11.1 Targeted biopsy o	only						
Castellucci 2017	14	168	3	86	4.9%	0.05 [-0.01, 0.11]	+
Choi 2018	131	1786	30	223	6.1%	-0.06 [-0.11, -0.01]	
Delongchamps 2016	12	108	6	108	3.6%	0.06 [-0.02, 0.13]	
Kam 2018	24	121	23	121	2.3%	0.01 [-0.09, 0.11]	
Kasivisvanathan 2018	9	248	23	252	6.6%	-0.05 [-0.10, -0.01]	
Maxeiner 2018	85	318	75	318	4.0%	0.03 [-0.04, 0.10]	
Mozer 2015	11	152	11	152	4.8%	0.00 [-0.06, 0.06]	
Peltier 2015	0	110	0	110	10.1%	0.00 [-0.02, 0.02]	
Pokorny 2014	20	223	21	142	3.9%	-0.06 [-0.13, 0.01]	
Porpiglia 2017	3	105	6	107	5.2%	-0.03 [-0.08, 0.03]	
Rouviere 2019	24	251	21	206	5.1%	-0.01 [-0.06, 0.05]	
van der Leest 2018	46	626	42	317	6.6%	-0.06 [-0.10, -0.02]	
Washino 2018	25	281	26	215	5.1%	-0.03 [-0.09, 0.02]	
Yarlagadda 2018	11	69	9	69	1.7%	0.03 [-0.09, 0.15]	
Subtotal (95% CI)		4566		2426	70.2%	-0.01 [-0.04, 0.01]	
Total events	415		296				
Heterogeneity: Tau² = 0.0	10; Chi² = 29.4	6, df = 13	(P = 0.006); I ² = 569	6			
Test for overall effect: Z =	1.37 (P = 0.17	")					
1.11.2 Targeted + syster	natic biopsy						
Borkowetz 2018	18	214	21	170	4.5%	-0.04 [-0.10, 0.02]	
Bryant 2019	169	997	129	792	7.7%	0.01 [-0.03, 0.04]	
Castellucci 2017	14	168	5	86	4.2%	0.03 [-0.04, 0.09]	
Maxeiner 2018	85	318	106	318	3.8%	-0.07 [-0.14, 0.01]	
Park 2011	1	41	5	44	2.1%	-0.09 [-0.19, 0.02]	
Tonttila 2016	4	60	4	53	2.5%	-0.01 [-0.10, 0.09]	
Zhang 2017	15	224	29	224	5.2%	-0.06 [-0.12, -0.01]	
Subtotal (95% CI)		2022		1687	29.8%	-0.03 [-0.06, 0.00]	
Total events	306		299			$\langle \rangle$	
Heterogeneity: Tau² = 0.0	10; Chi² = 10.1	6, df = 6 (P = 0.12); I ² = 41%				
Test for overall effect: Z =	1.69 (P = 0.09	0					
T		0500					
Total (95% CI)		0588		4113	100.0%	-0.02 [-0.04, -0.00]	-
Total events	721		595				
Heterogeneity: Tau ² = 0.0	10; Chi² = 39.4	8, df = 20	$(P = 0.006); I^2 = 49\%$	6			-0.2 -0.1 0 0.1 0.2
Test for overall effect: Z =	2.16 (P = 0.03	I) 					More events in mpMRI More events in standard
l est for subgroup differei	nces: Chif = U.	.4U, df = 1	(P = 0.53), F = 0%				
				$, \mathbf{V}$	r		
		. 🔨 🗉					
	K						
	\sim						
	•						
V							
Ŧ							