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Abstract

NGS studies have uncovered an ever-growing catalog of human variation while leaving an

enormous gap between observed variation and experimental characterization of variant

function. High-throughput screens powered by NGS have greatly increased the rate of vari-

ant functionalization, but the development of comprehensive statistical methods to analyze

screen data has lagged. In the massively parallel reporter assay (MPRA), short barcodes

are counted by sequencing DNA libraries transfected into cells and the cell’s output RNA

in order to simultaneously measure the shifts in transcription induced by thousands of

genetic variants. These counts present many statistical challenges, including overdisper-

sion, depth dependence, and uncertain DNA concentrations. So far, the statistical methods

used have been rudimentary, employing transformations on count level data and disregard-

ing experimental and technical structure while failing to quantify uncertainty in the statistical

model. We have developed an extensive framework for the analysis of NGS functionaliza-

tion screens available as an R package called malacoda (available from github.com/

andrewGhazi/malacoda). Our software implements a probabilistic, fully Bayesian model of

screen data. The model uses the negative binomial distribution with gamma priors to model

sequencing counts while accounting for effects from input library preparation and sequenc-

ing depth. The method leverages the high-throughput nature of the assay to estimate the pri-

ors empirically. External annotations such as ENCODE data or DeepSea predictions can

also be incorporated to obtain more informative priors–a transformative capability for data

integration. The package also includes quality control and utility functions, including auto-

mated barcode counting and visualization methods. To validate our method, we analyzed

several datasets using malacoda and alternative MPRA analysis methods. These data

include experiments from the literature, simulated assays, and primary MPRA data. We also

used luciferase assays to experimentally validate several hits from our primary data, as well

as variants for which the various methods disagree and variants detectable only with the aid

of external annotations.
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Author summary

Genetic sequencing technology has progressed rapidly in the past two decades. Huge

genomic characterization studies have resulted in a massive quantity of background infor-

mation across the entire genome, including catalogs of observed human variation, gene

regulation features, and computational predictions of genomic function. Meanwhile, new

types of experiments use the same sequencing technology to simultaneously test the

impact of thousands of mutations on gene regulation. While the design of experiments

has become increasingly complex, the data analysis methods deployed have remained

overly simplistic, often relying on summary measures that discard information. Here we

present a statistical framework called malacoda for the analysis of massively parallel geno-

mic experiments which is designed to incorporate prior information in an unbiased way.

We validate our method by comparing our method to alternatives on simulated and real

datasets, by using different types of assays that provide a similar type of information, and

by closely inspecting an example experimental result that only our method detected. We

also present the method’s accompanying software package which provides an end-to-end

pipeline with a simple interface for data preparation, analysis, and visualization.

This is a PLOS Computational Biology Methods paper.

Introduction

The advent of next generation sequencing (NGS) has generated an explosion of observed

genetic variation in humans. Variants with unclear effects greatly outnumber those with severe

impact. For example, the 1000 Genomes Project [1] has estimated that a typical human

genome has roughly 150 protein-truncating variants, 11,000 peptide-sequence altering vari-

ants, and 500,000 variants falling into known regulatory regions. Simultaneously, genome-

wide association studies (GWAS) have found strong statistical associations between thousands

of noncoding variants and hundreds of human phenotypes [2,3]. Traditional methods of

assessing the regulatory impact of variants are slow and low-throughput: luciferase reporter

assays require multiple replications of cloning individual genomic regions, transfection into

cells, and measurement of output intensity.

Massively Parallel Reporter Assays (MPRA), overviewed in Fig 1, were developed to assess

simultaneously the transcriptional impact of thousands of genetic variants [4]. The simplest

form of MPRA uses a carefully designed set of barcoded oligonucleotides containing roughly

150 base pairs of genomic context surrounding variants of interest. There are typically thou-

sands of variants selected using preliminary evidence from GWAS, and there are usually ten to

thirty replicates of each allele with unique, inert barcodes. The oligonucleotides are cloned into

plasmids, making a complex library that is then transfected into cells. The cells use the library

as genetic material and actively transcribe the inserts. Because the barcodes are preserved by

transcription, counting the RNA products of each variant construct by re-identifying each bar-

code in the NGS product provides a direct measure of the transcriptional output of a given

genetic variant. By designing the oligonucleotide library to contain multiple barcodes of both

the reference and alternate alleles for each variant, one can statistically assess the transcription

shift (TS) for each variant. MPRA can thus be used to identify functional driver variants
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Fig 1. Diagram of MPRA. MPRA simultaneously assess the transcription shift of thousands of variants. The diagram shows eight

oligonucleotides for two variants (red and blue X’s) falling within different regions of genomic context (light red and light blue bars) with

two barcodes for each allele of each variant. In practice the complexity and size of the oligonucleotide library is limited only by cost. A

typical MPRA has tens to hundreds of thousands of oligonucleotides to assay thousands of variants. The oligonucleotides are cloned into a

plasmid library in front of an inert ORF (brown). DNA sequencing of the plasmid library is used to count the input representation of each

barcode, then RNA sequencing of the mRNA (green) is used to count the output RNA version of each barcode.

https://doi.org/10.1371/journal.pcbi.1007504.g001
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among sets of statistically significant GWAS variants that are difficult to distinguish in obser-

vational studies because of linkage disequilibrium.

MPRA have successfully identified many transcriptionally functional variants [5, 6, 7], but

the accompanying statistical analyses have been rudimentary. Initial studies focused on the

computation of the “activity” for each barcode in each RNA sample. This involves averaging

across depth-adjusted counts to compute a normalizing DNA factor for each barcode, then

dividing depth-adjusted RNA counts by the DNA factor and taking the log of this ratio. Then

a t-test is used to compare the activity measurements for each allele, followed by assay-wide

multiple-testing corrections. The key limitations include ignoring systematic variation due to

unknown DNA concentrations, compounded data transformation and summarization prior

to modelling, and the failure to include the reservoir of prior data and biological knowledge

concerning genes and genomic regions. The methods mpralm [8], MPRAscore [9], QuA-

SAR-MPRA[10], and MPRAnalyze [11] are more recent methods, but they all suffer from

some combination of common limitations: failure to model variation in input DNA concen-

trations, aggregation of data across barcodes, sequencing samples without modelling system-

atic sources of variation, and over-reliance on point estimates of dispersion that cause errors

in transcription shift estimates.

Other areas of genomic analysis have generated a wealth of information on genomic struc-

ture and function, frequently specific to particular genomic contexts and variants. For exam-

ple, the ENCODE project [12] provides genome-wide ChIP-seq data on transcription factor

binding profiles, histone marks, and DNA accessibility. Computational methods such as Deep-

Sea [13] use machine learning to provide variant-specific predictions on chromatin effects.

Genome-wide databases like ENCODE and computational predictors like DeepSea contain

real information about variant effects, but a method for incorporating this information into a

statistical framework for experimental analysis of variants has not been developed.

We hypothesized that a structured, probabilistic modelling approach to high-throughput

NGS screens such as MPRA would yield more accurate estimates of variant function while

improving statistical sensitivity and specificity, particularly when incorporating prior informa-

tion. This approach offers a flexible modelling system that can fit hierarchical model structures

of count data while also directly accounting for experimental sources of variation. Our

approach would also enable the integration of prior information and account for uncertainty

in dispersion parameter estimates. These advantages offer significant improvements in statisti-

cal efficiency and provide opportunities for formulating systems-level hypotheses—for exam-

ple, the impact of specific transcription factors—that are absent from other approaches. Here

we present malacoda, an end-to-end Bayesian statistical framework that addresses gaps in the

prior approaches while providing novel methods for incorporating prior information. The

malacoda method focuses on MPRA but also has potential extension to a broad array of NGS-

based high-throughput screens. We establish the superior performance of malacoda on MPRA

compared to alternatives using simulation studies. We then apply the method to previously

published findings to make new biological discoveries that we explore in the paper. We also

apply malacoda to primary MPRA studies that we performed. We limit the analysis of our pri-

mary data to an examination of the inter-method consistency of effect size estimates in order

to emphasize the potential of our statistical method. The barcode counts and cross-method

effect size estimates for all of the results are included in S2 Data. To demonstrate the impact of

malacoda for biologically relevant discovery, we analyzed previously published data by Ulirsch

et al, and we identified the functional variant rs11865131 within the intron of the NPRL3 gene;

we validated this finding by luciferase assay. The results demonstrate that using malacoda we

can discover biologically important findings that were missed by prior approaches. We have

made the software available as an open source R package on GitHub.
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Methods

Overview

In malacoda we utilize a negative binomial model for NGS to consider barcode counts with

empirically estimated gamma priors, and we explicitly model variation in the input DNA con-

centrations for each barcode. By default, the method marginally estimates the priors from the

maximum likelihood estimates of each variant in the assay; the method also supports informa-

tive prior estimation by using external genomic annotations for each variant as weights. This

approach enables disparate knowledge sources to inform the results in a principled, data-

driven way. The probabilistic model underlying malacoda uses the NGS data directly without

transformation, and it accounts for all known sources of experimental variation and uncer-

tainty in model parameters. Finally, the method provides estimate shrinkage as a method for

avoiding false positives.

Description of the statistical model

MPRA data are composed of the counts of the barcoded DNA input from sequencing the plas-

mid library and the counts of the barcoded RNA outputs from sequencing the RNA content

extracted from passaged cells. The DNA counts vary according to the sequencing depth of the

sample as well as due to the inherent noise in library preparation. The RNA measurements

also vary according to sequencing depth, but they are also affected by the DNA input concen-

tration and the inherent transcription rate of their associated region of genomic context. Fig

2A shows a subset of a typical MPRA dataset, with two barcodes of each allele for two variants

and several columns of counts. We find that typically MPRA are performed with four to six

RNA sequencing replicates and a smaller number of DNA replicate samples. Fig 2B shows a

simplified Kruschke diagram of the model underlying malacoda, using the mean-dispersion

parameterization of the negative binomial. More explicitly,

mDNAbc
� GammaðamDNA ; bmDNAÞ

mallele � GammaðamRNA ; bmRNAÞ

ϕDNA � GammaðaϕDNA
; bϕDNA

Þ

ϕallele � GammaðaϕRNA
; bϕRNA

Þ

CountsDNAs;bc
� NegBinðmean ¼ ds � mDNAbc

; dispersion ¼ ϕDNAÞ

CountsRNAs;bc
� NegBinðmean ¼ ds � mDNAbc

� mallele; dispersion ¼ ϕalleleÞ

Where ds indicates the depth of a particular sequencing sample, μDNA,bc indicates the

unknown concentration of a particular barcode in the plasmid library, and μallele indicates the

effect of the genomic context of a given allele of a given variant. Parameters indexed by “bc”

are vectors with an element for each barcode while those with the “allele” subscript contain

two elements for the reference and alternate alleles. The shape α and rate β parameters of the

Gamma priors are estimated empirically. Note that the mean of each negative binomial used

to model a particular count observation is directly proportional to the sequencing depth of the

sample from which that count observation arose. A more finely detailed walkthrough of the

model and its implementation are available in section 1 of S1 Appendix.
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The negative binomial distribution is a natural choice for modelling NGS count data given

its ability to accurately fit overdispersed observations frequently seen in sequencing data [14].

Briefly, the observed dispersion in NGS count data usually exceeds that expected from simpler

binomial or Poisson models. We chose gamma distributions as priors for several reasons. They

have the appropriate [0,1) support, and for a non-negative random variable whose expecta-

tion and expected log exist, they are the maximum entropy distribution. Additionally, they are

characterized by two parameters, which gives the prior estimation process enough flexibility to

accurately fit the observed population of negative binomial estimates. Probabilistic modelling

of the dispersion parameters is key as demonstrated by simulation in S2 Appendix. Allocating

probability across a distribution of dispersion parameter values impacts the inference on the

other parameters in the model, specifically the allele-level effects that the assay aims to evalu-

ate. The practice of modelling dispersion parameters probabilistically helps avoid pitfalls

found in methods that utilize point estimates of dispersion. This barcode-level count data

model that quantifies the uncertainty on the dispersion parameters is a central contribution of

the malacoda method.

After computing the joint posterior on all model parameters, the posterior on transcription

shift is computed as a generated quantity by taking the difference between log of μallele for the

alternate and reference alleles. We then compute the narrowest interval containing 95% of the

posterior on TS (the highest density interval (HDI)) for each variant. The 95% HDI is used to

make binary calls on whether a variant is functional or non-functional: if the interval excludes

zero as a credible value, the variant is labelled as “functional”. We note here that 95% is an arbi-

trary threshold based on statistical convention and common values on the trade-off between

sensitivity-specificity. Other common cutoffs such as 80% or 99% may be used. An optional

“region of practical equivalence” may also be defined on a per-assay basis when there is partic-

ular interest in rejecting a null region of transcription shift values around zero [15].

Empirical priors

The gamma priors are fit empirically using maximum likelihood estimation. Specifically, each

variant-level model is fit first by maximizing the likelihood component of the malacoda

model, then empirical gamma distributions are fit to those estimates for the means and disper-

sions of the DNA, reference RNA, and alternate RNA. This approach offers several benefits.

First, it leverages the high-throughput nature of the assay. The full dataset of thousands of vari-

ants determines the prior, so the contribution from each individual variant is small. Secondly,

it constrains the prior to be reasonable in the context of a given assay. Specific circumstances

regarding library preparation, sequencer properties, cell culture conditions, and other

unknown factors will cause the underlying statistical properties of each MPRA to be unique. A

less informed, general-purpose prior, such as Gamma(shape = 0.001, rate = 0.001), would

assign a considerable amount of probability density to unreasonable regions of parameter

space. Empirical estimation ensures that the priors capture the reasonable range of values for

each parameter while avoiding putting unwarranted density on extreme values [16]. Finally,

by sharing information between variants, empirical priors provide estimate shrinkage. The

prior effectively regularizes all parameter estimates, a behavior which is important in multi-

Fig 2. MPRA data and malacoda priors. A) The table shows a subset of our primary MPRA data. The highlighted cell containing 759 barcode counts is influenced both

by the sequencing depth of its sample (blue column) and the unknown input DNA concentration of its barcode (red row). B) A simplified Kruschke diagram of the

generative model underlying malacoda. After evaluating the joint posterior on all model parameters, a 95% posterior interval on a variant’s transcription shift (shaded

area) may be used for a binary decision between “functional” or “non-functional”. This example TS posterior shows a negative shift that excludes zero, meaning the variant

in question would be called as “functional”. C) A conceptual diagram demonstrating three prior types available in the malacoda framework. The marginal prior (left)

weights all variants in the assay equally, while the grouped and conditional priors utilize informative annotations as weights in the prior estimation process.

https://doi.org/10.1371/journal.pcbi.1007504.g002
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parameter models with relatively little data per parameter. This regularizing effect acts as an

alternative to post hoc multiple testing correction: rather than widening the confidence interval

on the estimate of the transcription shift, an empirical prior shrinks the estimate of transcrip-

tion shift towards the global average while leaving the width of the interval intact. This data-

driven approach acts as a natural safeguard against the risk of false positives found in multiple

testing scenarios while simultaneously moderating the reported effect sizes of variants that dis-

play extreme behavior by chance. The regularization effect of the empirical prior is demon-

strated in section 6 of S3 Appendix.

In order to incorporate external knowledge, the malacoda method also allows users to pro-

vide informative annotations to supplement the analysis. Fig 2C contrasts the marginal prior

(left) with two prior types that make use of external annotations. These priors use the informa-

tion in the annotations by employing the principle that similarly annotated variants should

perform similarly in the assay. When the annotations are simply a set of descriptive categories

(for example predictions of likely benign, uncertain, or likely functional), the grouped prior

(2C, center) simply fits a prior distribution within each subset. When the annotations are con-

tinuous values, the conditionally weighted (2C, right) prior employs an adaptive kernel

smoothing process to estimate the prior. To estimate the prior for a single variant, it initializes

a t-distribution kernel centered at the annotation of the variant in question, then gradually

widens this kernel until the n-th most highly weighted variant (where n is a configurable tun-

ing parameter defaulting to 100) has a weight of at least one percent of that of the most influen-

tial variant. This ensures that the weights used to estimate the conditional prior are not

dominated by the nearest neighbor in annotation space. While the diagram in Fig 2C shows

this for only a single informative annotation on the horizontal axis, the software allows for an

arbitrary number of continuous predictors to be used.

Simulation and validation studies

We took several approaches to validate and compare the malacoda method with alternatives.

First, we simulated MPRA data across a realistic grid of parameters governing the fraction of

truly functional variants, the number of variants in the assay, and the number of barcodes per

allele. These simulations also modelled distinct sequencing samples, realistic variation in

sequencing depth, and barcode failure during library preparation. We then compared mala-

coda to alternative methods including the t-test, mpralm, MPRAscore, QuASAR-MPRA, and

MPRAnalyze. Across these simulations we compared performance metrics including area

under the receiver operating characteristic curve (AUC), area under the precision-recall curve

(AUPR) and estimate accuracy. The code used to generate these simulations is provided in sec-

tions 2 and 3 of S3 Appendix. Secondly, we applied malacoda and alternative methods to real

MPRA data from the Ulirsch dataset [5], using inter-method consensus as a performance met-

ric. We repeated this using our own primary MPRA data from an assay performed in K562

cells inspecting 2666 variants related to platelet function. This assay utilized oligonucleotides

with 150bp of genomic context and inert 14bp barcodes. The barcode counts from this assay

are presented in S2 Data. In both cases we ran malacoda using both a marginal prior and a

conditional prior informed by DeepSea predictions for DNase hypersensitivity in the relevant

cell-type. Finally, we tested a subset of variants with luciferase reporter assays to assess consis-

tency with MPRA estimates of variant function.

Computational methods and software

Our method is available as an R package from github.com/andrewGhazi/malacoda. The pack-

age includes detailed installation instructions, extensive help documentation, an analysis

PLOS COMPUTATIONAL BIOLOGY Bayesian modelling of high-throughput sequencing assays with malacoda
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walkthrough vignette, and implementations of traditional activity-based analysis methods.

The statistical models are fit with Stan [17], which allows us to perform a fast first pass fit with

Automatic Differentiation Variational Inference [18] and, if a narrow 80% posterior interval

on TS excludes zero, to perform a final Markov Chain Monte Carlo (MCMC) fit with Stan’s

No-U-Turn Sampler. This presents an effective balance between the speed of approximate var-

iational inference and asymptotically exact estimation of parameters via MCMC for functional

variants. By default, each variant is first checked with a variational first pass. Then, if the vari-

ant passes the posterior interval check, MCMC is performed with 4 chains using 200 warmup

and 500 post-warmup samples per chain for a total of 2000 posterior samples. These default

settings can refine the limits of the TS posterior interval with satisfactory precision within a

short run time. While the adaptive Hamiltonian Monte Carlo provided by Stan can efficiently

explore high-dimensional posteriors, any MCMC-based method has Monte Carlo error that

makes estimate precision difficult in borderline situations—an additional digit of estimate pre-

cision requires 100 times as many MCMC samples. When using the 95% posterior interval to

make a binary classification of functional or non-functional, variants on the borderline can

require a large number of posterior samples to precisely refine the limits of the interval that is

used to classify a variant as functional or non-functional. By default, malacoda checks to see if

either edge of the 95% interval is close to zero, and if necessary, lengthens the MCMC chains

in order to provide better precision in this scenario. A full walkthrough of the computational

methods is provided in section 2 of S1 Appendix.

Our package also includes data processing functionality to extract barcodes from reads, filter

barcodes by quality, and count barcodes from a set of FASTQ files through an application of the

FASTX-Toolkit [19]. Through an interface with the FreeBarcodes package [20], the package can

also decode sequencing errors in the barcodes of an assay that has been designed using our pre-

vious work, mpradesigntools [21]. In our experience this typically recaptures about 5% addi-

tional data with no additional cost beyond a line of code during the assay design process. The

package also contains plotting functionality to help visualize the results of analyses.

Experimental methods

In order to collect experimental measurements of the transcriptional impact of variants

through means other than MPRA, we performed luciferase reporter assays on seventeen vari-

ants. Four were among the strongest signals detected in our MPRA, six were variants from our

MPRA where the statistical methods disagreed, and seven were variants from the Ulirsch data-

set [5] where the malacoda marginal and DeepSea-based [13] conditional prior model fits

disagreed.

150-200bp genomic DNA sequences flanking the variants were amplified by PCR using K562

lymphoblast (ATCC) genomic DNA as template, then cloned into PGL4.28 minimum promoter

luciferase reporter vector (Promega) at NheI and HindIII sites. Counterpart SNP variants were

generated by site-directed mutagenesis. All the constructs were validated by DNA sequencing. 3μg

plasmid preparations were co-transfected with 0.5μg β-gal plasmid into 1x106 of K562 cells with

Lipofectamine 2000 based on manufacturer’s instructions. Each assay was repeated with 3 inde-

pendent plasmid preparations. 24 hours post transfection, luciferase and β-gal were measured.

Luciferase units were then normalized to β-gal values. These results are available in S1 Data.

Results

Simulation studies

We evaluated our simulation results in three ways. First, we examined the accuracy of tran-

scription shift estimates. Fig 3A shows the results of analyzing one simulated dataset, with the
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true value of the simulation’s transcription shift plotted on the x-axis, with the model estimates

on the y-axis. For each fit of each simulation using each analysis method, we analyzed accuracy

using two metrics: standard deviation of estimates for truly non-functional variants at zero

(vertical width of the grey boxplot, lower is better) and correlation with the true values for sim-

ulated functional variants with nonzero effects (off-center points, higher is better).

Second, we also computed area under the receiver operating characteristic curve (AUC)

and area under the precision-recall curve (AUPR) in order to characterize the binary classifica-

tion performance of each method. Bayesian methods such as malacoda explicitly do not con-

sider a null hypothesis and therefore do not output p-values. In order to create an analogous

quantity needed to compute the AUC and AUPR, we instead computed one minus the mini-

mum HDI width necessary to include zero as a credible transcription shift value to distinguish

true and false positives. This process is presented in detail in section 4.1 of S3 Appendix. Fig

3B shows the ROC curves by method averaged over simulated assays with ten barcodes per

allele, 5% truly functional variants, and 3000 variants. Fig 3C shows the precision-recall curves

Fig 3. Simulation results. A) The figure compares the TS values used to generate simulated data to TS estimates. Simulated MPRA assays use a varying fraction

of variants that are truly non-functional (center). B) The average ROC curves used to assess the classification performance of each method across simulations

with 3000 variants, 5% truly functional variants, and 10 barcodes per allele. The methods shown are malacoda (red), MPRAnalyze (orange), mpralm (green),

QuASAR-MPRA (pink), MPRAscore (blue), and the t-test (purple) C) The average precision-recall curve for the same set of simulations D) Median

performance metrics across multiple simulations under the same conditions as B.

https://doi.org/10.1371/journal.pcbi.1007504.g003
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for the same simulations. Fig 3D shows that across all simulations with these characteristics,

malacoda consistently showed the highest median AUC and AUPR, the highest correlation

with the truth for functional variants, and the lowest standard deviation of estimates of truly

non-functional variants. The last metric, “spread at zero”, particularly emphasizes the regulari-

zation effect, showing that while malacoda tends to produce the most accurate effects for func-

tional variants, it can simultaneously provide the smallest estimates for truly non-functional

variants. Other combinations of simulation parameters are shown in section 5 of S3 Appendix,

displaying similar patterns.

In order to examine the performance of malacoda on real data, we applied the various

methods to both the Ulirsch data [5] and to our own primary dataset. Unlike the case with sim-

ulations, the underlying true transcription shift values are not known. However, inter-method

consensus can serve as a performance metric. Methods that utilize varying model structure

will tend to make errors in different ways, so methods that consistently perform well will show

higher correlation with alternatives than the correlations between the methods that perform

poorly. Indeed, Fig 4 shows that the other methods tend to correlate with malacoda better than

each other. This occurs despite the expected non-linear relationship between regularized and

unregularized models (i.e. between malacoda and the other alternatives). The fits based on

malacoda’s marginal and conditional priors (first and second rows/columns) in both panels of

Fig 4 tend to correlate strongly because of the identical model structure paired with large

spread of DeepSea predictions used in the prior estimation process. The conditional prior fit

only deviates significantly from the marginal prior fit for variants with high DeepSea

predictions.

Biological results

The variants we tested with luciferase reporter assays were predominantly chosen from the set

where malacoda’s marginal and conditional fits disagreed on functionality, not those variants

showing the strongest effects. These discordant variants tended to have small effects and the

noise between replicates tended to be comparable to the mean intensity ratio. Therefore, the

number of variants tested was not enough to overcome the noise inherent to light intensity-

based measurements and provide conclusive results on the accuracy of the various MPRA

analysis methods. While we were able to recapitulate the transcriptional functionality of several

variants, we did not have enough data to clearly demonstrate that any of the MPRA analysis

methods outperform the others in terms of correlation with luciferase results. Nonetheless, S2

Fig shows that the various methods are consistent with MPRA-based estimates for variants

with large shifts, providing further evidence that MPRA results are biologically realistic.

We closely inspected a particular biological discovery to demonstrate malacoda’s ability to

identify low-signal variants. One of the functional variants we identified with malacoda using

the DeepSea-based conditional prior in the Ulirsch dataset [5] is rs11865131; this variant is

identified by malacoda but not by any of the other methods after multiple testing corrections

or with the marginal prior. The conditional prior is compared to the marginal prior in S1 Fig.

We validated this variant is functional by luciferase assay in K562 cells with the results shown

in Fig 5. The variant rs11865131 is in an intron within the NPRL3 gene which encodes the

Natriuretic Peptide Receptor Like 3 protein. NPRL3 is part of the GTP-ase activating protein

activity toward Rags [22] (GATOR1) complex. The GATOR1 complex inhibits mammalian

target of rapamycin (MTOR) by inhibiting RRAGA function (reviewed in [22] MTOR signaling

has been implicated in platelet aggregation and spreading in addition to aging associated

venous thrombosis [23, 24]. Analysis of the rs11865131 locus with HaploReg [25] indicates

that it colocalizes with ENCODE ChIP-Seq peaks for 36 bound proteins (predominantly
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Fig 4. Inter-method consensus. A) A pairwise plot of TS estimate comparisons between methods in our primary MPRA dataset, showing that alternative methods

generally agree with malacoda more than each other. Shaded values above the diagonal show the correlation values for the corresponding plot below the diagonal. Color

below the diagonal indicates local density of points in over-plotted regions. B) A pairwise plot of TS estimates using both the marginal and DeepSea-based malacoda

priors in the Ulirsch dataset, showing a similar outcome.

https://doi.org/10.1371/journal.pcbi.1007504.g004
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transcription factors) in K562 erytholeukemia cells as well as containing enhancer histone epi-

genetic marks. Furthermore, this variant lies roughly one thousand base pairs away from the

nearest exon-intron boundary, suggesting that it is unlikely to alter splicing of the NPRL3 tran-

script. Together, these data indicate that this is likely an important regulatory region. In addi-

tion to the heterologous K562 cell line, data from cultured megakaryocytes indicates that

rs11865131 lies within RUNX1 and SCL ChIP-Seq peaks, two well-studied megakaryopoietic

transcription factors [26]. This agrees with our data that platelet NPRL3 mRNA is positively

associated with platelet count in healthy humans [27, 28]. These data indicate that malacoda

has identified a likely important regulatory region for megakaryocytes and platelets that was

missed by other MPRA analysis methods.

MCMC can be computationally expensive, so we measured the run times in our study. The

computational performance was first evaluated using the default settings of the malacoda pack-

age which are set to strike a balance between speed and precision for exploratory analysis.

These settings include the variational first pass, 200 warmup samples, four chains yielding a

total of 2000 posterior samples, and adaptively increased chain lengths. This initial analysis

run of 8251 variants from the Ulirsch dataset took 29 minutes when parallelized across 18

threads on two Intel Xeon X5675 3.07GHz processors. We compared this to a highly precise

analysis run on the same dataset with no variational first pass and excessively long 50,000 itera-

tion MCMC chains for all variants, which took fifteen hours with the same number of cores on

the same processors. The correlation between posterior mean TS between these two runs was

0.981 for non-functional variants and 0.99996 for functional variants. This result, together

with the MCMC diagnostics shown in section 2.4.2 of S1 Appendix, demonstrates that the

sampler used by our software is able to produce accurate estimates in a relatively short amount

of time. Details of the computational methodology and results demonstrating convergence are

presented in section 2.4 of S1 Appendix.

Discussion

We developed a fully Bayesian framework for the analysis of NGS high-throughput screens

with particular focus on MPRA studies. The method, called malacoda, is an advance in statisti-

cal and computational science that probabilistically incorporates all known sources of

Fig 5. Luciferase validation results. A bar plot showing the difference in normalized luciferase intensity for both

alleles of rs11865131 (p = 0.032). Black error bars indicate +/- one standard deviation.

https://doi.org/10.1371/journal.pcbi.1007504.g005
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variation for these high throughput NGS screens. The method does a better job of identifying

true positives in simulated data and performs well in empirical studies. We also showed that

the method identified a previously overlooked functional variant in the NPRL3 gene that has

confirmatory evidence from a variety of other studies. Particular advantages of the method are

accurate estimation of variant effects, the treatment of the dispersion parameter in both esti-

mation and inference, and the potential to incorporate informative prior information.

The functional discovery of the variant rs11865131 represents a demonstration of the

power of the malacoda method to identify biologically important results missed by alternative

methods. This variant lies in an intronic region of the gene NPRL3, meaning approaches

focused on alterations to the gene’s protein code would overlook this regulatory variant. Multi-

ple lines of evidence point to the biological relevance of this variant, including epigenetic and

transcription factor binding data as well as evidence of association with platelet count in

healthy humans.

There are downsides to our method. First, Bayesian methods that estimate a joint posterior

on many parameters by MCMC are significantly slower than optimization-based approaches.

We took several approaches to mitigate this, utilizing Stan’s No-U-Turn Sampler and includ-

ing options for first pass variational approximations, adaptive MCMC length, and paralleliza-

tion. Together these features enable relatively fast model fitting. Second, our method does not

account for uncertainty in our empirical prior estimation procedure [16]. Our R package

includes a fully hierarchical model that adds an additional layer of hyperparameters in order to

probabilistically model the gamma prior parameters at the same time as all of the variant-level

parameters. This provides a joint posterior that models an entire MPRA dataset with a single

MCMC fit. However, this model, featuring hundreds of thousands of parameters when used in

the context of a typical MPRA, is presently too complex to fit in practice and was not used for

the results presented in this work. Finally, our work is limited to MPRA performed in K562

cells, however there is nothing cell-type specific about the malacoda model. Our method can

be used in MPRA performed in alternative cell-types so long as they follow the experimental

structure outlined in the Methods section.

It is worthwhile to discuss the most effective ways to utilize external annotations to estimate

informative empirical priors. We encourage users to utilize information that was originally

used in the assay’s variant selection process. For example, assays designed around inspecting

specific transcription factors with varying biological context may want to use the targeted tran-

scription factor as the group identifier in a grouped prior as in Fig 2C. Using information inde-

pendent of the original design can also be helpful, as we have demonstrated through the use of

a conditional prior based on DeepSea’s K562 DNase hypersensitivity predictions which helped

to refine the inference on a low-signal variant, rs11865131. The malacoda package can utilize

an arbitrary number of continuous annotations, so any set of relevant, independent annota-

tions may be used. As long as the principle of “similarly annotated variants have similar out-

comes in the assay” holds, using informative annotations can help refine the analysis.

Nonetheless, it is difficult to accurately predict the transcription shift of a single variant a pri-
ori. Conditional priors that make strong predictions of functionality should be treated with

caution. We encourage the users to utilize the prior visualization functionality included in the

package to contrast annotation-based priors against a marginal prior. Future advances in

machine learning models for predictive variant annotation will likely improve the performance

of the informative empirical priors.

It is desirable to identify an orthogonal gold-standard dataset to differentiate the accuracy

of MPRA analysis approaches. Such an analysis would define an independent score of func-

tionality for all variants, and then hits and non-hits from each MPRA analysis method could

be compared for their concordance or correlation with this independent score. We attempted
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such an analysis using the Ulirsch dataset, ENCODE K562 bound protein levels, and DeepSea

DNase hypersensitivity annotations. Unfortunately these analyses were inconclusive, showing

no clear difference in annotation scores between analysis methods. There are at least two possi-

ble explanations for this difficulty. First, the noise present in both the MPRA and annotation

data lowers the power to differentiate the methods. Secondly, there is misalignment between

MPRA functionality and differential scoring in the annotation data. Both of these factors likely

contribute to the negative result. We would postulate that if there were an idealized dataset

showing high correspondence in variants that are potentially functionalizable by MPRA and

simultaneously differentially scored in the orthogonal annotation data, then this hypothetical

data could be used to compare the efficacy of the various MPRA analysis methods. At present,

we know of no data source that would meet these requirements. While this limits our ability to

quantify the performance of MPRA analysis methods, it speaks to the value of MPRA them-

selves. MPRA produce a unique biological signal that cannot be easily measured by other types

of experiments or data.

The statistical method and validation work presented in this article present many future

directions in the statistical analysis of high-throughput sequencing assays. This article has

focused primarily on the analysis of “typical” MPRA: two alleles per variant, in a single tissue

type, with no other experimental perturbations. However, we have expanded the modelling

capabilities of the software package beyond these limitations. Models tailored to more compli-

cated experimental structures, such as arbitrary numbers of alleles per variant, multiple tissue

types, or cell-culture perturbations, are also included with the package. We also have expanded

the model framework included in the package to CRISPR screen modelling. In this CRISPR

model, the counts of gRNAs targeting specific genes in survival/dropout screens can make use

of an analogous negative binomial structure with similar empirical gamma priors. This opens

the path to incorporating gene-level annotations into Bayesian CRISPR screen analysis.

Sophisticated high-throughput assays are a central component to the future of genomics.

Therefore, the statistical methods used for these data should be as efficient as possible,

accounting for all sources of variation and quantifying the resulting uncertainty. Our software,

malacoda, provides an end-to-end framework for the probabilistic analysis of MPRA data.

Through our well-documented, easy-to-use R package, users can perform sequencing error

correction and data pre-processing before executing a fully Bayesian analysis in as little as two

lines of code. The method is capable of taking advantage of informative annotations through

an adaptive empirical prior estimation. We hope that this work may act as a stepping stone

towards further integrative, probabilistic analysis in the field of high-throughput genomics.

Supporting information

S1 Appendix. Model description, fitting, and diagnostics.

(PDF)

S2 Appendix. Negative Binomial variance estimation.

(PDF)

S3 Appendix. Simulation details and extended results.

(PDF)

S1 Data. RData file of luciferase and primary MPRA results. An RData file that loads two

objects: luc_results, a table of the luciferase results, and mpra_results, giving the primary data

on MPRA counts for the variants tested with luciferaseF.

(RDATA)
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S2 Data. RData file of estimate comparisons and primary MPRA data. An RData file that

contains three data frames: ulirsch_comparisons, primary_comparisons, and primary_mpra_-

data. The first two data frames are the data necessary to produce Fig 4. Each row corresponds

to one variant, and each column corresponds to a given analysis method. The values in the

table give the transcription shift estimates. The third data frame gives the barcode counts from

our primary MPRA dataset with anonymized variant identifiers.

(RDATA)

S1 Fig. Prior comparison plot for rs11865131. This figure compares the allelic priors for the

RNA activity for both alleles of rs11865131. The blue line shows the marginal prior, the red

line the conditional prior based on the DeepSea K562 DNase hypersensitivity prediction. Dot-

ted lines show the prior means. Black tick marks show the RNA count observations adjusted

for sequencing depth and DNA input. Because this variant tended to show higher than usual

activity in both alleles, both priors shrink the activity considerably. Notably however, the con-

ditional prior shrinks less than the marginal, particularly in the reference allele. The allele-spe-

cific difference in shrinkage is what allowed the conditional prior-based analysis to identify

this variant as functional.

(TIF)

S2 Fig. Luciferase versus MPRA estimates by method. A scatterplot demonstrates the rela-

tionship between luciferase-based estimates of TS against MPRA-based estimates from each

MPRA analysis method.

(TIF)

Author Contributions

Conceptualization: Andrew R. Ghazi, Chad A. Shaw.

Data curation: Andrew R. Ghazi, Ed S. Chen.

Formal analysis: Andrew R. Ghazi.

Funding acquisition: Leonard C. Edelstein, Chad A. Shaw.

Investigation: Andrew R. Ghazi.

Methodology: Andrew R. Ghazi, Chad A. Shaw.

Project administration: Chad A. Shaw.

Resources: Leonard C. Edelstein, Chad A. Shaw.

Software: Andrew R. Ghazi, Ed S. Chen.

Supervision: Chad A. Shaw.

Validation: Andrew R. Ghazi, Xianguo Kong, Leonard C. Edelstein.

Visualization: Andrew R. Ghazi.

Writing – original draft: Andrew R. Ghazi, Chad A. Shaw.

Writing – review & editing: Andrew R. Ghazi, Chad A. Shaw.

References
1. Auton A, Abecasis GR, Altshuler DM, Durbin RM, Bentley DR, Chakravarti A, et al. A global reference

for human genetic variation. Nature [Internet]. 2015; 526(7571):68–74. https://doi.org/10.1038/

nature15393 PMID: 26432245

PLOS COMPUTATIONAL BIOLOGY Bayesian modelling of high-throughput sequencing assays with malacoda

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007504 July 21, 2020 16 / 18

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007504.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007504.s006
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007504.s007
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature15393
http://www.ncbi.nlm.nih.gov/pubmed/26432245
https://doi.org/10.1371/journal.pcbi.1007504


2. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, Collins FS, et al. Potential etiologic and

functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad

Sci USA. 2009; 106(23):9362–7. https://doi.org/10.1073/pnas.0903103106 PMID: 19474294

3. Nishizaki SS, Boyle AP. Mining the Unknown: Assigning Function to Noncoding Single Nucleotide Poly-

morphisms. Trends Genet [Internet]. 2017; 33(1):34–45. https://doi.org/10.1016/j.tig.2016.10.008

PMID: 27939749

4. Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, et al. Systematic dissection and opti-

mization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotech-

nol [Internet]. 2012; 30(3):271–7. https://doi.org/10.1038/nbt.2137 PMID: 22371084

5. Ulirsch JC, Nandakumar SK, Wang L, Giani FC, Zhang X, Rogov P, et al. Systematic functional dissec-

tion of common genetic variation affecting red blood cell traits. Cell [Internet]. 2016; 165(6):1530–45.

https://doi.org/10.1016/j.cell.2016.04.048 PMID: 27259154

6. Tewhey R, Kotliar D, Park DS, Liu B, Winnicki S, Reilly SK, et al. Direct identification of hundreds of

expression-modulating variants using a multiplexed reporter assay. Cell [Internet]. 2016; 165(6):1519–

29. https://doi.org/10.1016/j.cell.2016.04.027 PMID: 27259153

7. Shen SQ, Myers CA, Hughes AEO, Byrne LC, Flannery JG, Corbo JC. Massively parallel cis-regulatory

analysis in the mammalian central nervous system. Genome Res. 2016; 26(2):238–55. https://doi.org/

10.1101/gr.193789.115 PMID: 26576614

8. Myint L, Avramopoulos DG, Goff LA, Hansen KD. Linear models enable powerful differential activity

analysis in massively parallel reporter assays. BMC Genomics. 2019; 20(1):1–19. https://doi.org/10.

1186/s12864-018-5379-1

9. Niroula A, Ajore R, Nilsson B. MPRAscore: robust and non-parametric analysis of massively parallel

reporter assays. Bioinformatics. 2019;(July):1–3. https://doi.org/10.1093/bioinformatics/btz591 PMID:

31359027

10. Kalita C. A., Moyerbrailean G. A., Brown C., Wen X., Luca F., & Pique-Regi R. (2018). QuASAR-MPRA:

Accurate allele-specific analysis for massively parallel reporter assays. Bioinformatics, 34(5), 787–794.

https://doi.org/10.1093/bioinformatics/btx598 PMID: 29028988

11. Ashuach T., Fischer D. S., Kreimer A., Ahituv N., Theis F. J., & Yosef N. (2019). MPRAnalyze: Statisti-

cal framework for massively parallel reporter assays. Genome Biology, 20(1), 1–17. https://doi.org/10.

1186/s13059-018-1612-0

12. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2013; 489

(7414):57–74. https://doi.org/10.1038/nature11247.An

13. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence

model. (DeepSea). Nat Methods [Internet]. 2015; 12(10):931–4. https://doi.org/10.1038/nmeth.3547

PMID: 26301843

14. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol [Internet]. 2014; 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

PMID: 25516281

15. Kruschke J. Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan. 2nd ed. London: Aca-

demic Press; c2015. P.336–40.

16. Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB. Bayesian Data Analysis. Third Edi-

tion. Boca Raton, FL: CRC Press; 2013. p. 51–6, p. 102–4.

17. Carpenter B, Gelman A, Hoffman MD, Lee D, Goodrich B, Betancourt M, Brubaker M, Guo J, Li P, Rid-

dell A. Stan: A probabilistic programming language. J Stat Softw. 2017; 76(1). https://doi.org/10.18637/

jss.v076.i01

18. Kucukelbir A, Blei DM, Gelman A, Ranganath R, Tran D. Automatic Differentiation Variational Inference.

J Mach Learn Res. 2017; 18:1–45. Available from: https://arxiv.org/abs/1603.00788

19. Assaf G, Hannon GJ. FASTX-Toolkit [Internet]. 2010. Available from: http://hannonlab.cshl.edu/fastx_

toolkit/index.html

20. Hawkins JA, Jones SK, Finkelstein IJ, Press WH. Indel-correcting DNA barcodes for high-throughput

sequencing. Proc Natl Acad Sci [Internet]. 2018; 115(27):E6217–26. https://doi.org/10.1073/pnas.

1802640115 PMID: 29925596

21. Ghazi AR, Chen ES, Henke DM, Madan N, Edelstein LC, Shaw CA. Design tools for MPRA experi-

ments. Bioinformatics. 2018; 34(15):2682–3. https://doi.org/10.1093/bioinformatics/bty150 PMID:

30052913

22. Shaw RJ. GATORs take a bite out of mTOR. Science. 2013; 340(6136):1056–7. https://doi.org/10.

1126/science.1240315 PMID: 23723225

PLOS COMPUTATIONAL BIOLOGY Bayesian modelling of high-throughput sequencing assays with malacoda

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007504 July 21, 2020 17 / 18

https://doi.org/10.1073/pnas.0903103106
http://www.ncbi.nlm.nih.gov/pubmed/19474294
https://doi.org/10.1016/j.tig.2016.10.008
http://www.ncbi.nlm.nih.gov/pubmed/27939749
https://doi.org/10.1038/nbt.2137
http://www.ncbi.nlm.nih.gov/pubmed/22371084
https://doi.org/10.1016/j.cell.2016.04.048
http://www.ncbi.nlm.nih.gov/pubmed/27259154
https://doi.org/10.1016/j.cell.2016.04.027
http://www.ncbi.nlm.nih.gov/pubmed/27259153
https://doi.org/10.1101/gr.193789.115
https://doi.org/10.1101/gr.193789.115
http://www.ncbi.nlm.nih.gov/pubmed/26576614
https://doi.org/10.1186/s12864-018-5379-1
https://doi.org/10.1186/s12864-018-5379-1
https://doi.org/10.1093/bioinformatics/btz591
http://www.ncbi.nlm.nih.gov/pubmed/31359027
https://doi.org/10.1093/bioinformatics/btx598
http://www.ncbi.nlm.nih.gov/pubmed/29028988
https://doi.org/10.1186/s13059-018-1612-0
https://doi.org/10.1186/s13059-018-1612-0
https://doi.org/10.1038/nature11247.An
https://doi.org/10.1038/nmeth.3547
http://www.ncbi.nlm.nih.gov/pubmed/26301843
https://doi.org/10.1186/s13059-014-0550-8
http://www.ncbi.nlm.nih.gov/pubmed/25516281
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.18637/jss.v076.i01
https://arxiv.org/abs/1603.00788
http://hannonlab.cshl.edu/fastx_toolkit/index.html
http://hannonlab.cshl.edu/fastx_toolkit/index.html
https://doi.org/10.1073/pnas.1802640115
https://doi.org/10.1073/pnas.1802640115
http://www.ncbi.nlm.nih.gov/pubmed/29925596
https://doi.org/10.1093/bioinformatics/bty150
http://www.ncbi.nlm.nih.gov/pubmed/30052913
https://doi.org/10.1126/science.1240315
https://doi.org/10.1126/science.1240315
http://www.ncbi.nlm.nih.gov/pubmed/23723225
https://doi.org/10.1371/journal.pcbi.1007504


23. Aslan JE, Tormoen GW, Loren CP, Pang J, McCarty OJT. S6K1 and mTOR regulate Rac1-driven plate-

let activation and aggregation. Blood. 2011; 118(11):3129–36. https://doi.org/10.1182/blood-2011-02-

331579 PMID: 21757621

24. Yang J, Zhou X, Fan X, Xiao M, Yang D, Liang B, et al. MTORC1 promotes aging-related venous throm-

bosis in mice via elevation of platelet volume and activation. Blood. 2016; 128(5):615–24. https://doi.

org/10.1182/blood-2015-10-672964 PMID: 27288518

25. Ward LD, Kellis M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators

and target genes for human complex traits and disease. Nucleic Acids Research. 2016; 44(D1), D877–

D881. https://doi.org/10.1093/nar/gkv1340 PMID: 26657631

26. Chacon D, Beck D, Perera D, Wong JWH, Pimanda JE. BloodChIP: A database of comparative

genome-wide transcription factor binding profiles in human blood cells. Nucleic Acids Res. 2014; 42

(D1):172–7. https://doi.org/10.1093/nar/gkt1036 PMID: 24185696

27. Simon LM, Edelstein LC, Nagalla S, Woodley AB, Chen ES, Kong X, et al. Human platelet microRNA-

mRNA networks associated with age and gender revealed by integrated plateletomics. Blood. 2014;

123(16):37–45. https://doi.org/10.1182/blood-2013-12-544692 PMID: 24523238

28. Edelstein LC, Simon LM, Montoya RT, Holinstat M, Chen ES, Bergeron A, et al. Racial differences in

human platelet PAR4 reactivity reflect expression of PCTP and miR-376c. Nat Med [Internet]. 2013; 19

(12):1609–16. https://doi.org/10.1038/nm.3385 PMID: 24216752

PLOS COMPUTATIONAL BIOLOGY Bayesian modelling of high-throughput sequencing assays with malacoda

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007504 July 21, 2020 18 / 18

https://doi.org/10.1182/blood-2011-02-331579
https://doi.org/10.1182/blood-2011-02-331579
http://www.ncbi.nlm.nih.gov/pubmed/21757621
https://doi.org/10.1182/blood-2015-10-672964
https://doi.org/10.1182/blood-2015-10-672964
http://www.ncbi.nlm.nih.gov/pubmed/27288518
https://doi.org/10.1093/nar/gkv1340
http://www.ncbi.nlm.nih.gov/pubmed/26657631
https://doi.org/10.1093/nar/gkt1036
http://www.ncbi.nlm.nih.gov/pubmed/24185696
https://doi.org/10.1182/blood-2013-12-544692
http://www.ncbi.nlm.nih.gov/pubmed/24523238
https://doi.org/10.1038/nm.3385
http://www.ncbi.nlm.nih.gov/pubmed/24216752
https://doi.org/10.1371/journal.pcbi.1007504

	Bayesian modelling of high-throughput sequencing assays with malacoda.
	Let us know how access to this document benefits you
	Recommended Citation

	Bayesian modelling of high-throughput sequencing assays with malacoda

