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Abstract: The Eph receptor tyrosine kinases and their ephrin ligands direct axon pathfinding and
neuronal cell migration, as well as mediate many other cell–cell communication events. Their
dysfunctional signaling has been shown to lead to various diseases, including cancer. The Ephs
and ephrins both localize to the plasma membrane and, upon cell–cell contact, form extensive
signaling assemblies at the contact sites. The Ephs and the ephrins are divided into A and B
subclasses based on their sequence conservation and affinities for each other. The molecular details
of Eph–ephrin recognition have been previously revealed and it has been documented that ephrin
binding induces higher-order Eph assemblies, which are essential for full biological activity, via
multiple, distinct Eph–Eph interfaces. One Eph–Eph interface type is characterized by a homotypic,
head-to-tail interaction between the ligand-binding and the fibronectin domains of two adjacent
Eph molecules. While the previous Eph ectodomain structural studies were focused on A class
receptors, we now report the crystal structure of the full ectodomain of EphB2, revealing distinct
and unique head-to-tail receptor–receptor interactions. The EphB2 structure and structure-based
mutagenesis document that EphB2 uses the head-to-tail interactions as a novel autoinhibitory control
mechanism for regulating downstream signaling and that these interactions can be modulated by
posttranslational modifications.

Keywords: receptor tyrosine kinases (RTKs); Eph receptors; ligand-binding domain; fibronectin type
III domain; X-ray crystallography; receptor clusters; protein–protein interfaces; kinase activation

1. Introduction

Eph receptors constitute the largest family of receptor tyrosine kinases (RTKs) [1].
They, and their membrane-anchored ephrin ligands, are divided in two subgroups, A and
B, based on binding specificities and sequence conservation [2]. A and B class ephrins also
differ by the mode of membrane attachment: The A class ephrins have a GPI (glycosylphos-
phatidylinositol) glycolipid anchor, while the B class ephrins have a transmembrane se-
quence and a small cytoplasmic domain [3]. An important characteristic of these molecules
is that, upon cell–cell contact, signals are transduced into both the Eph- and ephrin-bearing
cells [4,5]. With few exceptions, A class receptors bind A class ligands, whereas B class
receptors bind B class ligands [6]. The Ephs and ephrins were originally characterized
as mediating axon guidance, but their roles in various other cell–cell-communication
events have also been documented [7,8]. Their role in tumor development and cancer
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progression has lately been intensively investigated [9–11]. In particular, EphB2 signaling
regulates many developmental processes and adult tissue homeostasis [12]. It enhances
tumor proliferation through a kinase-dependent pathway but also inhibits cell migration
independent of its kinase activity [13]. Moreover, it has been shown that Alzheimer disease-
linked amyloid-β oligomers bind to the fibronectin domains of EphB2 and trigger receptor
degradation in the proteasome [14]. Thus, augmenting EphB2 activity could have bene-
ficial effects in Alzheimer disease by reversing long-term potentiation impairments [15].
Therapeutic strategies targeting amyloid-β oligomers were recently reviewed in [16].

The Eph extracellular region or ectodomain (ECD) is a multidomain assembly, consist-
ing of a ligand-binding domain (LBD), a cysteine-rich domain (CRD), and two fibronectin
(FN) III domains (FN1 and FN2) [17]. Ephrins, on the other hand, have only one domain
on the outside of the cell, the receptor-binding domain (RBD). Earlier structural studies
with the minimal ligand-receptor binding domains revealed the molecular details of the
Eph–ephrin recognition [18–21]. Thus, upon binding, a long hydrophobic loop of the ligand
inserts into a hydrophobic cavity on the surface of the receptor. While this interaction offers
the energetic driving force for the binding and is necessary and sufficient for the formation
of heterodimeric Eph–ephrin complexes, it is not sufficient to cause the activation of the
receptors on the cell surface [22]. Indeed, imaging studies with Eph-expressing cells have
shown that, unlike the ‘canonical’ RTKs, where simply bringing two receptors close to each
other is enough for signaling [23], the Eph receptors require the formation of higher-order
assemblies or clusters, for full biological activity [24,25].

Structures of entire Eph ECDs bound to ephrins revealed that their clustering requires
two separate receptor–receptor interfaces [26–28], both of which have neighboring Eph
molecules interacting in a head-to-head (parallel) orientation. The first interface involves
the Eph LBD region but can facilitate bringing two Eph molecules together even in the
absence of ligand. It was originally named ‘Eph–Eph homo-dimerization’ interface. The
second distinct and non-overlapping interface is located within the CRD and was named
‘Eph clustering’ interface. Each of the unoccupied clustering interfaces within an Eph dimer
can work independently to recruit another receptor dimer in the assembly. This process can
then proceed until a fully active Eph cluster, consisting of perhaps hundreds of receptors,
is formed. A fascinating conclusion from these studies is that signaling-competent clusters
may form once the local receptor concentration is high enough to allow the utilization of
both head-to-head Eph–Eph interfaces [29,30]. This can happen even in the absence of
ligand, provided the Eph expression levels are high enough, as observed in certain cancer
cells [31].

Earlier studies on unliganded Eph ECDs revealed the existence of yet another, third,
Eph–Eph interacting interface, this time with head-to-tail orientation of the interacting
Ephs, formed between the LBD and the FN domains of two adjacent unliganded Eph
molecule [32,33]. Once an Eph receptor binds a ligand, this homotypic Eph–Eph interaction
falls apart, displaced by the Eph–ephrin interaction. The exact biological relevance of
this interface is still under scrutiny, but it has been suggested to be involved in fine-
tuning the Eph signaling. For example, it could potentially collaborate with Eph–ephrin
in-cis interactions [34] that have been reported for certain cell types, to more precisely
control the levels of Eph kinase phosphorylation [35]. The Eph–Eph head-to-tail homotypic
interactions might also be responsible for two intriguing Eph signaling phenomena: First,
the Eph clusters sometimes seem to cover larger cell surface areas than what would be
expected based on the direct Eph–ephrin contact areas [36]; second, unliganded (containing
mutations abolishing ligand binding) Eph receptors can be recruited into the pre-existing
Eph–ephrin clusters [37,38]. To further investigate the significance of the receptor–receptor
homotypic interactions, particularly in the B class Ephs, we crystallized the EphB2 ECD,
determined its three-dimensional structure, and performed structure-based mutagenesis
and Eph kinase activation assays. The reported data reveal that Eph receptors use receptor–
receptor interactions as a unique autoinhibitory mechanism to control Eph signaling.
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2. Results and Discussion

The mouse EphB2 extracellular domain (ECD) (residues 19–543) was purified using
Protein A Sepharose chromatography and size-exclusion chromatography. Size-exclusion
chromatography and pull-down assays (data not shown) documented that the protein
was properly folded and bound ephrin ligands with high affinity. Its identity and purity
were confirmed by mass spectrometry. The protein was crystallized in 1.1 M Na Succinate,
0.1 M Na Acetate pH 4.8, 5% (v/v) MPD, and 3% 1, 6-Hexanediol, and the structure
was determined by molecular replacement at 3.1 Å resolution with a final R-free of 25%.
The refinement statistics are given in Table 1. Overall, the protein shows an extended,
elongated architecture (~150 Å long and 25–50 Å wide) with all four domains well ordered
(Figure 1). The CRD can be subdivided in two domains: The N-terminal one resembles
the complement regulator domain (sometimes called a ‘Sushi’ domain) and is followed
by an epidermal growth factor (EGF)-like domain. As in previously published Eph–
ECD structures [27,28,32], the region containing the LBD, the CRD, and FN1 is rigid, but
the connection between FN1 and FN2 is flexible. Indeed, in the EphA2–ECD and the
EphB6–ECD structures, the second FN domain is not even visible in the electron density
map [27,39]. The average r.m.s.d. between the Cα positions of the EphB2 and EphA2
ectodomains, excluding FN2 (over 367 Cα atoms), is 2.6 Å, and that between the EphB2
and EphA4 entire ectodomains (over 465 Cα atoms) is also 2.6 Å. The comparison of the
three known Eph full-ectodomain structures is shown in Figure 1. The EphB2 protein is
glycosylated at four sites: N265, N336, N428, and N482, as illustrated.

Table 1. Data collection and refinement statistics for the EphB2 ECD crystal structure. Statistics for
the highest-resolution shell are shown in parentheses.

EphB2-ECD (PDB ID: 7S7K)

Resolution range (Å) 48.4–3.14 (3.32–3.14)

Space group P 21 21 21

Unit cell 73.843 111.142 156.877
90 90 90

Total reflections 73,799

Unique reflections 22,498

Multiplicity 3.3 (3.4)

Completeness (%) 97.26 (98.52)

Mean I/Sigma(I) 18 (1.5)

Wilson B-factor 116.94

R-merge 0.041 (0.792)

R-work 0.1913 (0.3053)

R-free 0.2469 (0.3427)

Number of atoms 4167

Macromolecules 4072

Ligands 95

Water 0

Protein residues 532

RMS (bonds) 0.010

RMS (angles) 1.43

Ramachandran favoured (%) 95

Ramachandran outliers (%) 0.19

Clash-score 12.64

Average B-factor 48.50

Macromolecules 47.10

Ligands 109.90
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FN2 domains is flexible. The individual EphB2 domains are colored differently, and the attached 
glycans are in gray. (Right) Comparison of the EphB2 ECD structure with the other two reported 
full ECD structures, EphA4, and EphA2. Only the positioning of the second FNIII domain is 
distinct in these structures, consistent with the flexibility of the FN1–FN2 linker region. 

As in some of the previously reported unliganded Eph ectodomain structures, the 
EphB2–ECD forms homotypic head-to-tail dimers via interactions between the LBD and 
the FNIII domains of two neighboring molecules (Figure 2A). The size of the LBD–FN 
interface is 1103 Å2 and the specific interacting residues are listed in Figure 2B. The total 
interacting surface area is about the same size as the area observed in the EphA2–ECD 
structure [27] (980 Å2) but smaller than the one observed in the EphA4–ECD structure [32] 
(2460 Å2). It was suggested [33] that the ligand promiscuity of EphA4 might, in part, be a 
result of its larger LBD–FN interface that would ensure a faster and more efficient receptor 
activation as compared to the other Eph receptors. Specifically, it was proposed that, while 
the head-to-head Eph–Eph interfaces are responsible for ligand-induced Eph clustering, 
the head-to-tail interface is responsible for Eph pre-clustering prior to ligand binding. 
Thus, the head-to-tail FN–LBD receptor–receptor interactions are emerging as a new 
paradigm for explaining the unique regulation and fine-tuning of Eph–ephrin signaling. 
Indeed, similar head-to-tail interactions have not been reported for other RTKs, while 
their biological importance for Eph signaling is further underscored by the existence of 
several cancer-related mutations within the FNIII domains, in addition to those within the 
LBD and CRD [40]. 
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Figure 1. (Left) Crystal structure of the EphB2–ECD. Two orthogonal views are shown. The protein
has an elongated architecture (~150 Å long and 25–50 Å wide) and all four domains are well-ordered.
The LBD–CRD–FN1 segment is rigid, while the connection between the FN1 and FN2 domains is
flexible. The individual EphB2 domains are colored differently, and the attached glycans are in gray.
(Right) Comparison of the EphB2 ECD structure with the other two reported full ECD structures,
EphA4, and EphA2. Only the positioning of the second FNIII domain is distinct in these structures,
consistent with the flexibility of the FN1–FN2 linker region.

As in some of the previously reported unliganded Eph ectodomain structures, the
EphB2–ECD forms homotypic head-to-tail dimers via interactions between the LBD and the
FNIII domains of two neighboring molecules (Figure 2A). The size of the LBD–FN interface
is 1103 Å2 and the specific interacting residues are listed in Figure 2B. The total interacting
surface area is about the same size as the area observed in the EphA2–ECD structure [27]
(980 Å2) but smaller than the one observed in the EphA4–ECD structure [32] (2460 Å2). It
was suggested [33] that the ligand promiscuity of EphA4 might, in part, be a result of its
larger LBD–FN interface that would ensure a faster and more efficient receptor activation as
compared to the other Eph receptors. Specifically, it was proposed that, while the head-to-
head Eph–Eph interfaces are responsible for ligand-induced Eph clustering, the head-to-tail
interface is responsible for Eph pre-clustering prior to ligand binding. Thus, the head-to-tail
FN–LBD receptor–receptor interactions are emerging as a new paradigm for explaining the
unique regulation and fine-tuning of Eph–ephrin signaling. Indeed, similar head-to-tail
interactions have not been reported for other RTKs, while their biological importance for
Eph signaling is further underscored by the existence of several cancer-related mutations
within the FNIII domains, in addition to those within the LBD and CRD [40].
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to the 13 LBD and 10 FN2 residues, there are 12 residues within the CRD (including Ile-
291, Asn-292, Arg-294, and Thr-295) and three residues within the FN1 (Arg-348, Arg-392, 
and Tyr-394) that participate in the head-to-tail interactions (Figure 2B). Of these, Arg-348 
seems of particular importance because it forms a salt bridge with Glu-145 of the LBD, a 
residue that is adjacent to the surface involved in ligand binding. While Glu-145 is 
conserved in both A and B class receptors, Arg-348 is unique to EphB1, EphB2, and EphB3. 
Hence, the resting-state EphB receptors could need a higher concentration of engaging 
ligand to outcompete the LBD–FN interactions as compared to their A class counterparts. 
Indeed, the A class receptors have been reported, in general, to form ephrin complexes 
with faster on rates and lower Kds [41]. 

Interestingly, the glycosylated Asn-482 in the FN2 domain is in the heart of the head-
to-tail interface, revealing its important role in the homotypic Eph–Eph interactions. As 
illustrated on Figure 2A, the Asn-482-attached glycan wraps around the connection 
between the LBD and CRD of the interacting molecule, locking in place the LBD and CRD 
of one Eph molecule against the FN1–FN2 region of its neighbor. The N482-attached 
glycan forms a hydrogen bond with the Arg-223 side chain. Of the other three 
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Arg392

Val249 Glu480
Pro236
Lys238
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Leu152
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Val156 Ser274
Ile237 Tyr481

Arg223
Ala221 Tyr394
Asp151 Tyr473
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Figure 2. The head-to-tail EphB2 interface. (A) The two adjacent, interacting Eph molecules are
colored in red and green. The glycan attached to residue Asn-482 is in purple. The zoom-in on the
left shows a space-filling model of the interface formed between the LBD and the FNIII domains of
the two interacting EphB2 molecules. (B) Schematic diagram of the EphB2–ECD residues interacting
within the head-to-tail interface. Residue color: positive, blue; negative, red; neutral, green; aliphatic,
gray; aromatic, magenta; P,G, orange.

Although the Eph–Eph head-to-tail interactions in the EphB2 structure have some
similarities with those observed in the EphA2 and EphA4 structures, there are also major
differences. For example, the FN C-terminal ‘tail’ (FN1-FN2) of one EphB2 molecule
wraps around the LBD ‘head’ of the other molecule, covering several residues beyond the
LBD and the FN2 domains (Figure 2A). In contrast, all interacting residues in the A class
structures reside exclusively within the LBD and the FN2 domains. In EphB2, in addition
to the 13 LBD and 10 FN2 residues, there are 12 residues within the CRD (including Ile-291,
Asn-292, Arg-294, and Thr-295) and three residues within the FN1 (Arg-348, Arg-392, and
Tyr-394) that participate in the head-to-tail interactions (Figure 2B). Of these, Arg-348 seems
of particular importance because it forms a salt bridge with Glu-145 of the LBD, a residue
that is adjacent to the surface involved in ligand binding. While Glu-145 is conserved
in both A and B class receptors, Arg-348 is unique to EphB1, EphB2, and EphB3. Hence,
the resting-state EphB receptors could need a higher concentration of engaging ligand to
outcompete the LBD–FN interactions as compared to their A class counterparts. Indeed,
the A class receptors have been reported, in general, to form ephrin complexes with faster
on rates and lower Kds [41].

Interestingly, the glycosylated Asn-482 in the FN2 domain is in the heart of the head-
to-tail interface, revealing its important role in the homotypic Eph–Eph interactions. As
illustrated on Figure 2A, the Asn-482-attached glycan wraps around the connection between
the LBD and CRD of the interacting molecule, locking in place the LBD and CRD of one
Eph molecule against the FN1–FN2 region of its neighbor. The N482-attached glycan forms
a hydrogen bond with the Arg-223 side chain. Of the other three glycosylated residues,
only Asn-336 is close to the head-to-tail interface, but still the Asn-336-attached glycan is
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at least 12 Å from the interacting Eph molecule. Glycan moieties have been previously
shown to have roles in mediating other protein–protein interactions, for example, in
inflammation and immunity [42,43]. While it has been shown that the glycosylation status
of the ephrins is important for signaling and proliferation of glioblastoma cells [44], there
have been no prior reports on the role of Eph receptor glycosylation in Eph signaling. For
example, earlier structural studies of the EphA2 ECD documented that the two putative
N-linked glycosylation sites, located in the FN1 domain and in the linker between FN1
and FN2, are not involved in the EphA2 homotypic contacts [28]. Indeed, the Asn-482
glycosylation site is only found in EphB1 and EphB2 and not in any other human A or
B class receptors (Table 2), with most A class receptors containing either a Ser or a Thr
residue at the corresponding position [27,32].

Table 2. Alignment of Eph sequences around the N482 glycosylation site (magenta) of EphB2.

h-EphB1 (469) iryyekehnef n ssm-ar (485)

h-EphB2 (471) lqyyekelsey n ata-ik (487)

h-EphB3 (488) mkyfek–segiast-vt (502)

h-EphB4 (443) vkyhekgaegpssvrflk (460)

h-EphB6 (508) lryydqaedeshsftmts (525)

h-EphA1 (469) vkyhekgaegpssv-vle (485)

h-EphA2 (443) vtyrkkgdsnsynv-rrt (459)

h-EphA3 (472) vkyyekqeqetsyti-lr (488)

h-EphA4 (476) vkyyekdqnersyri-vr (492)

h-EphA5 (504) ikyfekdq-etsyti-ik (519)

h-EphA6 (477) tkyyekeheqltyss-tr (493)

h-EphA7 (443) ikyyekdqrertyst-lk (459)

h-EphA8 (475) ikyyekdkemqsyst-lk (491)

h-EphA10 (492) iryyekgqseqtysmvkt (509)

EphB2

Human (471) lqyyekelsey n at

Mouse (471) lqyyekelsey n at

Rat (471) lqyyekelsey n at

Chicken (479) lqyyeknlsel n st

Macaque (448) lqyyekelsey n at

In order to study the importance of the EphB2 glycosylation and the head-to-tail
EphB2 homotypic interactions, we generated two mutations (a single point mutation and
a quadruple mutation) to disrupt the LBD–FN interactions. The first mutation, N482Q,
abolished the glycosylation site at the LBD–FN2 interface, while the second mutation,
Q472A/Y473A/E480A/Y481A, disrupted key hydrogen and van der Waals bonds at the
head-to-tail interface. We introduced these mutations into the full-length EphB2 receptor,
and the engineered constructs were transfected in HEK293 cells. EphB2 activation was mon-
itored by measuring the level of the EphB2 phosphorylation after ephrin stimulation. As
shown in Figure 3, both of these destabilizing mutations facilitated receptor kinase activa-
tion. The intensity of the phosphorylated EphB2 band on a protein gel was approximately
40% and 46% higher for the N482Q and the Q472A/Y473A/E480A/Y481A mutations,
respectively, as compared to the wild-type receptor. The increase in the phosphorylation
over wild-type EphB2 was statistically significant (p < 0.05) for both mutations, while the
difference between the two mutations was not statistically significant.
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Figure 3. EphB2 kinase phosphorylation of the wild-type receptors and receptors harboring mutations in the head-to-tail 
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Figure 3. EphB2 kinase phosphorylation of the wild-type receptors and receptors harboring mutations in the head-
to-tail interface. One of the mutants (Y481E) was designed to electrostatically stabilize the LBD–FN2 interaction by
a formation of a salt bridge with Arg-223 in the LBD. Two other mutations were designed to disrupt the LBD–FN2
interaction, either by abolishing the glycosylation site (N482Q) or by disrupting key hydrogen and van der Waals bonds
(Q472A/Y473A/E480A/Y481A) at the interface. The stabilizing mutation inhibited EphB2 phosphorylation and signaling,
while both destabilizing mutations increased EphB2 phosphorylation. Blue, constitutive signal with no added ephrin ligand;
red, 1 µg/mL ephrin-B2; green, 5 µg/mL ephrin-B2. Representative Western blot scans are shown under the labels.

We next generated a mutation, Y481E, which was designed to electrostatically stabilize
the EphB2 head-to-tail interaction. As illustrated on Figure 4, which shows the electrostatic
surface potential of EphB2, Tyr-481 interacted with a highly positively charged LBD area
in the head-to-tail dimers and the Y481E mutation was designed to allow the formation
of a new E481-R223 salt bridge. The cell-based Eph activation assays reveal that this
stabilizing mutation (Y481E) decreased receptor activation and signaling, as illustrated by
an approximate 56% lower EphB2 kinase domain phosphorylation when compared to the
wild-type receptor (Figure 3).

The selection of the Y481E mutation was also based on a recent report [45] that the
extracellular region of EphB2 can be phosphorylated in vivo. The two tyrosine residues
found to be phosphorylated under certain conditions were Tyr-481 and Tyr-504. While Tyr-
504 was not a part of the homotypic Eph–Eph interface (but was located relatively close to
it, ~10 Å), Tyr-481 was at the heart of the interface (Figure 4). Our mutagenesis results were
consistent with the notion that phosphorylation of Tyr-481, which was mimicked by the
Y481E mutation, could be used to regulate (in this case, suppress) the autoinhibitory EphB2
interactions, thus modulating the signaling. The head-to-tail EphB2 interactions would also
interfere with access to both Tyr-481 and Tyr-504 of potential tyrosine kinases, consistent
with the observation that ligand binding facilitates EphB2 ECD phosphorylation [45]. No-
tably, since EphB2 ECD phosphorylation has been shown to regulate the EphB2-NMDAR
interactions [45], our results suggest that the EphB2 head-to-tail interactions might mod-
ulate NMDAR signaling. Interestingly, Tyr-481 is unique to EphB2, underscoring the
possibly unique regulation of the EphB2 homotypic autoinhibitory interactions, and thus
EphB2 signaling, via ECD phosphorylation.
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Our results showed for the first time that EphB receptors can use head-to-tail homo-
typic interactions as an autoinhibitory mechanism. Importantly, the three EphB2–ECD
mutations discussed above affected both the constitutive (ligand-independent) and the
ligand-induced EphB2 phosphorylation (Figure 3). The mutations that disrupted the head-
to-tail (LBD–FN) EphB2 interface increased EphB2 phosphorylation, while the mutation
that stabilized the interface decreased it. The simplest explanation for the autoinhibitory
effect of the LBD–FN interactions is that they positioned the receptors on the cell surface
at a distance from one another that was larger than the distance required for efficient
trans-phosphorylation of neighboring molecules (Figure 5). Indeed, the EphB2 ECD struc-
ture showed that the receptor ectodomain was a rigid rod, with a hinge between the FN1
and FN2 domains. When the N-terminal LBD of one EphB2 molecule interacted with
the membrane-proximal FN region of its neighbor, the two molecules were separated by
the long, rigid LBD-CRD-FN1 region that was approximately ~150 Å long. Upon ligand
binding, the LBD–ephrin interactions would displace the LBD–FN head-to-tail interactions,
and the LBD would move away from the cell membrane, towards the ephrin-expressing
cell. The Eph ECD would now be an extended rod that was approximately perpendicular
to the membrane and involved in both Eph–ephrin and Eph–Eph head-to-head interac-
tions, as reported for the liganded EphA2 and EphA4 receptors [32,33]. Consecutively,
the distance between the transmembrane domains of neighboring receptors would de-
crease from ~150 Å to a much closer arrangement (Figure 5), as seen in the EphA–ephrinA
complex structures.
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Figure 5. Schematic representation of the autoinhibitory regulation mechanism of EphB2.
(Upper panel) In the unliganded receptors (green), the head-to-tail LBD–FN interactions kept the
kinase domains unphosphorylated and inactive by separating neighboring receptors (~150 Å apart).
(Lower panel) Upon ligand (red) binding, the LBD–FN interactions were displaced by the LBD–
ephrin interactions. The receptors moved closer to each other, utilizing the head-to-head Eph–Eph
interfaces within the LBD and CRD, thus causing receptor trans-phosphorylation on juxtamem-
brane and kinase domain tyrosines. LBD, ligand-binding domain; CRD, cysteine-rich domain; FN,
fibronectin; SAM, sterile alpha motif; Tyr-P, phosphorylated tyrosine residue; CPD, cytoplasmic
domain; RBD, receptor-binding domain.

Interestingly, the previously reported head-to-tail LBD–FN interactions in the EphA4
receptor were not autoinhibitory. On the contrary, mutations that disrupted these interac-
tions tended to inhibit EphA4 signaling, while mutations that stabilized the interactions
facilitated receptor phosphorylation [32]. Therefore, it was suggested that the primary role
of the head-to-tail interactions in EphA4 is to pre-cluster the receptors in the absence of
ligand, which would facilitate the ligand-induced receptor activation. The data on EphB2
reported here showed that most likely the A and the B class receptors, and certainly EphB2
and EphA4, dramatically differed in how they used the head-to-tail receptor–receptor
interactions to modulate cell-cell signaling. The two distinct regulatory mechanisms (au-
toinhibition and pre-clustering) are consistent with observations that A class Eph receptors,
in general, have higher affinity for their cognate ligands than the B class receptors and
can undergo activation at lower ligand concentrations [41]. As mentioned above, another
stark contrast between A and B class Eph–Eph head-to-tail interactions is that in EphB2
they are dependent on (and could potentially be regulated by) post-translational receptor
modifications, such as phosphorylation and glycosylation, unlike EphA2 and EphA4. This
suggests that Eph B class signaling might be under a tighter regulatory control than Eph A
class signaling.

Finally, the fact that homotypic LBD–FN interactions have now been shown to regulate
both A and B class Eph signaling identifies the Eph FN region as a potential drug target.
Several monoclonal antibodies raised against LBDs of both A and B Eph classes, including
EphB2, are currently in preclinical and clinical development [46–49] and it would be
interesting to also generate and characterize antibodies targeting the LBD-interacting FN
regions of these molecules.
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3. Materials and Methods
3.1. Cloning and Mutagenesis

Mouse EphB2–ECD (residues 19–543) was cloned into a modified pAcGP67 bac-
ulovirus expression vector (BD Bioscience, Becton Dickinson Franklin Lakes Campus, NJ,
USA), with GP67 secretion signal and human Fc fragment as C-terminal tag. Recombinant
baculovirus was generated by co-transfecting the expression plasmid along with linearized
BaculoGold DNA (BD Pharmingen Inc, San Diego, CA, USA) into SF9 cells. The human
EphB2 full-length protein and the structure-based mutants were cloned into a pcDNA3.1 +
hygromycin vector (Invitrogen, Waltham, MA, USA) for stable expression in a HEK293 cell
line. Mutations were introduced by site-directed mutagenesis (Stratagene, San Diego, CA,
USA) and were sequence-verified.

3.2. Protein Expression and Crystallization

Hi5 cells were infected with passage 3 baculoviruses (for EphB2-ECD expression)
at a multiplicity of infection of 10. The medium containing the secreted fusion protein
was collected 72 h postinfection and loaded onto a Protein A-Sepharose affinity column.
Recombinant protein was eluted with low-pH buffer containing 150 mM NaCl and 100 mM
glycine (pH 3.0). The Fc tag was cleaved by thrombin proteolysis and removed by Protein
A-Sepharose. EphB2-ECD was further purified by gel filtration chromatography on a Su-
perdex 200 column. The purified protein was concentrated to 10 mg/mL in Hepes buffered
saline (HBS) and crystallized by hanging-drop vapor diffusion at room temperature against
a well solution of 1.1 M Na Succinate, 0.1 M Na Acetate pH 4.8, 5% (v/v) MPD, and 3% 1,
6-Hexanediol. For data collection, the crystals were frozen in a cryo-buffer containing an
additional 25% (vol/vol) glycerol. X-ray diffraction data were collected at beamline 24ID-C
(Northeastern Collaborative Access Team, Advanced Photon Source) and processed with
HKL2000 [50]. The structure was determined by molecular replacement with EphA2 [Pro-
tein Data Bank (PDB) ID is 3FL7] [27] as a search template, using the Phaser program [51]
in the Phenix suite [52]. Subsequent refinement proceeded with iterative rounds of model
adjustments, using the programs Coot [53] and PhenixRefine [52]. Crystallographic details
and statistics are listed in Table 1.

3.3. Cell Manipulations and Transfections

HEK293 cells were grown in DMEM (Invitrogen) supplemented with 10% (vol/vol) FBS,
100 units/mL penicillin, and 100 µg/mL streptomycin. Cells were consistently transfected
at 80–90% confluence in six-well plates using Lipofectamine 2000 (Invitrogen).

3.4. Cell-Based EphB2 Kinase Activation Assay

The EphB2 activation assays were performed using a previously reported method [32].
HEK293 cells were stably transfected with full-length wild-type EphB2 or EphB2-containing
mutations in the head-to-tail interface (Y481E, N482Q, and Q472A/Y473A/E480A/Y481A).
Clones with similar expression levels, tested by anti-EphB2 antibody in Western blots,
were chosen for the assay. EphB2-expressing cells were then challenged with ephrin-B2-Fc,
which was clustered using anti-human IgG antibody at a 25-nM concentration. After 10 min
of incubation with ligand, cells were washed with PBS and harvested. Total cell lysate was
prepared by lysing cell pellets in a buffer containing 20 mM Hepes (pH 7.4), 150 mM NaCl,
1% (wt/vol) Nonidet P-40, and 1 mM EDTA. Activated receptor was immunoprecipitated
with anti-phosphotyrosine antibody (Upstate Biotechnology) and Protein A-Sepharose
beads, resolved on SDS-PAGE, and blotted onto PVDF. Membranes were then blotted
with anti-EphB2 antibody (R&D Biotechnology). The Western blot films were scanned
and quantified by spot densitometry using ImageQuantTL software 7.0 (GE Healthcare
Biosciences, Chicago, IL, USA). All intensity readings were normalized for the EphB2
amount in total cell lysate and calculated as the ratio to the wild-type (WT) basal activity
(ligand-independent phosphorylation level). The experiments were done in triplicate and
the error bars in Figure 3 represent SD.
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3.5. Illustrations

Figures were prepared using Adobe Illustrator (Adobe) and Photoshop. All molecular
representations were produced with PyMOL.
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