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The subcellular distribution of miRNA 
isoforms, tRNA-derived fragments, 
and rRNA-derived fragments depends 
on nucleotide sequence and cell type
Tess Cherlin1,3, Yi Jing1, Siddhartha Shah1, Anne Kennedy1,4, Aristeidis G. Telonis1,5, Venetia Pliatsika1,6, 
Haley Wilson1,4, Lily Thompson1,7, Panagiotis I. Vlantis1,8, Phillipe Loher1, Benjamin Leiby2 and 
Isidore Rigoutsos1*   

Abstract 

Background MicroRNA isoforms (isomiRs), tRNA-derived fragments (tRFs), and rRNA-derived fragments (rRFs) 
represent most of the small non-coding RNAs (sncRNAs) found in cells. Members of these three classes modulate 
messenger RNA (mRNA) and protein abundance and are dysregulated in diseases. Experimental studies to date 
have assumed that the subcellular distribution of these molecules is well-understood, independent of cell type, 
and the same for all isoforms of a sncRNA.

Results We tested these assumptions by investigating the subcellular distribution of isomiRs, tRFs, and rRFs in biolog-
ical replicates from three cell lines from the same tissue and same-sex donors that model the same cancer subtype. In 
each cell line, we profiled the isomiRs, tRFs, and rRFs in the nucleus, cytoplasm, whole mitochondrion (MT), mitoplast 
(MP), and whole cell. Using a rigorous mathematical model we developed, we accounted for cross-fraction contami-
nation and technical errors and adjusted the measured abundances accordingly. Analyses of the adjusted abun-
dances show that isomiRs, tRFs, and rRFs exhibit complex patterns of subcellular distributions. These patterns depend 
on each sncRNA’s exact sequence and the cell type. Even in the same cell line, isoforms of the same sncRNA whose 
sequences differ by a few nucleotides (nts) can have different subcellular distributions.

Conclusions SncRNAs with similar sequences have different subcellular distributions within and across cell lines, 
suggesting that each isoform could have a different function. Future computational and experimental studies 
of isomiRs, tRFs, and rRFs will need to distinguish among each molecule’s various isoforms and account for differences 
in each isoform’s subcellular distribution in the cell line at hand. While the findings add to a growing body of evidence 
that isomiRs, tRFs, rRFs, tRNAs, and rRNAs follow complex intracellular trafficking rules, further investigation is needed 
to exclude alternative explanations for the observed subcellular distribution of sncRNAs.
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tRFs, rRNA-derived fragments, rRFs, subcellular distribution
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Key points and significance

• We studied the subcellular distribution of micro-
RNA isoforms (isomiRs), tRNA-derived fragments 
(tRFs), and rRNA-derived fragments (rRFs) in deep 
sequencing data from biological replicates of three 
cell lines.

• We focused on four fractions:

▪ Nucleus
▪ Cytoplasm
▪ Whole mitochondrion (MT)
▪ Mitoplast (MP)

• To minimize the number of independent variables, 
we chose cell lines from a single tissue (breast) and 
same-sex donors (women) that model the same can-
cer subtype (triple negative breast cancer).

• To account for cross-fraction contamination and 
technical errors, we developed a rigorous mathemati-
cal model to adjust the abundances of isomiRs, tRFs, 
and rRFs in each fraction.

• We find that the subcellular distribution of small 
RNAs is more complex than has been assumed to 
date:

• IsomiRs, tRFs, and rRFs from the same parental 
RNA whose sequences differ by as few as 1–2 nucle-
otides can have different subcellular distributions.

• The subcellular distribution of an isomiR, tRF, or 
rRF depends on its exact nucleotide sequence and 
the cell line at hand.

• The findings suggest that an isomiR, tRF, or rRF could 
function differently in different cell lines because of 
differences in their subcellular distributions.

• The findings add to a growing body of evidence sup-
porting a complex subcellular trafficking program 
for small RNAs. Further investigation is required to 
exclude alternative explanations.

Background
We previously showed that personal attributes (e.g., 
sex, ancestry, age) and context (e.g., cell type, tis-
sue type, disease) modulate the sequences and 
abundances of isomiRs, tRFs, and rRFs [1–11]. The 
observed differences include abundance changes 
and sequence changes that can alter the identity of 
the targeted mRNAs [5]. Because of the sheer num-
ber of isomiRs [6, 12], tRFs [9, 13], and rRFs [1, 14], 
we know little about their function. Knowing which 
isomiRs, tRFs, and rRFs are produced in each cell and 
where within a cell they localize can provide valuable 

initial clues about their function. Despite that, sys-
tematic studies of the subcellular distribution of 
sncRNAs have been limited [15–27] by comparison 
to analogous studies of long non-coding RNAs (lncR-
NAs) [25, 28–36].

IsomiRs, tRFs, and rRFs arise from templates in the 
genomes of the nucleus and MT. Others and we have 
provided evidence that the nuclear genome harbors 
many thousands of miRNA precursors [37–42]. How-
ever, these findings were recently questioned [43]. 
The nuclear and MT genomes also harbor multiple 
tRNA genes [44] and multiple copies of four nuclear 
rRNA genes (5S, 5.8S, 18S, 28S) and the two MT 
rRNAs (12S, 16S) [45–47]. Numerous miRNA pre-
cursors have been shown to produce templated and 
non-templated [3, 6, 12] isomiRs simultaneously, but 
the biogenesis mechanisms are not well understood 
[48, 49]. Nuclear and MT tRNAs and rRNAs carry out 
their canonical functions during protein translation 
[50, 51] while also producing tRFs [52, 53] and rRFs 
[54–56], respectively. Notwithstanding a few excep-
tions [52, 57–59], the mechanism that produces tRFs 
and rRFs is poorly understood. Regarding function, 
some isomiRs, tRFs, and rRFs regulate mRNA and 
protein abundance by entering the RNA interference 
pathway [52, 55, 60]. For tRFs and rRFs, additional 
modes of action are known [53, 55].

While miRNAs are typically expected to localize to 
the cytoplasm, previous studies showed they can also 
localize and function in the nucleus [17, 21, 23, 24, 
61–65] and at or in the MT [25–27]. However, these 
studies did not investigate potential differences in the 
subcellular distribution of individual isomiRs or a pos-
sible dependence on cell type. Regarding tRFs, the find-
ings of a previous large-scale study [9] suggest that tRFs 
localize to the nucleus, cytoplasm, and MT in various 
combinations [53]. Even less is known about the sub-
cellular distribution of rRFs, a recently emerged class of 
sncRNAs [1, 14, 55].

In what follows, we systematically explore the subcel-
lular distribution of isomiRs, tRFs, and rRFs in three cell 
lines (BT-20, MDA-MB-231, MDA-MB-468) that model 
triple-negative breast cancer (TNBC). We chose these 
cell lines to minimize the number of independent vari-
ables (e.g., sex, tissue, disease) on which the expression of 
isomiRs, tRFs, and rRFs is known to depend. For each cell 
line, we generated and analyzed data from several biolog-
ical replicates, four subcellular compartments (nucleus, 
cytoplasm, MT, and MP), and the whole cell. Using a 
mixed-effects model, we accounted for cross-fraction 
contamination and technical errors, reconstructed the 
true abundance of each molecule in each fraction, and 
analyzed the resulting distributions.
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We note that the presented work focuses only on those 
sncRNAs visible to the “standard RNA-seq protocol,” 
which has been the overwhelming method of choice for 
the last 15 years and used to generate most publicly avail-
able datasets. Using this protocol, one can enumerate 
only molecules whose termini contain a 5′-P and a 3′-OH 
[56]. We emphasize this point because others and we have 
shown that many typical sncRNAs have co-expressed 
atypical variants that are very abundant [56, 66]. These 
atypical variants are “invisible” to standard deep sequenc-
ing but “visible” to northern blots, albeit subject to the lat-
ter method’s sensitivity.

Results
We used three cell lines that model TNBC: BT-20, MDA-
MB-231, and MDA-MB-468. From each cell line, and 
separately for each biological replicate, we isolated the 
nuclear, cytoplasmic, MT (whole MT), and MP fractions 
(Additional file 1: Fig. S1). We assayed their purity using 

fraction-specific protein markers (see the “Methods” sec-
tion and Additional file  2: Fig. S2). For three biological 
replicates for each of BT-20 and MDA-MB-231 cells and 
four replicates for MDA-MB-468, we deep-sequenced 
the corresponding nuclear, cytoplasmic, MT, and MP 
fractions and total RNA (a total of 50 preparations). We 
profiled the isomiRs, tRFs, and rRFs separately in each 
preparation. Figure 1 captures the workflow. Throughout 
this presentation, we will refer to the physical material 
that we isolated as cell “fractions” and the source orga-
nelles—nucleus, cytoplasm, (whole) MT, and MP—as 
“compartments.”

Each TNBC model cell line has a unique sncRNA profile
We reasoned that if these cell lines, which are from the 
same tissue (breast), have meaningful differences, then 
these differences should be evident if we considered only 
their abundant molecules. Therefore, we initially focused 
on only those sncRNAs whose abundance in total RNA 

Fig. 1 Overview of the Fraction-seq workflow. A Three TNBC cell lines BT-20 (three replicates), MDA-MB-231 (three replicates), and MDA-MB-468 
(four replicates) were grown to ~ 200 M cells and harvested. B From the same starting material, we separated cells into total, nuclear, cytoplasmic, 
MT, and MP subcellular compartments. C We used the WES protein detection assay to analyze cell compartment markers in each cell fraction. D We 
prepared libraries for short RNA-seq using NEBNext with 100 ng RNA from each sample, followed by RNA sequencing using the Illumina NextSeq 
500 platform at 75 cycles and an average depth of 30 million reads per biosample. E After quality trimming and adapter removal, we mapped 
reads to isomiRs, tRFs, and rRFs, considering only sncRNAs with lengths between 18 and 50 nts and normalizing their abundance by the respective 
biospecimen’s sequencing depth. Reads with normalized abundances ≤ 10 RPM were not considered. F We used northern blotting to validate 
the subcellular enrichments of select sncRNAs. Parts of this image were created with BioRender.com
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averaged across each cell line’s replicates was ≥ 10  RPM 
(Additional file  3: Table  S1). Figure  2A shows a Princi-
pal Component Analysis (PCA) of the three cell lines 
using the 7165 isomiRs, tRFs, and rRFs that satisfy the 10 
RPM threshold. The replicates of each cell line—BT-20 
(orange), MDA-MB-231 (green), MDA-MB-468 (cyan)—
cluster with one another. Figure 2B shows a hierarchical 
clustering and heatmap of the cell line replicates after 
computing a Pearson correlation on the same 7165 sncR-
NAs. Figure  2C–E show that the clustering of each cell 
line’s replicates persists when we apply the PCA method 
to each RNA class separately.

Many abundant isomiRs, tRFs, and rRFs are unique to a cell 
line
We focused on total RNA and compared the 10% most 
abundant sncRNAs across the three cell lines (Additional 
file  4: Table  S2). Figure  3A shows the resulting overlap. 
Note how the most abundant sncRNAs differ among the 
three cell lines, with only 17 molecules common to all 
three. Even though these 17 molecules are common to all 

three cell lines, their abundance profiles in each cell line 
differ characteristically (Additional file 5: Fig. S3).

We also extended the analyses using DESeq2 to iden-
tify all sncRNAs in total RNA that are differentially abun-
dant (DA) between pairs of cell lines. We only considered 
sncRNAs with length ≥ 18 nts with abundance ≥ 10 RPM. 
At a false discovery rate (FDR) threshold of  0.05 and 
requiring |log2(fold change)| ≥ 1, we found 2983 isomiRs, 
532 tRFs, and 4765 rRFs that are DA in various pairwise 
cell-line combinations (Additional file 6: Table S3).

Some isomiRs, tRFs, and rRFs show preferential 
enrichments in specific compartments
Case 1: same compartment in different cell lines
In analogy to comparing total RNA from different cell 
lines, we can compare the contents of the same fraction 
in different cell lines. For those molecules whose average 
abundance in total RNA is ≥ 10 RPM (Additional file 7: Fig. 
S4), we found many molecules in each of the four com-
partments that showed statistically significant (FDR ≤ 0.05) 
abundance differences (Additional file 8: Table S4) across 
cell lines. Most of the DA molecules are rRFs.

Fig. 2 The profiles of sncRNAs among the replicates are reproducible. A Principal Component Analysis (PCA) visualization of the sncRNAs 
with an average abundance ≥ 10 RPM across replicates (n = 7165). B Hierarchical clustering of the Pearson correlations for replicates from each 
cell line with sncRNA abundances ≥ 10 RPM. The color bar represents the Pearson correlation values, which range from 0 (white, uncorrelated) 
to 1 (blue, perfectly correlated). C PCA visualization of isomiRs in each sample with an average abundance ≥ 10 RPM across replicates (n = 1421). 
D PCA visualization of the tRFs in each sample with an average abundance ≥ 10 RPM across replicates (n = 567). E PCA of the rRFs in each sample 
with an average abundance ≥ 10 RPM across replicates (n = 5177). All panels: BT-20 samples are represented by orange, MDA-MB-231 samples are 
represented by green, and MDA-MB-468 samples are represented by cyan
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Case 2: different compartments in the same cell line
Unlike the comparisons of total RNA from different cell 
lines, we cannot compare quantitatively two fractions 
from the same cell line [67] without the rigorous math-
ematical modeling described in the next section. None-
theless, we can compare two fractions qualitatively and 
still reach important conclusions. Focusing on the 10% 
most abundant sncRNAs in a fraction (Additional file 9: 
Table S5) and comparing them pairwise for each cell line 
in turn results in the Venn diagrams of Fig.  3B–D. We 
can see that there are abundant RNAs that are highly 
enriched in specific compartments.

We can also use a molecule’s abundance in a fraction 
to determine its rank in that fraction, then convert the 
rank to a percentile value (100th percentile = most abun-
dant sncRNA, 0th  percentile = least abundant sncRNA). 
Then, we can use the percentile values of sncRNAs in the 

different fractions to provide initial evidence of compart-
ment-specific preferences. Figure  4A–B and Additional 
file 10: Fig. S5 show several examples for sncRNAs from 
MDA-MB-231, MDA-MB-468, and BT-20. The figures 
show heatmaps of color-coded percentiles averaged over 
the corresponding replicates. Each heatmap lists three 
groups of sncRNAs with dotted red lines separating the 
groups. The top, middle, and bottom groups comprise 
sncRNAs that rank highest in the nucleus, cytoplasm, 
and MT/MP, respectively. In all three heatmaps, we can 
see multiple pairs of sncRNAs whose percentile values in 
total RNA are very similar; this indicates that they have 
the same abundance in total RNA. However, the same 
pairs have different relative abundances (i.e., percentile) 
in one or more of the shown fractions. Or it may be that 
one member of the pair is absent from a fraction. These 
observations suggest differential subcellular distributions 

Fig. 3 The most abundant sncRNAs are cell-line- and subcellular-compartment-specific. A Venn diagram of the 10% most abundant sncRNAs 
in the three TNBC cell lines (BT-20, MDA-MB-231, and MDA-MB468) based on average abundance. B–D Venn diagrams of the 10% most abundant 
sncRNAs in each compartment of BT-20 (B), MDA-MB-231 (C), and MDA-MB-468 (D) cells based on average abundance across replicates. Colors 
for panels B–D: nucleus (Nuc)—green, cytoplasm (Cyto)—yellow, MT—purple, and MP—gray
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for the sncRNAs forming the pair, as contamination can-
not adequately explain the changes in the sncRNAs’ rela-
tive abundances.

Many pairs for which the relative abundance in total 
RNA is not mirrored in fractions of the same cell line 
include sncRNAs with similar sequences and sncR-
NAs that arise from the same parental RNA. An exam-
ple of the former includes isomiRs from the miRNAs 
miR-30a, miR-30e, and miR-30c in MDA-MB-468 cells. 
An example of the latter includes rRFs from 28S rRNA 
between locations 11600 and 13000 of the 45S cassette in 
MDA-MB-468.

We can adjust measured abundances by determining 
cross‑fraction contamination and errors
While effective for very abundant sncRNAs, the percen-
tile approach described in the previous section cannot 
be used with less abundant sncRNAs or in cases where 
the preferential enrichment in a subcellular compart-
ment is less prominent. To identify such sncRNAs, we 
developed a mixed-effects model (see Methods) that 
accounts for technical errors and estimates and removes 
cross-fraction contamination from the various rep-
licates. Essentially, the method reconstructs the true 
value of each sncRNA in each fraction by appropriately 
adjusting the values obtained from deep sequencing. 
Lastly, and separately for each cell line, we rescaled each 
sncRNA’s reconstructed values in the nuclear, cytoplas-
mic, and MT fractions by constraining them by their 
values in total RNA.

With the recalculated abundances for the various sncR-
NAs, we can now quantitatively compare fractions from 
the same cell line and determine each sncRNA’s subcel-
lular distribution. Additional file 11: Table S6, Additional 
file 12: Table S7, and Additional file 13: Table S8 list the 
reconstructed average values for each sncRNA and sub-
cellular compartment for BT-20, MDA-MB-231, and 
MDA-MB-468. Only molecules whose recalculated abun-
dance exceeds threshold are kept. In BT-20, there are 
2185 molecules of which 972 are isomiRs, 275 tRFs, and 
938 rRFs. In MDA-MB-231, there are 2347 molecules of 
which 847 are isomiRs, 296 tRFs, and 1204 rRFs. Lastly, 
in MDA-MB-468, there are 3732 molecules of which 142 
isomiRs, 174 tRFs, and 3416 rRFs.

The mixed-effects model also allows us to estimate the 
relative contribution to total RNA by each subcellular 
compartment. The estimated “nucleus:cytoplasm:MT” 
ratios for the three cell lines are: 23.0%:61.5%:15.5% 
for BT-20; 36.5%:31.0%:32.5% for MDA-MB-231; and 
32.2%:50.8%:17.0% for MDA-MB-4682.

Many sncRNAs, including multiple isoforms of the same 
sncRNA, exhibit complex subcellular distributions
Additional file 11: Table S6, Additional file 12: Table S7, 
and Additional file 13: Table S8 show multiple sncRNAs 
with different subcellular distributions in different cell 
lines. Rather notable are the cases of isoforms of the same 
sncRNA, which typically differ by a few nts, and of sncR-
NAs produced from different regions of the same paren-
tal RNA yet exhibit different subcellular distributions 
within the same cell line.

For example, we highlight the case of the polycistronic 
miR-17/92 cluster [68, 69]. The cluster, also known as 
“oncomiR-1,” arises as a single transcript that spans sev-
eral hundred nucleotides and harbors six miRNA pre-
cursors (mir-17, mir-18, mir-19a, mir-19b, mir-20a, and 
mir-92a). Figure 5 shows recalculated abundances (color-
coded RPM values) for all isomiRs that pass threshold 
in either the nucleus, cytoplasm, or whole MT of BT-20 
and MDA-MB-231 cells (Additional file 11: Table S6 and 
Additional file 12: Table S7). The isomiRs highlighted in 
green are the reference isoforms one finds in miRBase 
[41]. We can see that the abundance and subcellular dis-
tribution of these isomiRs, including the six reference 
miRNAs, differ widely even though all arise from the 
same polycistronic transcript [68] and many have similar 
sequences. Note also how many isomiRs with complex 
subcellular distributions are non-canonical or non-tem-
plated (the non-templated nts are marked in red, bold-
face) and have subcellular distributions that differ by cell 
line. For some of the precursors, the reference mature 
miRNA is absent: e.g., miR-19a-3p|0|0| is absent from 
both cell lines.

Another notable finding is the prevalence of non-tem-
plated isomiRs containing a single guanine addition to 
their 3′ terminus (“+1G”) in the nuclear fraction of MDA-
MB-231 cells. On the other hand, templated isomiRs that 
end with guanine do not exhibit this localization prefer-
ence. Our finding is concordant with a previous report 

(See figure on next page.)
Fig. 4 Examples of subcellular enrichments using abundance-based ranking within a fraction. A Percentile-colored heatmap for select sncRNAs 
in total RNA and the nucleus, cytoplasm, MT, and MP for MDA-MB-231. B An analogous heatmap for MDA-MB-468 cells and a different collection 
of sncRNAs. For each sncRNA, we list its nucleotide sequence, the parental RNA from which the sncRNA arises, and the location of the sncRNA 
within the parental RNA. Red dotted lines separate each list into three groups: sncRNAs that are enriched primarily in the nucleus, the cytoplasm, 
or the MT, respectively
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Fig. 4 (See legend on previous page.)
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Fig. 5 Model-adjusted abundances of isomiRs from the miR-19/92 cluster in different subcellular compartments. Heatmap of average 
reconstructed abundances of isomiRs from the miR-17/92 cluster (“oncomiR-1”) in BT-20 and MDA-MB-231 cell fractions. The shown abundances are 
model-adjusted RPM values. The isomiRs highlighted in green are the reference isoforms found in miRBase
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that non-templated “+1G” isomiRs localize in the nuclei 
of post-mitotic neurons [19] and additionally suggests 
that this event is cell-type-specific.

The co‑existence of sncRNAs with typical and atypical 
terminal phosphate states leads to differences 
between deep sequencing profiles and northern blots
We recently showed that tRNAs belonging to the same 
isodecoder produce different tRFs in different tissues and 
different cell lines [9, 70]. Figure  6A shows two tRNAs 
from the CTT isodecoder of  tRNALys. The first tRNA, 
trna10-LysCTT.chr16, is located between positions 
3241501 and 3241573 on the forward strand of chromo-
some 16 (human genome assembly GRCh37). The second 
tRNA, trna119-LysCTT.chr1, is located between posi-
tions 145395522 and 145395594 on the reverse strand 
of chromosome 1 (human genome assembly GRCh37). 
The two tRNAs differ by a single nucleotide at position 
29. We used the recalculated abundances of sncRNAs 
(Additional file 11: Table S6, Additional file 12: Table S7, 
and Additional file 13: Table S8) to determine the relative 
abundance of tRFs from these two tRNAs in total RNA 
and the cytoplasmic fraction.

Figure 6B shows a heatmap of the abundance of 20 tRFs 
from these two tRNAs. For 18 of the 20 tRFs, the paren-
tal tRNA can be determined unambiguously, but not for 
the last two (red box). Note how a 35-mer from trna10-
LysCTT.chr16 is most abundant in BT-20 cells, less so 
in MDA-MB-231, and absent from MDA-MB-468 cells. 
On the other hand, a 30-mer from trna119-LysCTT.chr1 
is most abundant in MDA-MB-468 cells and absent from 
BT-20 and MDA-MB-231 cells. A notable observation 
is the absence of any tRFs with lengths 33–37 nts from 
MDA-MB-468 cells.

We designed a northern blot probe against the region 
of trna119-LysCTT.chr1 highlighted in yellow in Fig. 6A 
and profiled total and cytoplasmic RNA from all three 
cell lines. This probe will hybridize to tRFs from trna10-
LysCTT.chr16 and trna119-LysCTT.chr1 that contain 
the highlighted region. Figure 6C shows the sums of the 
recalculated abundances of same-length tRFs from these 
two tRNAs, whereas Fig.  6D shows the northern blots 

for total RNA and the cytoplasmic fraction. Additional 
file 14: Fig. S6 shows the original uncropped blots.

The most notable difference between the deep sequenc-
ing and northern blot profiles is the presence in the blots 
of tRFs with lengths 33–37 nts (red rectangles, Fig. 6C–D). 
This seeming discordance helps highlight two points:

– First, it shows that distinct tRFs with near-iden-
tical sequences and differing abundances are co-
expressed and produced by different tRNAs. Deep 
sequencing can easily distinguish among them and 
determine which tRNA produces a given size frag-
ment, whereas northern blotting cannot. These dif-
ferences are not unique to the  tRNALys isodecoder: 
indeed, we recently reported multiple similar cases 
for many different tRNAs in various cell lines, tis-
sues, and diseases [70].

– Second, it shows that northern blotting can reveal 
atypical sncRNAs (with terminal phosphate states 
other than 5′-P/3′-OH) that cannot be profiled using 
standard deep sequencing [56], an observation that 
others and we documented previously [56, 66].

To demonstrate the second point, namely that the dif-
ference results from atypical terminal phosphate states, 
we isolated total RNA from MDA-MB-468 and treated 
it with T4 polynucleotide kinase (T4 PNK) before library 
preparation; doing so enables the ligation of standard 
adapters. Our subsequent analysis confirmed the pres-
ence of abundant tRFs from  tRNALysCTT  with lengths 
and relative abundances that match the northern blots 
of Fig.  6D (Additional file  15: Table  S9). The seemingly 
“missing” tRFs became “visible” after modification of the 
standard sequencing protocol.

Northern blots show complex patterns of subcellular 
distributions for sncRNAs
Figures 5 and 6 highlight the difficulty of using northern 
blots to reproduce findings obtained by analyzing stand-
ard deep-sequencing datasets. Nonetheless, we can still 
use northern blots to demonstrate differential subcellu-
lar distributions while keeping in mind that some of the 
sncRNAs that these blots capture may have modified 

(See figure on next page.)
Fig. 6 Abundance and subcellular compartment enrichments of sncRNA from tRNAs belonging to the same isodecoder. A Nucleotide sequences 
and an alignment of two tRNAs belonging to the same isodecoder (LysCTT). The tRNAs differ by a single nucleotide at position 29. The highlighted 
text shows the region that our northern blot probe targets. B A heatmap showing abundances for 20 distinct tRFs from the same two tRNAs, in total 
RNA and the cytoplasmic fraction averaged across the replicates of BT-20, MDA-MB-231, and MDA-MB-468 cells. These abundances correspond 
to measurements after they were adjusted by our mixed-effects model to remove cross-fraction contamination and errors. C Summed adjusted 
abundances of tRFs bound by the probe shown in panel A above. D A northern blot showing the short RNAs (range: 20–40 nts) that we detected 
using 5 μg of total and cytoplasmic RNA. Full-length  tRNALysCTT  was used as a loading control
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Fig. 6 (See legend on previous page.)
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termini and be absent from Additional file 11: Table S6, 
Additional file  12: Table  S7, and Additional file  13: 
Table S8, in analogy to what is shown in Fig. 6B–D.

Previously, others and we showed that the 5′ and 3′ 
regions of the 28S rRNA are hotspots for producing 
highly abundant rRFs in multiple cell types and tissues 
[1, 55, 71–73]. Figure 7A shows northern blots for total 
RNA and the cytoplasmic, nuclear, and MT fractions 
of MDA-MB-231 cells. The probe targets the sequence 
TCA GAT CAG ACG TGG CGA  from the 5′ region of 28S 
rRNA. Figure  7B shows analogous blots using a probe 

that targets the sequence CTC GCT GCG ATC TAT 
TGA AAG from the 3′ region of 28S rRNA. Additional 
file 16: Fig. S7 shows the original uncropped blots. Addi-
tional file 17: Fig. S8 shows the full WES membrane for 
these fractions. Figure  7C shows analogous blots using 
a probe that targets the sequence CGA CTC TTA GCG 
GTG GAT CA of 5.8S rRNA, which is part of the 45S 
cassette together with the 28S and 18S rRNAs. The pan-
els  reveal the existence of abundant rRFs with lengths 
between 50 and 100 nts, with subcellular distribution 
preferences. Note that the low presence of U1 RNA in 

Fig. 7 Subcellular compartment enrichments for 45S-derived rRFs. A. Northern blots showing rRFs that arise from the 5′ region of 28S rRNA 
in total RNA and the cytoplasmic, nuclear, and MT fractions. B Analogous blots for rRFs that arise from the 3′ region of 28S rRNA. C Analogous blots 
for an rRF from the 5.8S rRNA (see also text). All lanes were loaded with equivalent RNA. All experiments were carried out with MDA-MB-231 cells. 
D WES markers to assay the protein purity of the fractions and northern blot RNA markers to assay the RNA composition of the fractions. Note 
the different order of the lanes in the WES and northern panels
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the cytoplasmic fraction (Fig.  7D) is supported by pre-
vious work [74–76], including ENCODE’s profiling 
of RNAs in the cytoplasm and nucleus of multiple cell 
lines [77]. Another observation is the potential presence 
in the MT of the full-length (157 nts) and shorter rRFs 
(~ 60 and ~ 75 nts)  from 5.8S rRNA. However, we can-
not confidently conclude this from this experiment given 
the low abundance of MT RNA that is estimated by the 
MT  tRNAValTAC  probe. We note that the MT localiza-
tion of the full-length 5.8S rRNA in the MT has been 
reported before [78] as has the MT localization of 5S 
rRNA [79–81].

Discussion
In this presentation, we reported our findings on the 
subcellular distribution preferences of isomiRs, tRFs, 
and rRFs in three cell lines that model TNBC. Knowl-
edge of these subcellular distributions can provide clues 
as to the sncRNAs’ potential function and help choose 
among them when designing experiments. We arrived 
at our results by developing a new integrated approach, 
Fraction-seq (see the “Methods” section). Our findings 
from using Fraction-seq show complex sub-cellular dis-
tributions for sncRNAs that depend on sncRNA class, 
sequence, and cell type.

While several recent studies examined the subcellu-
lar distribution of long non-coding RNAs [67, 82–86] 
and sncRNAs [26, 27, 72, 84, 87], they did not account 
for cross-fraction contamination or technical errors. 
Moreover, we are unaware of any systematic treatise of 
replicates from multiple cell lines from the same tissue, 
same-sex donors, and modeling the same disease subtype 
while additionally correcting for cross-fraction contami-
nation and errors.

Fraction-seq is an integrated approach that combines 
a novel cell fractionation method we developed for this 
project, deep sequencing, and a mixed-effects model 
that reconstructs each molecule’s true abundance by 
accounting for cross-fraction contamination and experi-
mental errors (Fig.  1). We used Fraction-seq to study 
multiple biological replicates from three cell lines that 
model TNBC. For each replicate, we profiled the sncR-
NAs in total RNA and the nuclear, cytoplasmic, MT, and 
MP fractions, deriving these five preparations from the 
same starting cell material (see the “Methods” section 
and Additional file 1: Fig. S1). We generated and analyzed 
a total of 50 datasets.

Our analysis of total RNA confirmed the congruence of 
the biological replicates (Fig. 2). The analysis also estab-
lished the unique character of each cell line’s sncRNA 
profile (Fig.  3A). Indeed, the 10% most abundant sncR-
NAs in total RNA in the three cell lines, 761 unique 
molecules, have only 17 sncRNAs in common. Even the 

most similar cell lines, BT-20 and MDA-MB-231, share 
not more than 45.5% of their most abundant sncRNAs 
(Fig. 3A). By computing differential abundance across cell 
lines, we found numerous statistically significant changes 
in total RNA and counterpart subcellular compart-
ments (Additional file  6: Table  S3 and Additional file  9: 
Table  S5). This further confirms the uniqueness of each 
cell line’s sncRNA contents.

In regards to the difference between MDA-MB-468 
and both BT-20 and MDA-MB-231 cells (Fig.  3A and 
Additional file 11: Table S6, Additional file 12: Table S7, 
and Additional file  13: Table  S8), we note that MDA-
MB-468 was isolated from a Black TNBC patient, 
whereas MDA-MB-231 and BT-20 were isolated from 
White patients. The difference we observed in this 
study is concordant with differences by ancestry that we 
reported previously for TNBC patients [5, 10]. However, 
before a conclusion can be drawn, it will be necessary 
to apply our Fraction-seq approach to additional TNBC 
cell lines isolated from patients with different ancestries. 
This is the topic of ongoing research in our laboratory.

Percentile‑based rankings reveal sncRNA preferences 
for specific compartments
Before embarking on the strategy that uses a mixed-
effects model, we used a more straightforward 
approach to show that different sncRNAs have different 
subcellular distributions. The approach relies on com-
paring the abundance-based ranking of two molecules 
of interest in two preparations, e.g., total RNA and a 
fraction, or, two fractions. Any substantial changes in 
the molecules’ relative ranking in the two preparations 
would indicate a differential distribution of one of the 
molecules in the corresponding compartment(s). This 
is because cross-fraction contamination would act 
uniformly on both molecules and not affect their rela-
tive abundance. This simple approach helped identify 
differences in the subcellular distributions of various 
sncRNAs with highly overlapping sequences (Fig.  4 
and Additional file 10: Fig. S5). However, this approach 
works only for very abundant sncRNAs.

Mixed‑effect modeling can correct for cross‑fraction 
contamination and technical errors
The sncRNA abundances in the various fractions that we 
can measure using deep sequencing can be influenced by 
possible cross-fraction contamination and experimental 
errors. While fraction-specific protein markers can help 
assay possible contamination (Additional file 2: Fig. S2), 
they are accurate within the sensitivity capabilities of 
these assays. To account for contamination that may still 
be present but not detectable by protein-based assays, we 
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used a “mixed-effects” approach to model the underlying 
process and correct the abundances we measured with 
deep sequencing.

For each combination of biological replicate and cell 
line, the model assumes that the measured abundance of 
a sncRNA in a fraction is the sum of its true abundance 
in that fraction, a contribution from a replicate-specific 
technical error, and a contribution from contamination 
by other fractions. The model further constrains its cal-
culation by using the measured abundances of the sncR-
NAs in total RNA. We applied this model to each cell line 
separately, simultaneously using the available biological 
replicates for the cell line, and recovered the true abun-
dance of sncRNAs in each fraction (Additional file  11: 
Table  S6, Additional file  12: Table  S7, and Additional 
file 13: Table S8).

SncRNAs from the same parental RNA can have different 
subcellular distributions
The reconstructed abundances of  Additional file  11: 
Table  S6, Additional file  12: Table  S7, and Additional 
file  13: Table  S8 suggest a complex subcellular distribu-
tion for isomiRs, tRFs, and rRFs. Figure 5 shows several 
examples for the miR-17/92 miRNA cluster and helps 
highlight three points. First, the subcellular distribution 
of the canonical miRNAs found in public databases is 
cell-type dependent. For example, the canonical isoform 
of miR-17 (highlighted in green) is most enriched in the 
nucleus and the MT in MDA-MB-231 cells, and the cyto-
plasm in BT-20 cells. Second, sncRNAs from the same 
parental RNA whose sequences differ by 1–2 nts gener-
ally have different subcellular distributions. Third, the 
typical miRNA arm produces multiple non-canonical 
and non-templated miRNA isoforms with widely vary-
ing subcellular distributions and cell-type-dependent 
abundances. For example, in the case of miR-92a-1-3p, 
the non-canonical isoform TAT TGC ACT TGT CCC GGC 
CTGT T and the non-templated isoform TAT TGC ACT 
TGT CCC GGC CTGT A are equally abundant in both the 
nucleus and the cytoplasm of MDA-MB-231 cells. But, in 
BT-20 cells, both are primarily cytoplasmic.

Nucleus‑encoded sncRNAs are enriched in the MT fraction
Our study suggests that multiple sncRNAs encoded by 
the nuclear genome are enriched in the MT fraction in 
a sequence- and cell-type-dependent manner (Fig.  4 
and Additional file 10: Fig. S5). Most of these sncRNAs 
are likely “attached” to the MT’s outer membrane. For 
example, in the case of miRNAs, any miRNAs/isomiRs 
that are part of Argonaute complexes attached to the 
MT membrane would be unaffected by our RNAse A 
treatment and, thus, contribute to the contents of the 
MT fraction. Nonetheless, our analysis also generated 

evidence suggesting that some nucleus-encoded sncR-
NAs, including tRFs and rRFs, enter the MT. Our find-
ings are  in concordance with previous reports that 
reported full-length tRNAs [88–91] and full-length 
rRNAs [78, 79, 81] in the MT. For example, we find mul-
tiple rRFs from the nuclear 45S rRNA that are strongly 
enriched in the MP fraction but less so in the MT frac-
tion (Fig. 4 and Additional file  11: Table S6, Additional 
file 12: Table S7, and Additional file 13: Table S8), indi-
cating that these rRFs are inside the MT. Also, we 
find multiple tRFs from  tRNALysCTT  that are strongly 
enriched in the MT or MP fractions. For the various 
nucleus-encoded sncRNAs that we find enriched in the 
MT fraction, it is unclear whether they are shuttled to 
this compartment or produced from the local processing 
of longer precursor RNAs.

Northern blots reveal even more sncRNAs with unique 
subcellular distributions
Our study identified complex subcellular distributions 
for multiple sncRNAs. Since we used the standard deep-
sequencing protocol, these sncRNAs have the typical 5′-P 
and 3′-OH termini. Our northern blots, which can pro-
file molecules without regard to their terminal phosphate 
state, revealed an even richer sncRNA-ome that includes 
atypical molecules “invisible” to standard sequencing. 
These atypical molecules exhibit complex subcellular 
distributions as well (Figs. 6 and 7), and their abundance 
depends on cell type and nucleotide sequence, in com-
plete analogy to the standard sncRNAs.

The tRFs produced by two tRNAs from the same iso-
decoder (CTT) of  tRNALys are good examples of stand-
ard sncRNAs that arise from the same parental RNA and 
whose lengths and subcellular enrichments depend on the 
cell type (Fig.  6). These standard sncRNAs co-exist with 
atypical variants with similar lengths and subcellular dis-
tributions of their own. The mechanisms and conditions 
that decide a sncRNA’s terminal phosphate state are poorly 
understood [56, 92]. These observations likely have sig-
nificant ramifications in many contexts, including transla-
tional efficiency [93] or targeted therapeutics [5, 9, 10].

The 28S rRNA also revealed a richness in the rRFs that 
it produces from its 5′ and 3′ regions. These rRFs span 
a wide range of lengths and abundances and comprise 
standard (Additional file 11: Table S6, Additional file 12: 
Table  S7, and Additional file  13: Table  S8) and atypical 
variants (Fig. 7) with similar lengths and unique subcel-
lular distribution preferences and cell type dependencies. 
A probe against an rRF from the 5.8S rRNA helped dem-
onstrate that additional uncategorized sncRNAs with 
lengths outside the range considered here (18–50 nts) 
also exhibit preferences in their subcellular distribution 
(Fig. 7C).
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Conclusions
The findings suggest that isomiRs, tRFs, and rRFs have 
unique subcellular distribution preferences. These pref-
erences depend on each sncRNA’s sequence and cell 
type. Even sncRNAs that have similar sequences or 
arise from the same precursor RNA can have different 
subcellular distributions. Our study’s results add to the 
existing literature that sncRNAs follow complex intra-
cellular trafficking rules. Nonetheless, further investi-
gation is needed to exclude other alternatives.

While we derived our findings from the study of three 
cancer cell lines modeling TNBC, the findings presum-
ably extend beyond cell lines and contexts beyond can-
cer. Indeed, the combined experimental and analytical 
approach we presented can be applied to any cell line 
and bulk tissue. It can also be used to study atypical 
sncRNAs with modified termini, provided a modified 
deep sequencing protocol is used throughout [94].

The data also indicate that different cell lines mod-
eling the same disease cannot always be used inter-
changeably. To design experiments to determine a 
sncRNA’s function, it is essential to know where in 
the cell line of interest the sncRNA localizes. We hope 
Fraction-seq will help create an “Atlas” of subcellular 
distributions for sncRNAs in multiple cells and tissues. 
Such an Atlas would help prioritize among isomiRs, 
tRFs, and rRFs, provide valuable constraints on their 
possible functions, and assist in designing improved 
diagnostics, prognostics, and therapeutics.

Methods
For this project, we developed a new multi-stage 
method, “Fraction-seq.” Fraction-seq comprises an 
experimental and an analytical component. Next, we 
describe each component of Fraction-seq, followed by 
information on other methods we used.

Cell lines and cell culture
We used BT-20 (ATCC #HTB-19), MDA-MB231 
(ATCC #HTB-26), and MDA-MB468 (ATCC  #HTB-
132) cells for our work. BT-20 and MDA-MB-231 were 
originally isolated from White patients. MDA-MB-468 
was originally isolated from a Black patient. All three 
are basal-type breast cancer cell lines, contain a mutant 
(missense) p53 variant, and express c-MYC [95]. 
P21  is absent in BT-20 and barely detectable in MDA-
MB-231 and MDA-MB-468 [95, 96]. Ki-67 is moderate 
in BT-20 and high in MDA-MB-231 and MDA-MB-468 
[96]. We independently validated the origin of all three 
cell lines by STR. We grew these cell lines according 
to standard cell growth conditions using Complete 
DMEM (Gibco Dulbecco’s modified Eagle’s medium). 

We have been testing all cell lines regularly to ensure 
they are mycoplasma-free.

Fraction‑seq: cellular fractionation step
Additional file  1: Fig. S1 provides a pictorial summary 
of this step. Our method leverages deep sequencing to 
enumerate sncRNAs in the nuclear, cytoplasmic, MT, 
and MP fractions of a cell starting from the same mate-
rial. Specifically, we grow cells in 20–40 10-cm dishes 
depending on cell type in Complete DMEM Media. 
When cells reach 90% confluence, we wash the plates 
twice with ice-cold 1X PBS. We add 2 ml of 1X ice-cold 
PBS to each plate and then mechanically scrape cells 
using a cell scraper. We pool cells into two 50 ml ice-cold 
conical tubes that we spin at 500 g for 10 min. We remove 
the supernatant and resuspend the cells in 2 × packed 
cell volume of 0.9% NaCl followed by incubation on ice 
for 10 min. We then aliquot cells into 10 ice-cold 1.5 ml 
microcentrifuge tubes and spin them at 500 g for 10 min. 
We remove the supernatant by aspirating. Using the 
Qiagen Mitochondria Isolation Kit (Qiagen #37612), we 
resuspend cell pellets in ice-cold Lysis Buffer + Protease 
Inhibitor and 1 mM EGTA and incubate for 10 min rotat-
ing (end-over-end shaker) at 4  °C. We save 4–10% of 
lysate from each tube for the total cell sample. We centri-
fuge the lysate at 1000 g for 10 min at 4 °C, then carefully 
remove the supernatant and transfer it to fresh 1.5  ml 
microcentrifuge tubes—this is the crude cytoplasmic 
fraction. We spin the cytoplasmic fraction at 16,000  g 
for 10  min at 4  °C to remove additional cell debris and 
transfer the supernatant to ultracentrifuge tubes that we 
centrifuge at 100,000 g for 30 min at 4 °C. The superna-
tant now contains the pure cytoplasmic fraction. We 
resuspend the remaining cell lysate pellets in 1.5 ml ice-
cold Disruption Buffer (+protease inhibitor). We pass 
the pellets slowly through a blunt-ended 26-gauge needle 
syringe, 20 × on ice (making sure to avoid bubbles). We 
centrifuge the lysate at 1000  g for 10  min at 4  °C, then 
transfer the supernatant to two clean 1.5 ml microcentri-
fuge tubes. We save the pellets as a crude nuclear frac-
tion and centrifuge the supernatant at 6000 g for 10 min 
at 4 °C. The pellets that remain after we remove and dis-
card the supernatant comprise the crude MT fraction. 
We combine the two crude MT pellets into one and care-
fully resuspend it in 750  μl Mitochondria Purification 
Buffer (+ protease inhibitor) using a 1  ml pipette. We 
add 750  μl Mitochondria Purification Buffer to a 2-ml 
microcentrifuge tube. We also carefully add 500  μl Dis-
ruption Buffer underneath (see image on page 13 of the 
QProteome Mitochondria Isolation Handbook). Finally, 
we carefully add the MT suspension to the top. We cen-
trifuge this multilayer solution at 14,000 g for 15 min at 
4  °C, which produces a delicate, soft, white band at the 
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bottom of the tube. After carefully removing and discard-
ing 1.5 ml of the supernatant, we resuspend the remain-
ing 500 μl (MT pellet and buffer) and transfer it to clean 
1.5 ml tubes. We resuspend 1 ml of Mitochondria Stor-
age Buffer into the solution and centrifuge at 8000 g for 
10 min at 4  °C. We carefully remove and discard 1.5 ml 
of the supernatant and resuspend it in 1.5 ml Mitochon-
dria Storage Buffer, then centrifuge it at 8000 g for 10 min 
at 4 °C. We repeat this process until a pellet forms at the 
bottom of the tube. We combine these pure MT fraction 
pellets in 100 μl Mitochondrial Storage Buffer (+ protease 
inhibitor). We measure the two crude nuclear fraction 
pellets and resuspend them in the appropriate volume 
of CER I buffer (+ protease inhibitors) from the NE-PER 
Nuclear Cytoplasmic Extraction Kit (Thermo Fisher Sci-
entific #78833). We vortex the tubes at the highest setting 
for 15 s and incubate on ice for 10 min. We add ice-cold 
CER  II buffer to the tubes. We vortex the pellet for 5  s 
at the highest setting and then incubate on ice for one 
additional minute. Again, we vortex the pellet for 5 s on 
the highest setting, then centrifuge it at maximum speed 
(~ 16,000  g). We remove and discard the supernatant. 
We then resuspend the insoluble pellet in NER buffer 
from the NE-PER kit (+protease inhibitors), vortex the 
pellet at the highest setting for 15 s, incubate on ice for 
10  min (one time only), and centrifuge it at max speed 
(~ 16,000 g) for 10 min at 4 °C, and transfer the superna-
tant, which contains the pure nuclear fraction, to a clean 
1.5 ml tube on ice. Following the assessment of the MT 
fraction’s purity using protein-based methods (described 
below), we divide the pure MT fraction into thirds: 1/3rd 
represents the pure MT fraction; the remaining 2/3rds 
are transferred to a new tube to be purified into the MP 
fraction. We centrifuge the pre-MP pellet at 8000  g for 
10  min, then discard the supernatant. We resuspend 
the pellet in 10 × pellet volume 100 mM Swelling Buffer 
 (NaPO4, pH 7.4) (+ protease inhibitor) and incubate on 
ice for 20 min. The hypotonic reaction is stopped by add-
ing 3.75 × pellet volume of 60% sucrose to the solution. 
We centrifuge the solution at 12,000 g for 15 min, then 
remove the supernatant. We wash the pellet twice in 
1 ml Mitochondrial Storage Buffer (+protease inhibitor). 
Lastly, we resuspend the pure MP fraction in 50 μl Mito-
chondrial Storage Buffer (+protease inhibitor). We store 
all fractions in −20 °C.

Fraction‑seq: WES “blotting” step
We subject all fraction lysates (total, nuclear, cytoplas-
mic, MT, and MP) to the Bradford Protein Assay (BioRad 
#5000006) to calculate protein concentration. We use the 
Western size-based Assay from Protein Simple (WES) to 
evaluate the purity of the cell fractions based on protein 
profiling. We carry out WES validation according to the 

company’s specifications (https:// prote insim ple. com) 
by loading 0.2  mg/ml of each sample to a 12–230  kDa 
Jess/Wes Separation Module, 8 × 25 Capillary Car-
tridge (Protein Simple #SM-W004). Primary antibodies, 
Cytochrome C—Mitoplast (BD Pharmagen #556433), 
GAPDH—Cytoplasm (NEB #2118), LAMIN A/C—
Nucleus (NEB #4777), SDHA—Mitochondria/Mitoplast 
(NEB #11998), and TFAM—Mitochondria/Mitoplast 
(NEB #8076) are used as cell fraction markers. Secondary 
Anti-Rabbit (Protein Simple #DM-001) and Anti-Mouse 
(Protein Simple #DM-002) antibodies are used. We fol-
low the company’s protocol to analyze the WES results 
and calculate the area under the curve for each antibody.

Fraction‑seq: RNA isolation step
After we assess the purity of the cell fractions, we subject 
the MT fraction to incubation with 2 mg/ml RNase A for 
15 min on ice. Immediately, we add 900 μl of TRIzol (Inv-
itrogen) to the Total, Nuclear, Cytoplasmic, MT, and MP 
fractions. We use a 1 ml pipette to resuspend the samples 
in Trizol and then incubate them at room temperature for 
5 min to equilibrate. We add 180 μl chloroform to the sam-
ples and shake the Trizol/chloroform solution vigorously 
for 30 s. We incubate the samples at room temperature for 
3 min and then centrifuge them at 12,000 g for 15 min. We 
transfer the clear supernatant from each sample to clean 
tubes and add 500 μl 100% isopropanol to each tube. We 
incubate the samples at 20  °C for 2 h, allowing the RNA 
to precipitate out of solution. We centrifuge the samples 
at 12,000 g for 10 min at 4 °C and remove the supernatant. 
We wash the samples twice with 1  ml 70% ethanol and 
centrifuge them at 7600 g for 5 min. We remove all ethanol 
and allow the pellets to dry for 15 min. We then resuspend 
the pellets in molecular-grade DNase-, RNase- and Pro-
tease-Free water (Fisher #BP2819-1). We detect the RNA 
concentrations using a spectrophotometer.

Fraction‑seq: deep sequencing step
We assess the integrity and purity of the RNA of the vali-
dated preparations (above) using the Agilent 2100 Bio-
analyzer. We prepare the validated RNAs for sequencing 
using the NEBNext Library preparation method (#E7330) 
with the kit’s standard protocol. The NEBNext 3′-adapter 
is AGA TCG GAA GAG CAC ACG TCT. All samples are 
sequenced at an average depth of 30 million reads (sin-
gle-end, 75 bases).

Fraction‑seq: profiling isomiRs, tRFs, and rRFs step
We profile isomiRs using isoMiRmap [12], tRFs using 
MINTmap [97], and rRFs with the approach that we 
described previously [1]. Before mapping, we use cuta-
dapt to quality trim and remove the 3´ adapter [98]. 
We threshold the profiled sncRNAs using the adaptive, 

https://proteinsimple.com
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sample-specific Threshold-seq tool [99] (default parameter 
settings). Since the MP fraction is not treated with RNase A 
because of its limiting yield, we apply additional compu-
tational filters: specifically, for a given biological replicate, 
we remove any sncRNA that is present in the MP fraction 
above threshold but absent from the MT fraction. We only 
consider sncRNAs (isomiRs, tRFs, and rRFs) whose lengths 
are ≥ 18 nts. To account for different sequencing depths, we 
express sncRNA abundances in reads-per-million (RPM).

Differential abundance of sncRNAs
We use the DESeq2 package [100] in R to determine 
sncRNAs that are DA in total RNA in two cell lines or 
the same fraction in two cell lines. For the values input 
into the DESeq2 package, we use a mean raw read thresh-
old of 300 for either of the two groups being compared. 
For normalization, we used DESeq2’s default param-
eters which calculates size factors based on the median 
of ratios. DA is measured in |log2| ≥ 1 change. We deter-
mine statistical significance using a false discovery rate 
(FDR) threshold of 0.05.

Northern blotting
We run 5 or 10 μg of RNA from each cell line on a 15% 
acrylamide/8  M urea gel at 300  V until the lower dye 
front reaches the bottom of the gel. We transfer the gel 
to Hybond™-N+ membrane (Amersham Biosciences, cat-
alog number: RPN303B) at 400 mA for 30 min. We dry 
the membrane and then cross-link twice at 120,000  μJ/
cm2. We pre-hybridize the membranes in a hybridiza-
tion buffer (PerfectHyb™ Plus Hybridization Buffer: 
H7033-1L) for 30  min, rotating at 37  °C. We prepare 
northern probes using the DIG labeling kit (DIG Oligo-
nucleotide 3′-End Labeling Kit, 2nd Gen: 3353575910). 
Detection of membranes is done using the DIG detec-
tion kit (DIG Wash and Block Buffer Set: 11585762001, 
Anti-Digoxigenin-AP, Fab fragments: 11093274910, 
CDP-Star Chemiluminescent Substrate: C0712-100ML) 

following the manufacturer’s instructions. Additional 
file 18: Table S10 lists the probes we used in this study.

Mixed‑effects modeling
We use a “mixed-effects” approach to model the frac-
tionation process. Our model distinguishes among the 
following seven groups of sncRNAs: (i) isomiRs; (ii) tRFs 

derived from nuclear tRNAs; (iii) tRFs derived from MT 
tRNAs; (iv) ambiguous tRFs whose sequences are present 
in both nuclear and MT tRNAs; (v) rRFs derived from 
the nuclear 5S rRNA; (vi) rRFs derived from the nuclear 
45S rRNA cassette; and (vii) rRFs derived from two MT 
rRNAs, 12S and 16S. The model treats each sncRNA as 
an independent molecule, including those that are adja-
cent to or even overlap one another on the parental RNA 
from which they arise. Furthermore, the model incorpo-
rates loss of material during the fractionation process, 
technical errors, and cross-fraction contamination sepa-
rately for each replicate.

For the estimation process, and separately for each 
cell line:

• We assume that the cytoplasmic fraction (“cyto”) is 
uncontaminated (Additional file  19: Text 1) and the 
measured abundance of the ith molecule in the jth repli-
cate is linked to the ith molecule’s true value as follows:

where 
J

j=1

α1,j = 0 , log(1+ cytoTruei ) ∼ N (µ1,i, τ
2
1 ) , 

e1,i,j ∼ N (0, σ 2
1 ) , and J is the number of replicates. 

This is a mixed effects model where log(1+ cytoTruei ) 
is the random effect. The mean of the log-trans-
formed true value ( µ1,i ) is a function of group mem-
bership. We fit this model using restricted maximum 
likelihood estimation in SAS Proc Mixed. From the 
results of fitting this model, we can estimate the 
expected true value for the ith molecule from 
log(1+ cŷtoTruei ) , and the jth replicate of the ith mol-
ecule from ( ̂α1,j + log(1+ cŷtoTruei )).

• We assume that the nuclear fraction (“nuc”), MT 
fraction (“mito”), and mitoplast fraction (“MP”) 
are contaminating one another and the measured 
abundance of the ith molecule in the jth replicate is 
linked to the ith molecule’s true value as follows:

where 
J∑

j=1

αx,j = 0 , log(1+mitoTruei ) ∼ N (µ2,i, τ
2
2 ) , 

log(1+MPTrue
i ) ∼ N (µ3,i, τ

2
3 )  , 

log(1+ nucTruei ) ∼ N (µ4,i, τ
2
4 ) , ex,i,j ∼ N (0, σ 2

x ) , J is 
the number of replicates, and the  γ᾽s represent the 
contamination.

log(1+ cytomeasured
i,j ) = α1,j + log(1+ cytoTruei )+ e1,i,j

log(1+mitomeasured
i,j ) = α2,j + log(1+mitoTruei )+ γ1,jlog(1+ cytomeasured

i,j )+ γ2,jlog(1+ nucmeasured
i,j )+ e2,i,j

log(1+MPmeasured
i,j ) = α3,j + log(1+MPTrue

i )+ γ3,jlog(1+ cytomeasured
i,j )+ γ4,jlog(1+ nucmeasured

i,j )

+γ5,jlog(1+mitomeasured
i,j )+ e3,i,j

log(1+ nucmeasured
i,j ) = α4,j + log(1+ nucTruei )+ γ6,jlog(1+ cytomeasured

i,j )+ e4,i,j
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Fitting these models directly would result in high 
estimates for the various γ᾽s as they would capture con-
tamination and true correlation. We tackle this compli-
cation using a three-step process:

1. We fit a model with estimated True values as predic-
tors. For example, for the nuclear fraction

where log(1+ nucTruei ) ∼ N (µ4,i, τ
2
4 ) and µ4,i =

7∑
g=1

(�0,g + �1,g log(1+ cŷtoTruei ))I(Groupi = g) . That is, 
we allow the mean of the ith molecule’s true value in 
the nuclear fraction to depend on the group type of 
the ith molecule and the molecule’s estimated true 
cytoplasmic value, which captures the correlation.

2. Using the estimated residuals from step 1, we fit the 
model

The idea here is that if all association between the 
ith molecule’s measured value in the nuclear and cyto-
plasmic fractions is due to real correlation, then there 
should be no association between the residuals of step 
1 and the measured cytoplasmic value. Any association 
that may be present indicates contamination.

3. We subtract the contamination from the measured 
value to estimate the uncontaminated value of the ith 
molecule in the jth replicate as:

Any non-positive estimates for γ are ignored. We 
then refit the mixed effects model using the uncontami-
nated estimates as the dependent variable:

Using the results from the model, we esti-
mate the true abundance of the ith mole-
cule in the jth replicate in the nuclear fraction 
nûci,j = exp(α̂4,j + log(1+ nûcTruei ))− 1.

We repeat the last three steps for the mito and MP 
fractions. In these two models, the estimated mean true 
abundance of the ith molecule in the nuclear and cyto-
plasmic fractions is included in step 1 (including the 
mito fraction in the MP results in non-convergence). To 
estimate the contamination, we include all factors in the 
contamination model.

log(1+ nucmeasured
i,j ) = α4,j + log(1+ nucTruei )+ e4,i,j

ê4,i,j = δ4,j + γ6,jlog(1+ cytomeasured
i,j )+ ε4,i,j

log(1+ nucuncontami,j ) = log(1+ nucmeasured
i,j )

− γ̂6,j I(γ̂6,j > 0)log(1+ cytomeasured
i,j )

log(1+ nucuncontami,j ) = α4,j + log(1+ nucTruei )+ e4,i,j

• Finally, for each replicate, we fit the following equa-
tion for rescaling purposes:

where cŷtoi,j = exp(α̂1,j + log(1+ cŷtoTruei ))− 1 , 
nûci,j = exp(α̂4,j + log(1+ nûcTruei ))− 1 , and 
m̂itoi,j = exp(α̂4,j + log(1+mîtoTruei ))− 1 . The 
equation incorporates loss of material by scaling each 
fraction separately. This calculation excludes mole-
cules that occupy the top 1% and bottom 1% by abun-
dance (outliers).

We fit the mixed effects models using SAS Proc 
MIXED (SAS/STAT version 15.1, SAS Institute, Cary, 
NC) with restricted maximum likelihood estimation 
under default convergence criteria. We estimated scal-
ing constants using SAS Proc GENMOD with Bayesian 
estimation (MCMC) with priors for the compartment 
coefficients having a normal distribution with mean 
equal to the coefficient from a linear regression model 
that assumes the same coefficient for each compartment 
and variance equal to 10 times the variance of the esti-
mated coefficient. We ran three chains for each model 
and assessed convergence for these parameters using the 
Gelman-Rubin statistic [101].

Abbreviations
DA  Differentially abundant or differential abundance
FDR  False discovery rate
lncRNA  Long non-coding RNA
isomiR  MiRNA isoform
miRNA  MicroRNA
MT  Mitochondrion
MP  Mitoplast
mRNA  Messenger RNA
nt  Nucleotide
PCA  Principal component analysis
rRF  rRNA-derived fragment
RPM  Reads-per-million
sncRNA  Small non-coding RNA
T4 PNK  T4 polynucleotide kinase
tRF  tRNA-derived fragment
TNBC  Triple-negative breast cancer
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Additional file 1: Fig. S1. Our approach. Cells are washed 2x with 1X PBS 
on 20-40 Petri dishes when 90% confluent. Cells are then mechanically 
scraped and transferred to a 50 ml conical tube. Cells are centrifuged 
at 500 g for 10 minutes then the supernatant is removed. Cells are then 
resuspended in 2x packed cell volume 0.9% NaCl and left to incubate 
on ice for 10 minutes. A. Cells are transferred to 10 1.5 microcentrifuge 
tubes, where they are centrifuged at 500g for 10 minutes, and the 
supernatant is discarded. The pellets are resuspended in ice-cold Lysis 
Buffer + Protease Inhibitor and 1 mM EGTA and incubated for 10 minutes 
rotatingat  4oC. B. 4-10% of lysate from each tube is saved for the total 
cell sample. C. Lysate is centrifuged at 1,000 g for 10 minutes at  4oC, and 

totalmeasured
i,j = β0,j + β1,jcŷtoi,j + β2,jnûci,j + β3,jmîtoi,j + e5,i,j

https://doi.org/10.1186/s12915-024-01970-6
https://doi.org/10.1186/s12915-024-01970-6
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supernatant is transferred to fresh 1.5 ml microcentrifuge tubes. D. Super-
natant is centrifuged at 16,000 g for 10 minutes at  4oC to remove 
additional cell debris and new supernatant is transferred to ultracentrifuge 
tubes which are centrifuged at 100,000 g for 30 minutes at  4oC – the 
supernatant now contains the cytoplasmic fraction. E. The remaining cell 
lysate pellets are resuspended in 1.5 ml ice-cold Disruption Buffer. The 
pellets are passed slowly through a blunt-ended 26-gauge needle syringe, 
20x on ice. F. The supernatant is transferred to clean tubes and processed 
according to the Qiagen Mitochondria Isolation Kit instructions. G. Purified 
MT pellets are combined in 100 μl Mitochondria Storage Buffer – this is 
the MT fraction. H. 1/3rd of the MT fraction is further processed to create 
the MP fraction. I-J. The pellet that formed from spinning the solution in E 
is further purified using the NE-PER isolation kit and the final supernatant 
is the nuclear fraction. Parts of this image were created with BioRender.
com.

Additional file 2: Fig. S2. Protein marker validation of cell fractiona-
tion via WES. A-C. WES blots showing detection of cell fraction protein 
markers Lamin A/C, GAPDH, SDHA, Cytochrome C, TFAM. 2 mg/ml protein 
lysate from each sample was loaded into a given lane. The absence of 
Cytochrome C in the MP fraction indicates the removal of intermembrane 
material from the MT. A. BT-20 – three replicates. B. MDA-MB-231 – three 
replicates. C. MDA-MB-468 – four replicates

Additional file 3: Table S1. Data table of the average abundancesfor 
each short RNA found in RNA-seq at ≥ 10 RPM in a given cell line and cell 
fraction

Additional file 4: Table S2. Data table of the top 10% most abundant 
short RNA from each cell line based on average abundance of the cell line 
replicates

Additional file 5: Fig. S3. Abundances of 17 sncRNAs shared between 
TNBC cell lines. These are the 17 sncRNAs that are common to BT-20, 
MDA-MB-231, and MDA-MB-468 cell lines when comparing the top 10% 
most abundant RNAs from each cell line based on average abundance

Additional file 6: Table S3. Data table of the differentially abundantshort 
RNAs when comparing the three cell lines pairwise

Additional file 7: Fig. S4. Comparisons of sncRNAs across cell lines reveal 
cell-line-specific features. A-D. Venn Diagrams of the 10% most abundant 
sncRNAs in BT-20, MDA-MB-231, and MDA-MB-468 cells based on average 
abundance in each cell fraction. A. Nucleus. B. Cytoplasm. C. MT. D. MP

Additional file 8: Table S4. Data table of the differentially abundant short 
RNAs

Additional file 9: Table S5. Data table of the top 10% most abundant 
short RNAs from each cell line for each cell fraction based on average 
abundance of the cell line replicates

Additional file 10: Fig. S5. Examples of subcellular enrichments using 
within-fraction abundance-based ranking. Percentile-colored heatmap 
for select sncRNAs in total RNA and the nucleus, cytoplasm, MT, and MP 
for BT-20. For each sncRNA, we list its nucleotide sequence, the parental 
RNA from which the sncRNA arises, and the location of the sncRNA within 
the parental RNA. Red dotted lines separate the list into three groups: 
sncRNAs that are enriched primarily in the nucleus, the cytoplasm, or the 
MT, respectively

Additional file 11: Table S6. The average reconstructed abundances in 
total RNA and each of the small RNAs in the cell fractions of BT-20 cells

Additional file 12: Table S7. The average reconstructed abundances in 
total RNA and each of the small RNAs in the cell fractions of MDA-MB-231 
cells

Additional file 13: Table S8. The average reconstructed abundances in 
total RNA and each of the small RNAs in the cell fractions of MDA-MB-468 
cells

Additional file 14: Fig. S6. Original uncropped blots used for Fig. 6.

Additional file 15: Table S9. Abundance of tRNA LysCTT-derived frag-
ments in RNA-seq data generated by treating RNA with T4 PNK prior to 
library preparation

Additional file 16: Fig. S7. Original uncropped blots used for Fig. 7.

Additional file 17: Fig. S8. A full-length WES membrane for the MDA-
MB-231 fractions that are shown in Fig. 7.

Additional file 18: Table S10. DNA oligo sequences ordered from Fisher/
Invitrogen used for the DIG northern blot experiments in this study

Additional file 19: Text 1. Additional information about our modeling 
approach
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