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Abstract

Subharmonic imaging (SHI) is a technique that uses the nonlinear oscillations of microbubbles 

when exposed to ultrasound at high pressures transmitting at the fundamental frequency i.e., fo and 

receiving at half the transmit frequency i.e., fo/2. Subharmonic aided pressure estimation (SHAPE) 

is based on the inverse relationship between the subharmonic amplitude of the microbubbles and 

the ambient pressure change. Eight waveforms with different envelopes were optimized with 

respect to acoustic power at which the SHAPE study is most sensitive. The study was run with 

four input transmit cycles, first in vitro and then in vivo in three canines to select the waveform 

that achieved the best sensitivity for detecting changes in portal pressures using SHAPE. A Logiq 

9 scanner with a 4C curvi-linear array was used to acquire 2.5 MHz radio-frequency data. 

Scanning was performed in dual imaging mode with B-mode imaging at 4 MHz and a SHI 

contrast mode transmitting at 2.5 MHz and receiving at 1.25 MHz. Sonazoid, which is a lipid 

stabilized gas filled bubble of perfluorobutane, was used as the contrast agent in this study. A 

linear decrease in subharmonic amplitude with increased pressure was observed for all waveforms 

(r from −0.77 to −0.93; p<0.001) in vitro. There was a significantly higher correlation of the 

SHAPE gradient with changing pressures for the broadband pulses as compared to the narrowband 

pulses in both in vitro and in vivo results. The highest correlation was achieved with a Gaussian 
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windowed binomial filtered square wave with an r-value of −0.95. One of the 3 canines was 

eliminated for technical reasons, while the other 2 produced very similar results to those obtained 

in vitro (r from −0.72 to −0.98; p<0.01). The most consistent in vivo results were achieved with 

the Gaussian windowed binomial filtered square wave (r = −0.95 and −0.96). In conclusion, using 

this waveform is an improvement to the existing SHAPE technique (where a square wave was 

used) and should make SHAPE more sensitive for noninvasively determining portal hypertension.

Keywords

Ultrasound; pulse envelope; subharmonic imaging; portal hypertension; noninvasive pressure 
estimation

Introduction

The long-term goal of this study is to develop a noninvasive technique for measuring portal 

hypertension using ultrasound with the aid of ultrasound contrast agents (UCAs). Portal 

hypertension is a condition resulting from obstruction of the portal blood flow. Cirrhosis, 

which is fibrosis of the liver due to many different etiologies including chronic alcohol abuse 

and hepatitis (1), is the most common cause of portal hypertension (2). Portal hypertension 

may also be caused by thrombosis i.e., a blood clot that develops in the portal vein. An 

increase of over 5 mmHg in the pressure gradient between the portal vein and the inferior 

vena cava or the hepatic vein is defined as portal hypertension (3).

Portal pressures are currently estimated using the hepatic venous pressure gradient (HVPG), 

which is defined as the difference between the wedged and free hepatic venous pressures 

(4).The current clinical technique for measuring HVPG is invasive and requires insertion of 

a balloon catheter via a transjugular approach into the hepatic vasculature. The wedged 

pressure is obtained by inflating the balloon thus, occluding the hepatic vein and is 

equivalent to the portal pressure, while the free pressure is measured with the catheter 

floating freely in the hepatic vein (4). An alternative accurate noninvasive ultrasound based 

procedure would be a major development in the diagnosis of portal hypertension making the 

diagnosis safer, quicker and less expensive.

UCAs are encapsulated microbubbles that oscillate nonlinearly within the pressure field 

caused by ultrasound pulses at higher incident pressures (> 200 kPa). The gas within these 

microbubbles has a different compressibility than blood leading to an acoustic impedance 

mismatch between the two, and an increase in scattering; hence, the microbubbles enhance 

the backscattered ultrasound signal (5). The UCA's nonlinear oscillations occur over a wide 

range of frequencies from subharmonics (f0/2), and second harmonics (2f0) to 

ultraharmonics (3f0/2) of the insonation frequency as well as multiple thereof. These signals 

can be used to create contrast specific imaging modes, such as subharmonic imaging (SHI) 

as well as harmonic and superharmonic imaging (6). Harmonic imaging where ultrasound is 

transmitted at f0 and received at 2f0 provides for restricted bandwidth since the tissue 

produces significant harmonic energy and leads to reduced blood to tissue contrast. SHI 

transmits at double the resonant frequency i.e., f0 and receives at half the transmit frequency 

i.e., f0/2 (6, 7). Since the surrounding tissue does not generate subharmonic response at the 
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low power levels used, SHI has an excellent contrast-to-tissue ratio i.e., the ratio of the mean 

bubble and tissue signal amplitudes. Contrast to tissue ratio values as high as 20 dB have 

been reported in vitro by Daechin et al. (8). Our group has proposed a novel and innovative 

technique called subharmonic-aided pressure estimation (SHAPE) (6, 9). It has been 

established previously that there are three stages in the subharmonic signal generation from 

microbubbles in response to changing acoustic pressure namely occurrence, growth and 

saturation (9). In the growth phase, the subharmonic signal amplitude has the highest 

sensitivity to pressure changes and an inverse linear relation with the ambient pressure (6, 9). 

It is this stage, which is used with the SHAPE procedure to estimate ambient pressure. An in 
vitro study comparing five different contrast agents showed Sonazoid (GE Healthcare, Oslo 

Norway), to be the most sensitive for SHAPE applications having the highest gradient in 

subharmonic amplitude as the pressure was changed from 0 to 186 mmHg and a correlation 

coefficient (r) of 0.99 (10).

The feasibility of using SHAPE to estimate the ambient pressures noninvasively has been 

confirmed by our group (9, 11, 12) and by others (13-15). High correlation coefficients have 

been reported (r= −0.98) in a static tank when pressure was varied from 0 to 186 mmHg with 

a slope of −0.07 dB/mmHg using a square enveloped input pulse (10). Another study 

analyzed the efficacy of SHAPE with Sonazoid in predicting portal hypertension in canines 

and showed r-values from −0.71 to −0.79 between the absolute portal vein pressure and 

subharmonic signal amplitude (16). A pilot study of SHAPE in 45 patients with chronic liver 

disease indicated SHAPE might become a useful tool for screening patients with portal 

hypertension and those at risk for variceal bleeding. The SHAPE gradient and HVPG values 

showed a linear correlation of 0.82 for subjects with a HVPG > 10 mmHg and 0.97 for 

patients with a HVPG > 12 mmHg (17).

Relatively little work has explored the effects of the pulse shape on the subharmonic 

response of microbubbles. Biagi et al. investigated the subharmonic response of Sonovue to 

different shaped pulses. They proved that the initial envelope of the pulse has a strong effect 

on the subharmonic amplitude (18). Zhang et al. showed that chirp excitation with a center 

frequency of 5 MHz enhances the subharmonic emission of encapsulated microbubbles (1). 

Another study by Shekhar and Doyley used rectangular windowed coded chirp excitation for 

intra vascular ultrasound imaging. They concluded that the chirp pulse with a higher 

bandwidth gave a 5.7 dB higher ratio of subharmonic to fundamental response amplitude 

than a narrowband sine wave. They also achieved a higher axial resolution with the 

broadband chirp pulse (19). In this study, eight waveforms with different envelopes were 

analyzed with respect to their ability to improve the SHAPE technique. These waveforms 

were selected to include different pulse envelopes based on various previous studies. The 

square wave was included as this is the traditional wave used for all our previous studies. 

Since chirp pulses showed increased subharmonic response in previous studies, they were 

included to test whether they improve the SHAPE sensitivity as well. All other pulses 

included had a varying degree of filtration of the square wave pulse to test for a different 

initial slope of the pulses. For each of the eight waveforms, the optimization algorithm 

previously developed by our group was run to select the optimum acoustic power (i.e., in the 

growth stage) (20). Scanning was then performed first in vitro and then in vivo in three 
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canines to select the waveform that provided the best correlation coefficient and had the best 

sensitivity for SHAPE portal hypertension measurements.

Materials and Methods

A set of eight pulse waveforms for SHI and SHAPE were tested in this study. The 

waveforms, along with their envelopes and alphabetical naming, are shown in fig.1. The 

square wave is the current pulse used in all the previous studies conducted by our group and 

is denoted as waveform A. A Logiq 9 scanner (GE Healthcare, Waukesha, WI, USA) with a 

4C curvi-linear array was used to acquire radio-frequency data at the focal zone depth (9 

cm) at a 12 Hz framerate. Scanning was performed in dual imaging mode with B mode 

operating at 4 MHz and contrast SHI transmitting 4 cycle pulses at 2.5 MHz and receiving at 

1.25 MHz; based on our previous SHAPE studies (10, 16, 21-25). Data from each 

acquisition was saved as a DICOM file and the radio-frequency data extracted using 

proprietary software (GE Global Research, Niskayuna NY, USA). The extracted data gives 

both the B-mode and the subharmonic radio-frequency data, the latter of which is DC-

filtered B mode data with a center frequency of 1.25 MHz and a 0.50 MHz bandwidth.

Additionally, the incident acoustic pressures from 0 to 100% were measured in vitro at the 

focus of the 4C transducer using a calibrated 0.5 mm needle hydrophone (Precision 

Acoustics, Dorchester, Dorset, UK; sensitivity of 337 mV/MPa at 2.5 MHz) using a standard 

water bath approach. The measured maximum incident acoustic pressures ranged from 1.0 

to 1.6 MPa peak-to-peak.

In vitro Experimental Setup

Contrast signals at hydrostatic pressures varying from 10 to 40 mmHg were measured using 

a 2.25 L water tank. The water tank was also equipped with an acoustic window made out of 

thin plastic (thickness: 1.5 mm; Halldorsdottir et al., 2011). The pressure inside could be 

varied by injecting air through a special inlet on the back wall of the tank and was monitored 

by a pressure gauge (OMEGA Engineering Inc., Stamford, CT, model DPG1000B-05G). An 

inlet on the top of the tank was constructed for injecting microbubbles and placing the 

pressure gauge. The scanner was used to acquire radio-frequency data at the optimized 

acoustic power associated with each individual waveform (in triplicate) for each pressure 

value following injection of the contrast in a 0.2 mL/L dose into saline (Isoton II; Coulter, 

Miami, FL). The mixture was kept homogenous by a magnetic stirrer. All data was acquired 

in triplicate.

In vivo Experimental Setup

All animal studies were approved by the Institutional Animal Care and Use Committee of 

our University and conducted in accordance with the guidelines provided by the NIH. A 

total of three canines were fasted for 24 hours to reduce portal vein flow and thus reduce 

experimental variability (26). The canines were kept under anesthesia during the entire 

procedure using standard techniques. The canines were placed on a warming blanket to 

maintain normal body temperature. Their abdomen was shaved and covered in gel to 

improve the acoustic interface to the transducer.
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A midline abdominal incision was created to provide access to the main portal vein. An 18-

gauge catheter was placed in a forelimb vein for contrast infusion. The pressure catheter 

(Millar Instruments, Inc., Houston, TX, USA) was connected to a digital oscilloscope 

(Model 9350 AM, LeCroy, Chestnut Ridge, NY, USA) through the transducer control unit 

(TCB 500, Millar Instruments) and then advanced through the splenic vein into the main 

portal vein to acquire pressure measurements simultaneously with the SHAPE study. The 4C 

probe was positioned transcutaneously over the portal vein. A sonographer with more than 

10 years of experience performed all the scanning. A sonographer and a physician confirmed 

the presence of the pressure catheter in the portal vein and the patency of the portal vein 

using standard grayscale imaging.

An intravenous co- infusion of saline (120 ml/hour) and 0.18 mL/kg/hour of Sonazoid was 

employed based on prior experience (17, 27). All data was collected after visual verification 

of Sonazoid microbubbles in the portal vein.

The acoustic power was optimized independently for each of the 8 waveforms using the 

algorithm developed previously by our group (16). An region of interest within the portal 

vein was selected in the contrast image and the automated power control algorithm was 

initiated to determine the optimal acoustic output power for maximum SHAPE sensitivity to 

account for varying depth and attenuation. Briefly, the automated program acquires data for 

every acoustic output level, and the extracted subharmonic amplitude is plotted as a function 

of acoustic output. A logistic curve is fit to the data and the inflection point is selected as the 

optimized power, as this has been shown to be the point of greatest SHAPE sensitivity (9). 

One such curve is shown in figure 2.

Cine loops were collected in triplicate for 6 seconds, before and after induction of portal 

hypertension by embolization of the liver microcirculation. This was done through injection 

of approximatley 5 mL of Gelfoam (Ethicon, Somerville, NJ) mixed with 4 to 5 mL of saline 

(resulting in pressure values of 10 to 30 mmHg), into the main portal vein.

Data Processing and Analysis

The radio-frequency data from each acquisition was extracted using proprietary software 

(GE Global Research) as described above. Regions within the portal veins previously 

identified by the sonographer were selected on maximum intensity projection of B-mode 

images (compiled from reconstructed images from the radio-frequency data) and were fixed 

throughout the 6-second acquisition (approximately 27-30 frames). The subharmonic 

amplitude was calculated in a 0.5 MHz bandwidth around 1.25 MHz. Correlation 

coefficients and regression line slopes were calculated to check for the waveform with the 

best sensitivity and correlation with pressure. The waveform with the highest negative slope 

and a highly negative correlation coefficient (r) between the subharmonic amplitude and 

pressure was selected for further use in clinical trials. All statistical analysis was conducted 

using Matlab 2014b (The MathWorks, Inc, Natick, MA, USA). Waveforms were also 

divided into two groups of being broadband (waveforms B,E,F,G & H) and narrowband 

(waveforms A,C & D) and analyzed to determine if one group performed better than the 

other.
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Results

In vitro

The in vitro tank data resulted in correlation values ranging from −0.77 to −0.95 between the 

subharmonic amplitude change and the hydrostatic pressure. All changes in subharmonic 

amplitude were statistically significant with increasing pressure (p<0.001). Fig.3 shows the 

reduction in subharmonic amplitude as the pressure is increased in the in vitro setup. The 

values for the correlation coefficients and the slope between the subharmonic amplitude and 

pressure change for all the eight waveforms are presented in Table 1.

Correlations were the highest for waveform E with an r value of −0.95 and a slope between 

the subharmonic amplitude and the hydrostatic pressure of −0.17 dB/mmHg. As can be seen 

from Table 1, the narrowband waveforms namely waveforms C and D had the lowest 

correlation coefficients and a smaller slope compared to the others. Hence, they were 

eliminated in the selection process for the best waveform.

In vivo

In the first canine, across all the eight waveforms, the normal baseline pressure was 9.9 ± 0.0 

mmHg, which increased to 39.2 ± 0.4 mmHg post induction of hypertension. For the second 

canine, the baseline pressure was 9.4 ± 0.0 mmHg and it rose to 20.0 ± 0.8 mmHg post 

gelfoam injection. For the third canine, the baseline pressure was 11.2 ± 0.8 mmHg, which 

increased to 34.8 ± 1.6 mmHg post induction of hypertension.

Figure 4 shows a B mode and SHI image highlighting the portal vein and the pressure 

catheter along with the region of interest selection on its maximum intensity projection. The 

average signal over all the frames in the 0.5 MHz bandwidth around 1.25 MHz gave the 

subharmonic signal. The overall subharmonic amplitude in the third canine was much lower 

than in the other two (by about 12 dB) and too close to the noise floor to produce reasonable 

pressure estimates. This can be due to improper reconstitution of the agent. Hence, data from 

the third canine had to be excluded. The other two canines produced very similar results to 

those obtained in vitro. In the first canine, the pre-hypertension mean maximum 

subharmonic amplitude was 61.1 ± 2.00 dB which dropped to 47.7 ± 3.95 dB post the 

gelfoam injection for waveform E. Similar drops in the subharmonic amplitude for 

waveform E in the second canine were seen from a mean maximum subharmonic amplitude 

of 58.1 ± 1.14 dB to 44.8 ± 1.43 dB post the induction of hypertension. A reduction in 

subharmonic amplitude after the gelfoam injection was found to be statistically significant 

for all eight waveforms for the remaining two canines (p < 0.01).

For the first canine, the correlation coefficient for the group of broadband waveforms was 

−0.80 which was significantly better than the narrowband waveforms having a correlation 

coefficient of −0.63. Similar results were seen for the second canine where the broadband 

group had a significantly better correlation of −0.83 as compared to the narrowband group 

having an r value of −0.32, (p<0.05). No waveform was significantly better than the other 

within the broadband group (p>0.05).
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However, in the first canine, within the broadband group, waveform E had the highest 

gradient of −0.44 dB/mmHg with a r value of −0.95. Waveform G and H had a lower slope 

as compared to the others with G having the lowest correlation of −0.72. The values are 

given in Table 2.

For the second canine again, waveform E had the best correlation with an r value of −0.96. It 

also had a steep negative slope. Waveforms G and H, even though showed a steep slope had 

a lower correlation than E and also didn't perform well consistently in vitro and in the first 

canine.

Waveform B performed well in vitro, however it did not perform well in either of the canines 

and hence, was discarded for further studies. Waveform H did not perform well in the in 
vitro analysis however, since it showed a high gradient with good linear regression in both 

the canines, to select the better waveform between E and H, the standard deviation between 

their slopes in both the canines was calculated. It was 0.01 dB/mmHg for waveform E and 

0.13 dB/mmHg for waveform H. Also, waveform H had a lower slope than E in the first 

canine and did not achieve a correlation as good as E for the second canine. Since E had a 

smaller deviation in slope and was consistent with a highly negative slope and correlation, it 

was selected as the better waveform for SHAPE.

Discussion

The aim of this study was to assess the effect of eight different pulses on the sensitivity of 

SHAPE. Previous studies by Zhang et al. showed chirp signals with a center frequency of 5 

MHz giving better subharmonic images with an increase of 22 dB in the subharmonic 

amplitude (1). Also, Maresca et al. studied the use of chirp excitation in intravascular 

ultrasound imaging in vitro with Definity as the UCA and compared it to conventional 

Gaussian shaped pulses. They observed a 9 dB increase in the signal-to-noise ratio when 

using the chirp pulse with a contrast-to-tissue ratio (Contrast to tissue ratio) of 12 dB (28).

Our group has previously used a square wave (which is waveform A for this study having a r 

value of −0.88) and reported a correlation coefficient between the subharmonic amplitude 

and ambient pressure of −0.98 in a static tank when pressure was varied from 0 to 186 

mmHg with a slope of −0.07 dB/mmHg between the subharmonic amplitude and ambient 

pressure change (10). We were able to achieve an r value of −0.95 for the Gaussian 

windowed binomial filtered square wave (E) with a slope of −0.17dB/mmHg in vitro. In 
vivo with waveform E, the first canine had an r value −0.95 and a slope of −0.44 dB/mmHg; 

the second canine had an r value of −0.96 and a slope of −0.46 dB/mmHg. These values are 

higher than the previous studies with a square wave in canines where the r values ranged 

from −0.73 to −0.79 (16). The higher slopes and better correlation achieved in this study can 

be attributed to the automated power optimization and the effect of the different pulse 

envelopes used. That the pulse envelope has an effect on the subharmonic response has been 

proved by several studies. Shekhar and Doyley (19) concluded that chirp pulses with a 

higher bandwidth gave a 5.7 dB higher ratio of subharmonic to fundamental response 

amplitude than a narrowband sine wave. Our results are consistent with this. There was a 

significantly higher correlation of the SHAPE gradient with changing pressures for the 
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broadband pulses as compared to the narrowband pulses in both in vitro and in vivo results. 

Biagi and colleagues used SonoVue microbubbles and tested for the subharmonic amplitude 

of a 7.5 MHz sinusoidal burst signal as a reference wave against a Gaussian shaped pulse. 

They also tested a composite pulse (80 cycles of 5 MHz + 5 cycles of 2.5 MHz) against a 

reference sinusoidal pulse at 5 MHz. They found that the rectangular envelope reference 

pulse had a higher subharmonic amplitude in both settings and concluded that the steepness 

of the initial envelope greatly affects the subharmonic response of the UCAs (18). Zhang et 

al. showed that a rectangular envelope is effective in improving the subharmonic response by 

almost 35 dB than the Gaussian envelope (1). Similarly Daechin and co-workers also found 

that the subharmonic amplitude increases by up to 22 dB by changing the envelope from 

Gaussian to rectangular (29). In our study, waveform A which is a square wave (having a 

rectangular envelope) had a high SHI amplitude, but a relatively lower sensitivity to 

hydrostatic pressure. Waveform E, which is a Gaussian windowed binomial filtered version 

of the square wave, had a much greater slope with a highly negative correlation coefficient 

indicating that envelope is the most sensitive for SHAPE.

While the results are promising, there are certain limitations to this study. As discussed 

earlier, eight pulse sequences were tested in this study, since the scanner permits only eight 

pulse envelopes to be stored at a time. The results of the in vivo studies are based on a small 

sample size of three canines out of which one had to be excluded due to limited contrast 

enhancement. A larger sample size would increase the statistical power of the in vivo study.

Our group recently completed a pilot study of SHAPE in 45 patients with chronic liver 

disease, which indicated that SHAPE could become a useful tool for screening patients with 

portal hypertension and, in particular, those at risk for variceal bleeding. The SHAPE and 

HVPG values showed a linear correlation of 0.82 for all subjects and 0.97 for patients with a 

HVPG greater 12 mmHg (17). That study used a square wave. If the improved results with 

the new waveform are reproducible in a larger patient population, it may be possible to 

noninvasively and more accurately diagnose portal hypertension using SHAPE.

Conclusions

Eight waveforms were analyzed for SHAPE, both in vitro and in vivo. A significant 

reduction in the subharmonic amplitude was seen with increasing hydrostatic pressure for all 

eight waveforms. Results indicate that broadband pulses are more sensitive to the SHAPE 

estimations and a Gaussian windowed binomial filtered square wave (waveform E) gives the 

highest correlation between changes in subharmonic amplitude of the microbubbles and 

ambient pressure changes. Using this waveform is an improvement to the existing SHAPE 

technique and should make SHAPE more sensitive to non-invasively determining portal 

hypertension in the clinic.
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Figure 1. 
Waveform settings implemented for SHI and SHAPE investigation
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Figure 2. 
Automated power optimization algorithm, [a]: Maximum Intensity Projection of SHI, blue 

square represents the region of interest selected within the portal vein; [b]: the three stages 

of subharmonic signal generation namely occurrence, growth and saturation with changing 

incident pressures from 0 to 100% of maximum acoustic pressures,[c]: y axis represents the 

change in subharmonic amplitude mapped from the top figure, the point represented by the 

highest peak is shown to have the highest SHAPE sensitivity
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Figure 3. 
In vitro setup : The relation between the mean subharmonic amplitude and the pressure for 

all eight pulse envelope in the in vitro setup. Each data point is the average of three readings 

taken at each pressure value for each waveform i.e., a total of 12 subharmonic amplitude 

values for each waveform
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Figure 4. 
[a] Dual Imaging with B mode(black and white) and SHI (b) on the left and right 

respectively;[c] region of interest selection on the Maximum Intensity Projection of the B 

mode Image
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Table 1

Slope (between the subharmonic amplitude and ambient pressure ; normalized using log transform) and r 

values for all eight waveforms (A-H) in vitro

A B C D E F G H

SLOPE(dB/mmHg) −0.10 −0.17 −0.06 −0.09 −0.17 −0.14 −0.13 −0.14

r −0.88 −0.90 −0.79 −0.77 −0.95 −0.93 −0.91 −0.81
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Table 2

Slope (between the subharmonic amplitude and ambient pressure ; normalized using log transform) and r 

values for all eight waveforms (A-H) for both canines

Waveform Canine 1 Canine 2

Slope(dB/mmHg) r values Slope(dB/mmHg) r values

A −0.25 −0.91 −0.01 0

B −0.37 −0.84 −0.26 −0.92

C −0.32 −0.91 −0.16 −0.85

D −0.33 −0.92 −0.2 −0.98

E −0.44 −0.95 −0.46 −0.96

F −0.2 −0.98 −0.28 −0.85

G −0.28 −0.72 −0.49 −0.94

H −0.33 −0.96 −0.51 −0.92
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