Symptom Clusters.

Andrea M. Barsevick
Thomas Jefferson University, andrea.barsevick@jefferson.edu

Let us know how access to this document benefits you
Follow this and additional works at: https://jdc.jefferson.edu/medoncfp
Part of the Oncology Commons

Recommended Citation
https://jdc.jefferson.edu/medoncfp/58
Defining the Symptom Cluster: How Far Have We Come?

Andrea Barsevick, PhD, RN, AOCN, FAAN
Professor
Thomas Jefferson University
Department of Medical Oncology
Sidney Kimmel Cancer Center
Philadelphia PA

Corresponding Author: Andrea Barsevick, 834 Chestnut Street, Suite 314, Philadelphia PA 19107;
andrea.barsevick@jefferson.edu; Phone: 215-503-4623
Abstract

Objective: To examine the evolution of the concept of the symptom cluster through literature synthesis and identification of knowledge gaps.

Data source: Published literature

Conclusion: A robust body of research has developed showing that clusters of symptoms can be identified empirically with modest evidence of convergence across methods. The science would benefit from a coordinated effort of qualitative studies to ensure that appropriate symptoms are evaluated; empirical symptom cluster identification studies building upon qualitative work; and subgroup identification studies based on empirically defined symptom clusters.

Implications for Nursing Practice: Work is needed to demonstrate the value of symptom cluster identification in guiding symptom assessment and management for cancer patients and survivors.

Key words: symptom cluster, cancer, cancer-related symptoms
Following the UCSF Symptom Management Group challenge to consider the concept of the “symptom cluster” 1 and a state of the science lecture and paper on the symptom cluster in cancer 2, more recent publications have examined conceptual and methodological issues in defining symptom clusters 3-12. For this article, a literature search of PubMed from 2008 to 2015 was conducted and reference lists of relevant publications were also scanned for additional publications. This article examines the evolution over the past 10 years of the concept of the symptom cluster including its definition, related theoretical concepts, methods of identification, stability of clusters, and identification of symptom cluster subgroups. The literature is synthesized and knowledge gaps are assessed as a basis for future research.

Definition of a Symptom Cluster

A symptom cluster has been defined as a stable group of concurrent symptoms that are related to one another and distinct from other symptom clusters 13. Symptoms in a cluster may be related through a common etiology or mechanism, shared variance, or a common outcome 3. Stability of clusters could relate to consistency of results across clustering techniques, consistency within cancer populations, or stability over time. To date, no firm conclusions have been drawn about the minimum number of symptoms required to form a cluster; two 1,14 or three symptoms 13 have been proposed. The dictionary defines a cluster as “a number of things of the same kind held together; a group of things” 15. The actual number of things required is not specified; however, the use of the word “group” carries the implication that it is more than two.

However, there are arguments in favor of including symptom pairs in the definition of a symptom cluster. In two clinical studies in advanced cancer patients, a gastro-intestinal symptom cluster was determined to be made up of two symptoms, nausea and vomiting 16,17. In a large sample of advanced cancer patients, anxiety-depression was identified as a cluster across three different methods of analysis 18,19. Given the presence of clinically and statistically meaningful symptom pairs and the potential for others, it makes sense to include symptom pairs in the definition of a symptom cluster. Another reason to consider symptom pairs as clusters is that the number and type of symptoms observed in a cluster is
reflective of the number and type of symptoms that were measured. Measuring a larger number of related symptoms is likely to increase the number of symptoms included in a particular cluster. When fewer symptoms are measured, a symptom pair could be a proxy for a cluster with more symptoms. Including symptom pairs in the definition of a cluster provides an opportunity for a more complete description of symptom clusters in a specific context.

On the other side of this issue are questions about when a symptom cluster should be considered complete. As noted above, one determinant of the number of symptoms comprising a cluster is the number and relevance of the symptoms that are measured. Other determinants include characteristics of specific cancers (such as, cough and breathlessness associated with lung cancer)20,21, treatment modalities (neuropathy related to neurotoxic chemotherapy), and demographics (a body image cluster in women with gynecological cancers)22. Acknowledging these influences, experts have begun to advocate for agreement about a core set of symptoms to be measured across all patients23,24 as well as consideration of symptom clusters specific to disease25,26 and treatment types27. This issue is described more fully in the paper on assessment of multiple co-occurring symptoms (28).

Related Theoretical Concepts

Across symptom management theories and models, the addition of the concepts of interaction29, time30, and mechanism31 have proven to be important constructs guiding our scientific understanding of the symptom cluster. As the science of symptom management has developed, the theories and models used to describe symptom clusters have expanded to incorporate explicit components. The Theory of Symptom Management, proposed three components originally: the symptoms experience (addressing single or multiple symptoms); symptom management; and outcomes1. Later, this theory was expanded to include personal, health-illness, and environmental contexts of symptoms32. The Theory of Unpleasant Symptoms explicitly described the potential for interaction and/or synergy among multiple symptoms29. Through a linear presentation of antecedents, symptoms, and outcomes, it suggested but did not explicitly identify a time component. Later theoretical models expanded the time component, recognizing that symptoms can vary considerably over time and that variability in one symptom can influence other
symptoms33,34. One model, The Symptom Interaction Framework, explicitly identified underlying symptom “mechanisms” to describe alterations in process or function that could explain the presence of a group of symptoms31; mechanisms could be biological, psychological, social, or behavioral.

Methods of Identification of Symptom Clusters

Qualitative methods allow for the exploration of the breadth and complexity of related symptoms. Four qualitative studies identified symptom clusters (table 1)20-22,35. Women with gynecological cancers identified the symptoms of tiredness, sleeplessness, pain, depression, and weakness as the most common cluster experienced by all participants over one year, irrespective of treatment22. Three other symptom clusters were identified in this research, all related to chemotherapy (body image, GI and neuropathy). In a longitudinal qualitative study of symptoms related to lung cancer, a subset of respiratory symptoms including cough, breathlessness, and fatigue were highlighted as co-occurring, influencing one another, and triggering other symptoms such as anxiety, depression, pain, and sleep disturbance21. The investigators did not discuss why the triggered symptoms were not part of the cluster. In another lung cancer sample, the core symptoms of fatigue, pain, cough, and breathlessness were associated and affected one another synergistically20. However, the investigators noted that participants often focused on individual symptoms and not all symptoms were given equal weight. In a study of chemotherapy-induced nausea, the investigators explored the possibility that the term nausea could represent a cluster of symptoms35. They concluded that the nausea experience included a cluster of symptoms that was unique to each individual. Although the research identified a group of co-occurring symptoms that were considered separate but related to nausea (vomiting, taste changes, appetite changes, and fatigue), the investigators did not identify this as a symptom cluster. More rigorous qualitative research is needed to ensure that symptom clusters identified through patient narrative support or challenge the current definition of a symptom cluster.

A priori Identification

In oncology symptom research, symptom clusters have been identified using two different methods: 1) they have been specified “\textit{a priori}”, meaning formed or conceived beforehand; or 2) they
have been identified using empirically, based on observation (also called “de novo”) methods. A priori refers to symptoms selected as a cluster based on patient qualitative experience, clinical observation of symptom co-occurrence, or research hypotheses about the relationships among symptoms. Symptom clusters identified in qualitative studies could be considered a priori if the individuals being studied determine the symptom selection; alternatively, they could be considered empirical if the clusters are derived through qualitative data analysis.

Quantitative research has been used to study a priori symptom clusters. In animal studies, a group of behaviors (asthenia, lethargy, anorexia, weakness, and sleep disturbance) were observed that became known as “sickness behavior,” a syndrome thought to be the result of inflammatory processes induced by disease or trauma. This syndrome closely resembles the cluster of symptoms commonly reported by humans in the context of cancer and its treatment that may include fatigue, sleep disturbance, pain, depression, and mental confusion. The similarities between human symptoms and animal behaviors resulted in many investigations in which variations on this group of symptoms were evaluated as a priori symptom clusters.

A priori symptom clusters have included variations on the symptoms of fatigue, insomnia, pain, and depressed mood that are related to sickness behaviors (table 2). Quantitative studies have demonstrated that these clusters meet two criteria defining a cluster: symptoms are related to one another and have a common influence on outcomes. Most studies used analytic techniques such as correlation, path analysis, structural equation modeling, or other multivariate methods to examine the relationships among a group of symptoms. One study showed that fatigue, sleep disturbance, and depression in breast cancer patients were correlated at each study point; and path analysis showed that symptom severity at each time point predicted severity of the same symptom at subsequent time points with the exception that earlier fatigue predicted later depression in pre-menopausal women. Another study examined temporal changes in daily symptoms (fatigue sleep disturbance, and depressed mood) selected a priori in women with gynecological cancers and found that greater sleep disturbance was associated earlier peak fatigue, and higher levels of fatigue predicted later depressed mood. Another study modeled fatigue as a latent
variable directly influenced by pain, depressed mood and insomnia. Results showed direct effects among all four symptoms as well as mediating effects: the effect of depressed mood on pain was mediated by insomnia; and the effect of depressed mood on fatigue was mediated by insomnia and pain.

The effect of a presumed symptom cluster on outcomes has also been examined. For example, multiple regression analysis showed that the cluster of pain, fatigue, insomnia, and mood disturbance predicted performance status and quality of life in elderly cancer patients. In another study, pain, the cluster of fatigue, sleep disturbance, and distress in lung cancer surgery patients was negatively related to performance status and quality of life. Only one study examined how related symptoms influenced outcomes. In a cross-sectional study of fatigue, insomnia, depression, and pain, a cluster was defined as two or more symptoms directly related to each other and indirectly related to functional performance (dependent variable). Path analysis revealed seven indirect symptom paths to functional performance for pain and three paths for insomnia which the investigators characterized as synergy among symptoms.

Empirical Identification

The selection of an *a priori* symptom cluster does not settle the issue of the completeness of a cluster or the number of symptoms that are or should be included. It is possible that other symptoms could be part of the cluster but were left out because of *a priori* selection of symptoms. To address the completeness issue, an alternative approach has been to use statistical procedures to select and group symptoms from a larger population of symptoms. Thus, an empirically determined symptom cluster is a group of symptoms derived from a larger pool of symptoms using statistical procedures (table 3). In this methodology, research participants rate a group of symptoms that are relevant to their situation. A variety of statistical methods such as principal components analysis, common factor analysis, or cluster analysis are used to select clusters from the larger pool of symptoms.

Principal Components Analysis (PCA), a type of exploratory factor analysis, is a descriptive data reduction method based on total variance that combines a larger number of variables into smaller clusters that are unique and stable. This method does not presume a theoretical basis or underlying connection among the symptoms within each cluster. PCA has been the method most commonly used...
Symptom Cluster Definition

For example, two studies of advanced cancer patients used PCA to identify symptom clusters using the Edmonton Symptom Assessment Scale (ESAS). The first study identified two clusters: cluster 1 included fatigue, drowsiness, nausea, appetite, and dyspnea; cluster 2 comprised anxiety and depression. The second study used the ESAS measure, but supplemented it with 13 additional items, identifying four clusters: confusion, neuropsychological, anorexia-cachexia, and gastro-intestinal clusters. In both studies, symptom clusters differed by age, gender, performance status, and/or type of cancer. The difference between the study results could also be related to the symptoms measured. A third study used PCA to identify three clusters in breast cancer patients based on a 32-item symptom scale: emotional, unwell, and gastro-intestinal clusters. The first cluster included similar symptoms to the

Common Factor analysis (CFA) is another type of exploratory factor analysis that examines common variance to determine the latent factors underlying a set of variables and develop and/or test hypotheses about those underlying factors. Two symptom cluster studies using CFA illustrate this point. In a study of breast and prostate cancer patients being treated with radiotherapy, CFA was used to identify symptom clusters in 160 individuals who rated 32 symptoms on the Memorial Symptom Assessment Scale. At the midpoint of treatment, three clusters were identified: a mood-cognitive cluster (difficulty concentrating, feeling nervous, feeling sad, worrying, itching, feeling irritable, skin changes); a sickness behavior cluster (pain, lack of energy, feeling drowsy, difficulty sleeping, sweats); and a treatment-related cluster (urinary problems and diarrhea). In a separate study, 282 women receiving chemotherapy or radiotherapy for breast cancer rated twenty symptoms. Two symptom clusters were identified during treatment: a psycho-neurological cluster (pain, fatigue, insomnia, depressed mood, cognitive disturbance, and hot flashes); and an upper gastro-intestinal cluster (nausea, vomiting, decreased appetite). The “sickness behavior cluster” in the breast and prostate study was similar to the “psycho-neurological cluster in the breast cancer study.

Two things are noteworthy. First, the results provided empirical validation of the “sickness behavior” cluster that was previously identified a priori. Secondly, implicit in the naming of the clusters
was a hypothesis about the underlying mechanism. The “sickness behavior” cluster and the “psychoneurological” cluster both have a hypothesized underlying mechanism of inflammation. Although the symptoms included in each cluster are slightly different, some of the core symptoms are the same, lending modest support to the idea that there is a common mechanism underlying this group of symptoms.

Hierarchical Cluster analysis (HCA) is an empirical method for grouping symptoms or people and separating them from dissimilar groups based on measures of distance, such as Euclidian distance. In a study of 922 advanced cancer patients in a palliative medicine program, HCA was used to group 25 symptoms. Seven clusters were identified: fatigue-anorexia-cachexia, psycho-neurological, upper gastro-intestinal, nausea-vomiting, aero-digestive, debility, and pain clusters. The authors argued that these clusters were likely to be therapeutically important because treatment of one symptom could influence or be influenced by another symptom in the cluster. For example, the pain cluster included both pain and constipation; in advanced cancer, pain is a common problem that is often treated with opioid analgesics that can induce constipation.

Stability of Symptom Clusters

Consistency across Clustering Techniques. In a number of studies, investigators have searched for symptom clusters using more than one analytic technique (table 4). Looking across clustering methods, one can observe both similarities and differences in the number and composition of symptom clusters. A study of 1296 advanced cancer patients illustrated this point. The cluster of anxiety and depression was identified across all three clustering methods (PCA, HCA, and CFA). Two identical clusters also emerged when analyzed with PCA and HCA: one cluster included appetite, nausea, wellbeing, and pain; the other included fatigue, drowsiness, and dyspnea. With CFA, only one additional factor emerged combining all the remaining symptoms into one factor. The investigators concluded that PCA and HCA were in closer agreement than CFA. Another example of agreement between PCA and HCA can be seen in a study of 400 patients with inoperable lung cancer. Three symptom clusters (pain, mood, and respiratory) were consistent across three different methods of analysis: Pearson correlation,
Symptom Cluster Definition

PCA, and HCA. Looking across studies, appetite change, proposed in qualitative research as an additional component of a nausea-vomiting cluster, was confirmed in two empirical analyses.

Consistency within Cancer Populations. Looking at similar cancer populations, several review papers concluded that there is little consistency of symptom clusters across samples. For example, a review of five breast cancer studies found no cluster consistency across studies. A review of gastrointestinal symptom clusters found that 38 of 40 clusters included different symptoms; and a review of five lung cancer studies showed only nausea/vomiting and a respiratory cluster were common across two studies. In a review of studies of patients with advanced disease, the authors could not formulate a general consensus of symptom clusters due to variability in symptoms assessed, assessment measures used, analytic methods, and patient demographics.

Stability over Time

Over the past decade, evidence has accumulated in support of the stability of symptom clusters over time. Symptoms evaluated with exploratory factor analysis at the middle, end, and 1 month after radiotherapy for breast or prostate cancer showed four relatively similar symptom clusters across time points: mood-cognitive; treatment-related; sickness-behavior; and pain. For breast cancer patients undergoing treatment, a psycho-neurological symptom cluster was observed via common factor analysis prior to treatment; this cluster was repeated during treatment and a gastro-intestinal cluster was also observed. Symptom clusters identified before treatment in women with ovarian cancer were repeated during chemotherapy; additional clusters were observed during treatment that could represent the short- and long-term effects of treatment. These studies and many others provide increasing support for the clustering of symptoms by virtue of their concurrence and stability over time.

Antecedents and Consequences

A better understanding of the antecedents and consequences of a symptom cluster could inform our understanding of who is likely to experience specific clusters and how the clusters influence their quality of life. Cluster composition has been shown to differ by age and gender and by performance status and cancer diagnosis in two different studies. In contrast, another study found no differences in
symptom cluster composition based on demographic or clinical factors. With regard to consequences of symptom clusters, the number of symptom clusters experienced and the presence of a specific symptom cluster were associated with survival/mortality. In addition, more symptoms, more severe symptoms, and the presence of specific clusters have predicted poorer quality of life. More work is needed to point us toward a more robust picture of the demographic and clinical context of specific symptom clusters as well as the likelihood that specific clusters influence important outcomes including quality of life and survival.

Identification of Patient Subgroups with a Similar Symptom Experience

Thus far, we have examined the way in which “symptoms” are related to one another. An alternative approach is to examine differences in the symptoms experience within “subgroups” of individuals. Regardless of how a symptom cluster has been determined (a priori or empirically), there is likely to be variability in how individuals experience the cluster. One method of grouping patients is to create composite symptom scores. Sanford and colleagues selected fatigue, sleep disturbance, depression, anxiety, and confusion as an a priori cluster in women undergoing chemotherapy for breast cancer. Participants were assigned to a symptom cluster index group based on the number of abnormal symptom scores at the initial assessment. With the exception of anxiety, the coherence and stability of each symptom cluster group was demonstrated by similar patterns of symptom severity and change over time in all four symptoms. Using a similar methodology to classify groups of breast cancer patients on the basis of fatigue, sleep disturbance, and depression, Liu et al found a similar pattern of symptom cluster groups across time.

Statistical grouping methods have also been used to evaluate groups of individuals to determine the prevalence and pattern of symptoms within cluster groups. Hierarchical Cluster analysis (HCA), previously described as a method for grouping symptoms, has also been used to identify subgroups of individuals with similar symptom patterns; Latent Class Analysis (LCA) has also been used for this purpose. Based on HCA of the most common symptoms (fatigue, pain, dyspnea, and insomnia), lung cancer patients were classified into groups with mild (60%), moderate (28%) or severe (12%) composite
Symptom Cluster Definition FINAL, 6-13-16

symptom scores. Another study used HCA to evaluate severity patterns of the psycho-neurological symptom cluster (including fatigue, insomnia, pain, depressed mood, and cognitive disturbance) in breast cancer patients to identify four groups: all low symptoms (26%), all high symptoms (24%), low pain-high fatigue (19%), and high pain (30%) groups. In a separate study, breast cancer patients were classified using LCA into subgroups based on symptoms (fatigue, insomnia, pain, and depression); subgroups included all low symptoms (61%), all high symptoms (7%), and low pain-high fatigue (32%). Despite some variation in results, these studies indicate that groups of cancer patients can be classified according to similarities in their experience of symptom clusters.

Stability of Symptom Cluster Subgroups over Time

There is some evidence that symptom cluster subgroups endure over time. Prior to radiotherapy, men with prostate cancer were classified into four subgroups with similar patterns of fatigue, insomnia, pain, depressed mood, anxiety, and treatment-related symptoms (bowel, urinary, and sexual): all low symptoms; moderate treatment-related symptoms; all high symptoms; and moderately high fatigue, depression, and anxiety with few treatment-related symptoms. Similar groupings were derived after treatment. In breast cancer patients undergoing treatment, before treatment subgroups were replicated during treatment and two new groups emerged: high depressed mood-cognitive disturbance and high fatigue-insomnia groups.

Antecedents and Consequences of Symptom Cluster Subgroups

Symptom cluster subgroups were shown in one study to differ by treatment received, performance status, and education; however, another study observed no differences based on demographic or clinical factors. Considering biomarkers, several investigators were able to differentiate subgroups based on the presence of rare cytokine gene alleles, the additive effects of five immune response genes, or cytokine levels. With regard to outcomes, research has shown that subgroups with more severe symptom clusters had poorer quality of life, worse functional status, and increased depression and worse mental quality of life. Continued work in this domain will benefit the identification of subgroups at high risk for potentially damaging effects on patient outcomes.
Synthesis and Conclusions

Advances in Defining the Symptom Cluster

There have been significant advances in symptom cluster science over the past decade. With regard to the definition of a symptom cluster, examples in the literature of clinically meaningful symptom pairs such as nausea-vomiting \(^{16,17}\) or anxiety-depression \(^{18}\) add strength to the argument for including symptom pairs within the definition of the symptom cluster. More is to be gained than lost in accepting the more inclusive definition. In addition, several theoretical concepts have been incorporated into symptom models to guide the study of symptom clusters including evaluation of influences of symptoms on one another, examination of cluster stability over time, and determination of underlying mechanisms. An evidence base is developing to support the relevance of these concepts to the science of symptom clusters.

Advances in Research and Future Directions

It is interesting to note that cancer patients and survivors have been able to recognize and articulate groups of inter-related symptoms that impacted their quality of life. Symptom cluster science could benefit from more focused qualitative explorations of symptom clusters across the cancer trajectory from diagnosis, through treatment, and into survivorship. Learning from patients and survivors which symptoms co-occur reliably, are most distressing, and/or result in the most interference with functional status and quality of life will better inform quantitative science by ensuring that all relevant symptoms are represented in models. This will also enhance the validity of the quantitative models as representations of the patient-survivor experience. It may also be useful to use qualitative research to validate statistically derived symptom clusters as congruent with patient symptoms experience.

There is now a robust body of research showing that clusters of symptoms can be identified empirically using a variety of statistical methods. There is modest evidence of convergence across empirical clustering methods applied within the same sample. However, there is less evidence of convergence and validation of clusters across similar samples using the same or different analytic strategy. Therefore, replication studies are needed to ensure the reproducibility and usefulness of the
Symptom Cluster Definition FINAL, 6-13-16

statistically identified symptom cluster in the clinical setting. Looking across methods used in symptom cluster research to date, the science would benefit from a coordinated effort of qualitative studies to ensure that appropriate symptoms are evaluated for clustering; empirical symptom cluster identification studies that build upon that qualitative work; and studies identifying patient subgroups based on empirically defined symptom clusters. This progression would enhance the validity and reproducibility of symptom cluster research.

Scientists have explored demographic, personal, and clinical characteristics associated with symptom clusters and cluster subgroups. There is also research evidence that symptom clusters influence clinical outcomes including quality of life and survival. This information is important for the identification of symptom cluster phenotypes—that is, subgroups with similar symptom patterns, identifying characteristics, and probable outcomes. Continuing work is needed to identify high risk groups (at risk for more severe symptoms and/or worse outcomes) that can be targeted for intervention development and evaluation. Ultimately there is a need to demonstrate the value of symptom cluster identification in guiding symptom assessment and management for cancer patients and survivors.
Table 1. Identification of Symptom Clusters in Qualitative Research

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sample</th>
<th>Design</th>
<th>Method</th>
<th>Symptom Clusters</th>
<th>Covariates/Outcomes</th>
</tr>
</thead>
</table>
| Lopez, et al. | 10 women in U.K. with GYN cancers | Longitudinal: Pre-treatment to 12 months post-treatment 39 interviews | Content Analysis | 1. Tiredness, sleeplessness, pain, depression, weakness
2. Hair loss, ocular changes, body image, identity experience, anxiety
3. Nausea, appetite loss, taste changes, bowel function, weight changes, distress
4. Numbness-tingling in hands and feet, restlessness, sleeplessness, depression | Physical symptoms interrelated with depression, uncertainty, body image, and identity as cancer patient. |
| Maguire, et al. | 10 individuals in U.K. with advanced lung cancer reporting 3+ symptoms | Longitudinal: 2 interviews 3-5 weeks apart | Interpretative Phenomenological Analysis (IPA) | 1. Cough, pain, insomnia
2. Breathlessness, appetite loss, weight loss
3. Fatigue, nocturia, disrupted sleep | Detrimental impact on physical functioning |
| Molassiotis, et al. | 17 individuals in U.K. with inoperable lung cancer | Longitudinal: Beginning of treatment, 3, 6, 12 months | IPA | 1. Cough, breathlessness, fatigue, sleep disturbance, anxiety | • Cough associated with sleeplessness;
• Sleeplessness triggered fatigue;
• Coughing worsened breathlessness;
• Breathlessness triggered anxiety |
| Olver, et al. | 42 cancer patients in Australia with chemotherapy-induced nausea | Cross-sectional | Thematic analysis | Separate concomitant symptoms experienced with nausea: vomiting, appetite changes, taste changes, fatigue | |
Table 2. *A Priori* Identification of Symptom Clusters in Quantitative Research

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sample</th>
<th>Design</th>
<th>Method</th>
<th>Symptom Clusters</th>
<th>Covariates/Patterns/Outcomes</th>
</tr>
</thead>
</table>
| Cheng, et al.³⁹ | 120 elderly Chinese cancer patients undergoing treatment | Cross-sectional | Multiple Regression | Symptom cluster: pain, fatigue, insomnia, mood disturbance | • 20% of sample reported any 2 symptoms; 29% reported any 3 symptoms; 33% reported all 4 symptoms
• Low to moderate correlations between symptom pairs
• All 4 symptoms had independent effects on quality of life |
| Ho, et al. ³⁸ | 137 breast cancer patients in U.S. treated with chemotherapy | Longitudinal: | Path Analysis | Symptom cluster: Fatigue, sleep disturbance, depression | • All symptoms were correlated at each time point
• Prior symptom severity predicted subsequent severity of same symptom
• In pre-menopausal women, baseline fatigue predicted post-treatment depression; and post-treatment fatigue predicted depression at final follow-up |
| Hoffman, et al. ⁴⁰ | 80 newly diagnosed lung cancer patients in U.S. undergoing chemotherapy | Cross-sectional | Multinomial log-linear modeling | Symptom cluster: pain, fatigue, insomnia | • 3-way interaction among symptoms
• Covariates of age, comorbidities, and stage of disease did not improve the model |
| Jim, et al. ³⁰ | 78 U.S. women with GYN cancers being treated with chemotherapy | Longitudinal: | Latent Change Scores | Symptom cluster: Fatigue, sleep disturbance, depressed mood | Symptoms occurred in cascade pattern:
• Higher level of sleep disturbance was associated with earlier peak of fatigue
• Higher fatigue level was associated with higher subsequent |
<table>
<thead>
<tr>
<th>Authors</th>
<th>Sample Description</th>
<th>Study Design</th>
<th>Method</th>
<th>Symptom Cluster</th>
<th>Findings</th>
</tr>
</thead>
</table>
| Lin, et al. | 145 Chinese lung cancer patients post-surgery | Cross-sectional | Multiple regression | Symptom cluster: fatigue, pain, sleep disturbance, distress | • Presence of more symptoms associated with poorer quality of life
• In hierarchical regression, fatigue, sleep, and distress accounted for 72% of variance in quality of life |
| Oh, et al. | 110 South Korean cancer patients undergoing treatment | Cross-sectional | Path Analysis | Symptom cluster: pain, insomnia, depression, fatigue | • 7 indirect paths between pain and functional performance (pain-insomnia, pain-depression, pain-fatigue, pain-depression-fatigue, pain-insomnia-depression-fatigue)
• 3 indirect paths between insomnia and functioning (insomnia-depression, insomnia-fatigue, insomnia-depression-fatigue) |
| So, et al. | 215 Chinese women undergoing treatment for breast cancer in Hong Kong | Cross-sectional | Correlation; Structural Equation Modeling (SEM) | Symptom cluster: Fatigue, pain, anxiety, depression | • Correlation among symptoms supported existence of symptom cluster
• More severe symptoms, treatment with chemotherapy, and lower social support was associated with poorer quality of life |
| Stepanski, et al.| 11,445 U.S. cancer patients undergoing treatment | Cross-sectional | SEM: Test sample and validation sample | Symptom cluster: Fatigue, trouble sleeping, depressed mood, pain | Direct effects:
• Fatigue, modeled as a latent variable, was influenced by depressed mood, trouble sleeping, and pain. |
<table>
<thead>
<tr>
<th>Monitor</th>
<th>Indirect effects:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validated scale with 86 symptoms</td>
<td>• effect of depressed mood on pain mediated by trouble sleeping</td>
</tr>
<tr>
<td>4 symptoms included in analysis</td>
<td>• effect of trouble sleeping on fatigue mediated by pain;</td>
</tr>
<tr>
<td></td>
<td>• effect of depressed mood on fatigue mediated by trouble sleeping and pain.</td>
</tr>
<tr>
<td></td>
<td>Cross-validation of model was supported by validation sample.</td>
</tr>
<tr>
<td>Authors</td>
<td>Sample</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Brown, et al.</td>
<td>196 U.S. women 6 months to 5 years post-diagnosis of Non-small cell lung cancer</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheung, et al.</td>
<td>1,366 Canadian patients with advanced cancer attending palliative care clinics</td>
</tr>
<tr>
<td>Cheung, et al.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Gleason, et al.</td>
<td>66 U.S. patients newly diagnosed with brain tumors being treated with radiotherapy</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Sample Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Kenne Sarenmalm, et al.</td>
<td>206 Swedish breast cancer patients undergoing treatment</td>
</tr>
<tr>
<td>Kim, et al.</td>
<td>160 U.S. breast or prostate cancer patients being</td>
</tr>
<tr>
<td>Study</td>
<td>Sample Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Kim, et al. 52</td>
<td>282 U.S. breast cancer patients treated with chemotherapy or radiotherapy</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Kirkova, et al. 7</td>
<td>922 U.S. patients with advanced cancer in palliative care program</td>
</tr>
<tr>
<td>Walsh, et al. 53</td>
<td>Validation sample of 181 patients</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Researchers</td>
<td>Participants</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Molassiotis, et al.</td>
<td>143 patients in U.K. cancer centers</td>
</tr>
<tr>
<td>Olson, et al.</td>
<td>82 patients in Canada receiving palliative care</td>
</tr>
<tr>
<td>Pirri, et al.</td>
<td>200 newly diagnosed Australian cancer patients undergoing combined modality treatment</td>
</tr>
<tr>
<td>Skerman, et al.</td>
<td>219 Australian cancer patients</td>
</tr>
</tbody>
</table>

MSAS = Multidimensional Symptom Assessment Scale
ESAS = Edmonton Symptom Assessment Scale
PCA = Principal Component Analysis
SEM = Structural Equation Modelling
CFA = Confirmatory Factor Analysis
| Being treated with chemotherapy | Within 1 month of initiating chemotherapy, 6, 12 months later | Rotterdam Symptom Checklist—42 symptoms | 1. Vasomotor: sweating, hot/cold spells, night sweats
2. Oral discomforts: difficulty swallowing, sore throat, sore mouth, pain swallowing
3. Upper gastro-intestinal/aero-digestive discomforts: indigestion, heartburn, belching
4. Gastro-intestinal toxicities: poor appetite, vomiting, nausea, shivering, stomach pain, trembling
5. Musculoskeletal discomforts, lethargy: fatigue, sleepiness, muscle soreness, weakness
- Vasomotor, oral, and musculoskeletal clusters were replicated over time, retaining over 75% of the original symptoms |

| Tsai, et al. 58 | 427 Taiwanese patients with advanced cancer admitted to a palliative care unit | Cross-sectional symptom reporting scale—15 items | 1. Loss of energy: fatigue, weakness
2. Poor intake: anorexia, taste changes, dysphagia, constipation, dry mouth
3. Autonomic dysfunction: restlessness, heat, dizziness, insomnia, night sweats
4. Aero-digestive impairment: nausea, vomiting, abdominal fullness, dyspnea
5. Pain | PCA over time: poor appetite, weakness, and fatigue |
Table 4. Comparison of Methods for Identification of Symptom Clusters

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sample</th>
<th>Design</th>
<th>Method</th>
<th>Clusters or Subgroups</th>
<th>Covariates/Outcomes</th>
</tr>
</thead>
</table>
| Chen, E. 18 | 1296 Canadian patients with advanced cancer referred to outpatient palliative care service | Longitudinal Baseline, 1-, 2-, 4-, 8-, and 12-weeks ESAS | PCA, HCA, EFA | Baseline: PCA 1. Appetite, nausea, wellbeing, pain 2. Fatigue, drowsiness, dyspnea 3. Anxiety, depression | • The number and composition of symptom clusters varied over time
• Using the same analysis method, clusters were consistent over time
• Symptom pairs (anxiety and depression; fatigue and drowsiness) were consistently in the same cluster with shifting of other symptoms over time
• Results for PCA and HCA were more consistent across methods than EFA UNITY OR DIVERGENCE OF SYMPTOM SUBGROUPS OVER TIME |
| Fan, G. 19 | 1296 Canadian patients with advanced cancer referred to outpatient palliative care service | Longitudinal Baseline, 1-, 2-, 4-, 8-, and 12-weeks ESAS | PCA, HCA, EFA | Baseline: PCA 1. Appetite, nausea, wellbeing, pain 2. Fatigue, drowsiness, dyspnea 3. Anxiety, depression | • The number and composition of symptom clusters varied over time
• Using the same analysis method, clusters were consistent over time
• Symptom pairs (anxiety and depression; fatigue and drowsiness) were consistently in the same cluster with shifting of other symptoms over time
• Results for PCA and HCA were more consistent across methods than EFA UNITY OR DIVERGENCE OF SYMPTOM SUBGROUPS OVER TIME |
| Cheville, A. 63,64 | 2405 U.S. lung cancer survivors up to 5 years post-diagnosis | Longitudinal: 1, 2, 3, 4, 5 years LCS; single items: sleep quality; emotion, social, cognitive wellbeing | HCA, EFA, Latent Trait Analysis (LTA) | HCA: 1-5 years 1. Dyspnea, cough, fatigue
EFA 1. Dyspnea, cough, fatigue
LTA: 1. Fatigue, dyspnea, cough
2. Emotional wellbeing, sleep | • A single symptom cluster was consistent across analytic methods
• Presence of the symptom cluster, each component symptom, and symptom pairs were associated with decreased survival
• Differences were small between the capacity of symptom clusters, pairs or individual symptoms to predict survival |
| Henoch, I. 60 | 400 Swedish newly diagnosed Swedish lung cancer patients | Cross-sectional 1 month post-diagnosis SDS, EORTC QLQ-C30 (the same 11 items from each) | Correlation, PCA, HCA | Correlation: EORTC and SDS 1. Pain cluster: pain, bowel, nausea, appetite, fatigue 2. Mood cluster: insomnia, mood, concentration, outlook 3. Respiratory cluster (SDS only): dyspnea, cough | • Clusters were judged to be consistent across measures and analytic methods |

Chapter 4: Early Identification of Symptom Clusters for Palliative Care Planning

Symptom Cluster Definition:

M. A. Henoch, L. P. Fan, E. Chen, G. S. Cheville

Symptom Clusters: Definition of Symptom Subgroups

Symptom pairs (anxiety and depression; fatigue and drowsiness) were consistently in the same cluster with shifting of other symptoms over time.
Symptom Cluster Definition FINAL, 6-13-16

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample Description</th>
<th>Methodology</th>
<th>Cluster Characteristics</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roiland, R. A. 66</td>
<td>192 U.S. older adult breast cancer survivors</td>
<td>Cross-sectional Baseline data Symptom Bother Scale (37 items)</td>
<td>EFA, CFA SEM
FA: 1. Fatigue, emotional distress
2. Sexual and bowel dysfunction; pain
(urinary dysfunction loaded equally on both factors)
HCA: Subgroups
1. Most pain, some fatigue, some sexual dysfunction (10%)
2. Most urinary and sexual dysfunction (19%)
3. Most fatigue, most emotional distress, some sexual dysfunction (14%)
4. Most bowel dysfunction, some sexual dysfunction (10%)
5. Minimal symptoms (48%)
7-factor solution from EFA had adequate fit in CFA
All 7 clusters were associated with increased depression and poorer quality of life</td>
<td>- 7-factor solution from EFA had adequate fit in CFA
- All 7 clusters were associated with increased depression and poorer quality of life</td>
</tr>
</tbody>
</table>
Symptom Cluster Definition

<table>
<thead>
<tr>
<th>Symptom Cluster Definition</th>
<th>4. Urinary: incontinence, increased urination, decreased sex drive, irritated eyes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5. Circulatory: hand-foot swelling, taste or smell changes, hair thinning or loss, constipation, lymphedema, numbness</td>
</tr>
<tr>
<td></td>
<td>6. Sleep: frequent wakening, early wakening, difficulty falling asleep, vaginal discharge</td>
</tr>
<tr>
<td></td>
<td>7. Hormonal: mood swings, depression, anxiety, nightmares, hot flashes, headaches, vaginal dryness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(Wikman, A.)</th>
<th>402 Swedish patients with esophageal cancer</th>
<th>Cross-sectional EORTC QLQ-OES-18 completed 6 months after surgery</th>
<th>PCA, HCA</th>
<th>PCA and HCA solutions were identical except diarrhea formed a single symptom cluster using HCA; PCA solution was accepted.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1. Fatigue/pain—fatigue, pain, insomnia, dyspnea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2. Reflux/cough—dry mouth, taste changes, cough, reflux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3. Eating difficulty—appetite loss, dysphagia, eating difficulty, nausea-vomiting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The reflux/cough and eating difficulty symptom clusters were associated with increased risk of mortality</td>
</tr>
</tbody>
</table>
Table 5. Empirical Identification of Symptom Cluster Subgroups

<table>
<thead>
<tr>
<th>Authors</th>
<th>Sample</th>
<th>Design</th>
<th>Method</th>
<th>Subgroups</th>
<th>Covariates/Patterns/Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirksen, et al.</td>
<td>84 U.S. men with prostate cancer treated with radiotherapy</td>
<td>Longitudinal</td>
<td>Latent Class Analysis (LCA)</td>
<td>Pre-treatment groups: 1. Resilient (45%)—all low symptoms 2. Adjusted (41%)—high treatment-related symptoms; low insomnia, depression, anxiety 3. Distressed (4%)—All high symptoms 4. Emerged (10%)—High fatigue, depression, anxiety; low treatment-related symptoms Post-treatment groups: • Groups 1-3 had similar results • Group 4 changed to “Impacted” (5%)—high pain, insomnia, depression, urinary, bowel symptoms</td>
<td>• All men in the emerging group before treatment moved to another group (66% moved to Distress). • Among those whose group changed, there was a greater probability of changing to a group with higher symptom levels.</td>
</tr>
<tr>
<td>68</td>
<td></td>
<td>Pre-treatment, post-treatment Validated scales Cluster: fatigue, insomnia, pain, depression, anxiety, treatment-related (sexuality, urinary, and bowel symptoms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doong, et al.</td>
<td>398 U.S. women with breast cancer about to undergo surgery</td>
<td>Cross-sectional</td>
<td>Latent Class Profile Analysis (LCPA)</td>
<td>1. All low symptoms (61%) 2. All high symptoms (7%) 3. Low pain, high fatigue (32%)</td>
<td>• Rare alleles of cytokine genes (IL6 rs2069845, IL13 rs1295686, TNFα rs1800610) had increased odds of being in the all-high symptoms subgroup.</td>
</tr>
<tr>
<td>69</td>
<td></td>
<td>Pre-surgery Validated Scales Cluster: fatigue, pain, sleep disturbance, depressive symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Franceschini, et al.</td>
<td>140 Brazilian Lung cancer patients</td>
<td>Cross-sectional</td>
<td>HCA</td>
<td>1. Mild symptoms (60%) 2. Moderate symptoms (28%) 3. Severe symptoms (12%)</td>
<td>• Subgroups with more severe symptoms had poorer quality of life.</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td>EORTC QLQ-C30; symptoms selected for analysis: fatigue,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Population</td>
<td>Design</td>
<td>Methods</td>
<td>Clustering</td>
<td>Findings</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>------------</td>
<td>----------</td>
</tr>
</tbody>
</table>
| Husain, et al. 71 | 221 U.S. patients with advanced cancer | Longitudinal Study entry, weeks 2, 4, 8, 12 ESAS | Cluster Analysis | 1. High-- tired; Moderate-- drowsy, appetite, wellbeing, pain, depression, anxiety (25%)
2. High-- tired; Moderate—drowsy appetite, wellbeing; Low—pain, depression, anxiety (31%)
3. Low—tired, drowsy, appetite, wellbeing, pain, depression, anxiety (44%) | • Subgroup membership predicted quality of life over time
• Grouping by symptom cluster profiles did not add predictive value to a widely used measure of performance status in palliative care |
| Kim, et al. 72 | 282 U.S. breast cancer patients treated with chemotherapy or radiotherapy | Longitudinal Pre-treatment, during treatment, end of treatment
Some validated scales, some single items
Cluster: Depressed mood, cognitive disturbance, fatigue, insomnia, pain | HCA at each time point
Logistic regression | Pre-treatment
1. All low symptoms
2. High fatigue, low pain
3. High pain
4. All high symptoms
During-end of treatment
5. High depressed mood, cognitive disturbance
6. High fatigue, insomnia | • Subgroup membership changed substantially across time except for group 1.
• Subgroup 4 (reference group) differed from the other groups on baseline performance status, symptom burden, and treatment modality; this pattern was consistent across time. |
| Kim, et al. 73 | 282 U.S. breast cancer patients treated with chemotherapy or radiotherapy | Longitudinal Pre-treatment, during treatment, end of treatment
Some validated scales, some single items
Cluster: | HCA using symptom severity scores across three time points
Logistic regression | 1. Gradually increasing symptoms (26%)
2. Constantly low symptoms (37%)
3. Dramatic increase and decrease of symptoms (14%)
4. Constantly high symptoms (13%)
5. Initially high symptoms with dramatic decrease (10%) | • Antecedents that distinguished group 4 (reference group) from other groups: baseline performance status, previous treatment, and education
• Subgroup 4 had worse functional limitations than other groups |
| Study | Sample Description | Study Design | Methodology | Symptom Cluster | Mixed effects model | Symptom Cluster Index (SCI) Groups based on scale cut-offs: | Comparison of subgroups 1 and 2: Additive effect of 5 alleles predicted membership in high symptom group controlling for disease stage and sex:
|-------------------------|---|-------------------|---------------------------|-----------------|---|---|---|
| Liu, et al. 74 | 76 U.S. women with breast cancer being treated with anthracycline-based chemotherapy | Longitudinal: Pre-treatment, during each treatment cycle for 4 cycles (7 time points)
Validated scales Cluster: fatigue, sleep disturbance, depression | Mixed effects model
Independent variables: SCI
Dependent variables: individual symptom scores | Depressed mood, cognitive disturbance, fatigue, insomnia, pain | SCI0: no symptoms (20%)
SCI1: 1 symptom (28%)
SCI2: 2 symptoms (56%)
SCI3: 3 symptoms (24%). | Subgroups with higher SCI prior to treatment had worse symptoms during treatment compared with lower SCI groups
Subgroups did not differ by demographic or clinical factors |
| Reyes-Gibby, et al. 75 | 599 U.S. newly diagnosed lung cancer patients | Cross-sectional
Prior to treatment
Single items:
Cluster: Pain, depressed mood, fatigue | HCA
Logistic regression | Longitudinal:
Pre-treatment, cycle 4 day 1, 6 months later
Validated symptom scales Cluster: fatigue, sleep, depression, anxiety, cognitive impairment | 1. Severe symptoms (16%)
2. Low intensity symptoms (30%)
3. High pain; low depressed mood, fatigue
4. High fatigue; low depressed mood, pain
5. High fatigue depressed mood; low pain | Comparison of subgroups 1 and 2: Additive effect of 5 alleles predicted membership in high symptom group controlling for disease stage and sex:
- ENOS -1474 T/A
- IL1β T-31C
- TNRR2 Met196 Arg
- PTGS2 exon10+8731>C
- IL10rβ Lys87 Glu |
| Sanford, et al. 76 | 80 U.S. women with breast cancer being treated with chemotherapy | Longitudinal:
Pre-treatment, cycle 4 day 1, 6 months later
Validated symptom scales Cluster: fatigue, sleep, depression, anxiety, cognitive impairment | Correlation; Mixed effect models | | SCI0 groups based on scale cut-offs:
SCI0 (22%)
SCI1 (28%)
SCI2 (26%)
SCI3-5 (24%) | Fatigue, depression, cognitive impairment: For each symptom, SCI groups had similar trajectories with symptoms worsening during treatment.
Sleep: There was no change in sleep within subjects or between groups.
Anxiety: SCI groups had similar trajectories with anxiety improving over time.
Higher SCI scores predicted poorer quality of life. |
| Starkweather, et al.⁷⁷ | 128 U.S. women with breast cancer | Cross-sectional 4 weeks after breast surgery before chemotherapy | Cut-off scores, extreme discordant subgroup analysis, median split | Composite score: comparison of groups with scores in the top and bottom 20% of the sample
Extreme discordant scores: all symptoms above cut-off | • Using composite scores, high and low symptom groups differed on IL6 and IL7
• Using discordant scores, groups differed on IL7
• Using median split, groups differed on IL4 and IL5. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References

Symptom Cluster Definition

Symptom Cluster Definition