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Abstract

Trauma centers use registry data to benchmark performance using a standardized risk

adjustment model. Our objective was to utilize national claims to develop a risk adjustment

model applicable across all hospitals, regardless of designation or registry participation.

Patients from 2013–14 Pennsylvania Trauma Outcomes Study (PTOS) registry data were

probabilistically matched to Medicare claims using demographic and injury characteristics.

Pairwise comparisons established facility linkages and matching was then repeated within

facilities to link records. Registry models were estimated using GLM and compared with five

claims-based LASSO models: demographics, clinical characteristics, diagnosis codes, pro-

cedures codes, and combined demographics/clinical characteristics. Area under the curve

and correlation with registry model probability of death were calculated for each linked and

out-of-sample cohort. From 29 facilities, a cohort comprising 16,418 patients were linked

between datasets. Patients were similarly distributed: median age 82 (PTOS IQR: 74–87

vs. Medicare IQR: 75–88); non-white 6.2% (PTOS) vs. 5.8% (Medicare). The registry model

AUC was 0.86 (0.84–0.87). Diagnosis and procedure codes models performed poorest.

The demographics/clinical characteristics model achieved an AUC = 0.84 (0.83–0.86) and

Spearman = 0.62 with registry data. Claims data can be leveraged to create models that

accurately measure the performance of hospitals that treat trauma patients.

Author summary

We can leverage claims data to create models that accurately measure the performance of

trauma centers while also accounting for patient case mix and injury severity. This repre-

sents a new way to benchmark trauma management at hospitals that treat trauma patients
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but are not accredited as trauma centers. Moreover, this approach can guide the develop-

ment of regional models of care by using population level outcomes to encourage trauma

centers, non-trauma center hospitals, and prehospital systems of care to optimize triage

and transfer policies on regional survival.

Introduction

Trauma is unplanned, time-sensitive, and carries a high societal burden of mortality and mor-

bidity. The National Academy of Medicine recently highlighted the need for a national trauma

system [1]. Over the past three decades, hospitalizations for injury have risen among those

over age 65, with over three million injury-related Emergency Department (ED) visits and

55,000 deaths in 2017 alone [2–4]. The system of care developed around trauma—from ambu-

lance services and emergency departments to intensive care units and rehabilitation centers—

markedly reduces injury-related death and disability. Survival is significantly higher for seri-

ously injured patients who are treated in Level I Trauma Centers [5–7]. Despite this, approxi-

mately two-thirds of patients are cared for in non-trauma centers, as are 70% of injured adults

over 55 who receive hospital care [7–9]. Understanding the care of the trauma patient popula-

tion, and identifying opportunities to improve trauma care at non-trauma centers is important

for improving outcomes for the entire population of injured adults.

The trauma community has pioneered efforts to measure and benchmark trauma center per-

formance through the Trauma Quality Improvement Program (TQIP). These efforts use a stan-

dardized risk adjustment model to benchmark trauma center performance [10]. Many states

(43%) have trauma data registries [11], providing an indispensable resource for quality assurance

and improvement initiatives. Data are often reported to a central credentialing agency, such as a

state Department of Health or the American College of Surgeons, and are pooled to describe the

experience of the state or nation in performance improvement initiatives. Facility level outcomes

are benchmarked and compared in a de-identified manner across similar centers [10,12].

A key shortcoming of trauma registries is that only 13 states require non-trauma center

hospitals to submit their data, limiting the ability to measure care delivered outside of the

accredited trauma centers. The National Quality Forum recently released a framework for

population based quality measurement for trauma care in the United States [13]. Enacting this

will require a standardized and comprehensive approach that leverages compulsory data rather

than a voluntary registry limited to specially credentialled hospitals.

The Centers for Medicare & Medicaid (CMS) are the largest purchaser of trauma care in

the United States [14]. Claims data for age-eligible beneficiaries (65 years or older) are avail-

able uniformly at trauma and non-trauma centers, and contain information including patients’

injury mechanism and severity, physiology, comorbidities, and disposition. The objective of

our study was to capitalize on these comprehensive data to develop a risk adjustment model

that can be applied across trauma and non-trauma centers alike. This approach to measuring

trauma outcomes and hospital performance aims to deliver a method of assessing trauma care

quality, regardless of hospital designation or registry participation.

Results

Linking

A total of 29,063 cases across 33 trauma centers were identified as eligible for linking in the

PTOS data, while 103,621 possible cases across 185 centers were identified from the Medicare

claims. Patient-to-Patient linking required a total of 6,105 facility-to-facility comparisons
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(Fig 1). The smaller number of cases in the PTOS data dominated the linking attempts creat-

ing a matched cohort comprising 16,418 cases (16,058 unique patients) from 29 facilities

linked between PTOS and Medicare. These facilities included 11 level I, 13 level II, 2 level III, 1

level IV, and 3 dual accredited pediatric (level I or II) and adult (level I) trauma centers.

With regard to demographics, the patients were distributed similarly in both cohorts:

median age 82 (IQR: 74–87) in PTOS versus 82 (IQR: 75–88) in Medicare; 6.2% non-white in

PTOS versus 5.8% non-white in Medicare. The registry cohort comprised more instances of

falls (n = 13,654, 83.2% compared to n = 12,134, 73.9% in claims data). Also, more registry

patients had a max abbreviated injury score < 3 (n = 7,633, 46.5% versus n = 7,315, 44.6%).

Table 1 shows the demographic and injury characteristics of the linked and full cohorts.

For manual validation of the facility matching, 18 facilities volunteered to be identified in

the PTOS registry. This allowed us to manually validate our automated facility matching and

confirm that all 18 of these facilities were correctly paired between PTOS and Medicare data-

sets. For the remaining 11 facilities, trauma center designation was cross-referenced and

matched in both the PTOS and Medicare data. Characteristics between the datasets appear

similar with lower rates of transfers and higher prevalence of peripheral vascular disease

(PVD) and diabetic comorbidities seen in the Medicare cohort (Table 1).

Registry-based benchmarking

Using the linked PTOS registry data, an AUC of 0.86 (95% CI 0.84–0.87) was estimated for the

GLM model and 0.85 (95% CI 0.83–0.86) for the LASSO model. Probability of death values were

then generated from each model for each individual case: the two models agreed considerably (Pear-

son correlation = 0.98; Spearman rank coefficient = 0.93). Given the agreement in both AUC and

probability of death correlations, and the need to handle large numbers of clinical attributes in the

CMS dataset, we chose the LASSO model for all subsequent analyses. LASSO’s dimensionality

reduction eliminated 41.5% of the predictor variables (S1 Table) with minimal impact to AUC.

Model performance

The initial Medicare claims model included only beneficiary demographics: age, sex, and race/

ethnicity. Using the linked PTOS-Medicare cases, the model predicted mortality with an AUC

of 0.62 [95% CI 0.60–0.64]. The out-of-sample AUC was similar (Table 2). Comparison of the

claims-based model and the registry model produced a Spearman rank correlation of 0.44

Fig 1. Cohort eligibility and matching between Pennsylvania Trauma Outcomes Study and Medicare Data, 2013–

2014.

https://doi.org/10.1371/journal.pdig.0000263.g001
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Table 1. Characteristics of patients in the Pennsylvania Trauma Outcomes Study and Medicare data, 2013–2014.

Patient Characteristic, n

(%)

Full PTOS Cohort*
N = 29,063

Matched PTOS Cohort

n = 16,418

Patient Characteristic, n (%) Full Medicare Cohort*
N = 103,621

Matched Medicare

Cohort n = 16,418

Died 1,733 (5.96) 979 (5.96) Died 3,417 (3.30) 979 (5.96)

Age in years, median

(IQR)

81 (73–87) 82 (74–87) Age in years, median (IQR) 83 (74–88) 82 (75–88)

Female 16,809 (57.84) 10,034 (61.12) Female 66,761 (64.43) 10,065 (61.30)

Race Race

White 26,712 (91.91) 15,399 (93.79) White 96,418 (93.05) 15,459 (94.16)

Black 1,389 (4.78) 696 (4.24) Black 5,398 (5.21) 700 (4.26)

Other/Unknown 962 (3.32) 323 (1.96) Other/Unknown 1,805 (1.74) 259 (1.58)

Mechanism Mechanism

Fall 23,045 (79.29) 13,654 (83.16) Fall 71,327 (68.83) 12,134 (73.91)

Motor Vehicle 3,639 (12.52) 1,622 (9.88) Motor Vehicle 2,709 (2.61) 1,504 (9.16)

Fire/burn 265 (0.91) 116 (0.71) Fire/burn 616 (0.59) 100 (0.61)

Pedal cyclist, other 149 (0.51) 71 (0.43) Pedal cyclist, other 161 (0.16) 64 (0.39)

Other/Unknown 1,965 (6.76) 955 (5.82) Other/Unknown 28,808 (27.80) 2,616 (15.93)

Transfer 9,530 (32.79) 3,936 (23.97) Transfer 5,126 (4.95) 700 (4.26)

Systolic BP, median (IQR) 149 (130–168) 150 (131–170) Shock 284 (0.27) 36 (0.22)

GCS Motor, median

(IQR)

6 (6–6) 6 (6–6) Altered Mental Status and/or

Impaired Sensorium

4,291 (4.14) 213 (1.30)

Pulse, median (IQR) 80 (70–93) 80 (70–92) Tachycardia 1,140 (1.10) 317 (1.93)

Diabetes 7,838 (26.97) 28 (0.17) Diabetes 29,070 (28.05) 4,408 (26.85)

PVD 1,041 (3.58) 131 (0.80) PVD 8,899 (8.59) 1,285 (7.83)

Max Abbreviated Injury Score Max Abbreviated Injury Score

0–1 2,474 (8.51) 1,064 (6.48) 0–1 27,056 (26.11) 986 (6.01)

2 11,257 (38.73) 6,538 (39.82) 2 34,397 (33.20) 6,329 (38.55)

3+ 15,149 (52.12) 8,785 (53.51) 3+ 41,344 (39.90) 8,974 (54.66)

Unknown 183 (0.63) 31 (0.19) Unknown 824 (0.80) 129 (0.79)

Injury Severity Score,

median (IQR)

9 (5–13) 9 (5–13) Injury Severity Score, median

(IQR)

5 (2–9) 9 (4–16)

*Full cohorts contain only those registry patients or claims meeting eligibility criteria for the study (age > = 65, treated in Pennsylvania hospital in 2013 or 2014,

documented trauma via ICD-9-CM code, and meeting registry eligibility criteria.)

https://doi.org/10.1371/journal.pdig.0000263.t001

Table 2. Model performance diagnostics for Medicare claims models.

Data

Source

Model Matched Area Under the Curve (95%

Confidence Interval)

Out-of-Sample* Area Under the Curve

(95% Confidence Interval)

Spearman’s Correlation Coefficient

(with Registry Model)

N/A Control 0.50 0.50 0.00

PTOS** Registry 0.85 (0.83–0.86) 0.88 (0.86–0.89) 1.00 (self)

Medicare Demographics 0.62 (0.60–0.64) 0.60 (0.59–0.61) 0.44

Demographics + Clinical

Risk Factors

0.84 (0.83–0.86) 0.81 (0.80–0.82) 0.62

Procedure Codes 0.86 (0.84–0.87) 0.76 (0.75–0.77) 0.36

Diagnosis Codes 0.95 (0.94–0.96) 0.91 (0.90–0.92) 0.25

Procedure + Diagnosis

Codes

0.96 (0.95–0.96) 0.92 (0.91–0.92) 0.33

*Out-of-Sample estimates were calculated using non-matched records

**PTOS = Pennsylvania Trauma Outcomes Study

https://doi.org/10.1371/journal.pdig.0000263.t002
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(Table 2). Using the linked data, procedure and diagnosis code models achieved an AUC of

0.86 (95% CI 0.84–0.87) and 0.95 (95% CI 0.94–0.96), respectively. The performance of the

procedure-codes-only model showed a noticeable drop in performance in out-of-sample test-

ing with an AUC of 0.76 (95% CI 0.75–0.77) vs. 0.91 (95% CI 0.90–0.92). The procedure and

diagnosis codes model and the registry model showed virtually no correlation (Table 2). The

final model, which adjusted for patient demographics and clinical risk factors, achieved an

AUC of 0.84 (95% CI 0.83–0.86) for matched samples and 0.81 (95% CI 0.80–0.82) for out-of-

sample records. The final model also had the strongest correlation with the registry model

(0.62). Coefficients for variables in all claims-based models can be found in S2 Table which list

all of the procedure and diagnosis codes that were used.

Discussion

We found that claims-based models using Medicare data provide a good approximation for

the risk adjustment approach that can be achieved through registry data. The variables in the

claims-based models include many of the categories found to be important in the original

Trauma Quality Improvement Project paper, namely patient demographics, comorbidities

and key characteristics of the injury (i.e., mechanism, severity, body region impacted) [10,12].

The AUC for the demographics and clinical risk factors model exceeded 0.80 for both the

matched and out-of-sample cohorts, while correlation with the gold-standard registry model

exceeded 0.60. Using claims to estimate the probability of death after injury allows for a more

generalizable method by which to benchmark trauma center performance. More importantly,

it represents a novel approach for benchmarking outcomes at non-trauma center hospitals in

order to capture an accurate representation of regional injury outcomes [1].

We also explored the use of the top 500 procedure and diagnostic codes in improving our

ability to predict mortality. Inclusion of diagnostic codes improved the AUC to>0.9 for all

samples. However, it led to a decreased correlation with probability of death deduced from reg-

istry data. We note that diagnosis and procedure codes include information about care deliv-

ered after the patient reaches the hospital: it is conceivable that inclusion of this information

may overestimate the probability of death in comparison to models that only use information

available at the time of the injury or hospital arrival. The goal of the risk adjustment model is

not to simply predict death, but to allow for measurement of outcomes after accounting for dif-

ferences in a patient population. Additionally, the risk adjustment model is not intended to

penalize hospitals that treat more ill or more severely injured patients. Consequently, the inclu-

sion of diagnosis and procedure codes may be overcorrecting for the baseline severity, account-

ing instead for the complications or subsequent care needed throughout the hospitalization.

Analogous to GLM, LASSO models are easy to interpret because features are combined line-

arly and weights are assigned to each feature (S1 and S2 Tables). LASSO modeling is an innova-

tive approach to risk adjustment and represents an advance over earlier GLM or traditional

logistic regression models. Specifically, LASSO’s L1 regularization technique allows for weights

to be zero, resulting in dimensionality reduction. In turn, this helps discard features when deal-

ing with a large number of claims-based variables [15–17]. LASSO’s dimensionality reduction

specifically helped to adjust for the hundreds of CMS attributes considered in our claims-based

models, including demographics, clinical risk factors, and diagnosis and procedure codes.

Unchanged, this same method can be applied to risk adjustment efforts that rely on other large

data sources. Additionally, it could prove especially important for conditions with no national

registry, such as sepsis or cardiac arrest, where generalizability of existing data is a concern.

Our use of administrative data introduced a number of analytical limitations that require discus-

sion. First, by necessity, we relied on probabilistic matching to create a dataset for model building

PLOS DIGITAL HEALTH Claims-based risk adjustment models for trauma
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and performance assessment. Despite our use of stringent filtering criteria throughout, it remains

formally possible, the PTOS and Medicare linkages may be incorrect for some of the analyzed

patients. In light of this possibility, we gauged the generalizability of our models by using both

matched and out-of-sample cohorts. Second, our analyses used only those variables that Medicare

collects for billing purposes. Information about the timing and location of the injury, or the specifics

of the injury itself, are not readily available. Because of this, all injury characteristics were derived.

Validated measures were used for these variables, but information may not be complete or accurate

given differences in coding practices among hospitals, and the limited number of fields available for

reporting. Similarly, this lack of granularity extends to clinical confounders and administrative data

may not capture all treatments, interventions, and laboratory. Our models looking at the top diagno-

ses and procedure codes were an attempt to include as many of the captured codes as possible and

evaluate their contribution to claims-based risk adjustment models.

We also note that it may be valuable to perform risk adjustment in younger patients without

having to rely on trauma registry data. Similarly, our analysis focused on trauma centers in

Pennsylvania. but multi-state or national models may be needed. In both instances, the model-

ing approach described can be applied to other administrative data sources, as well as Medi-

care data from trauma centers and non-trauma hospitals across the country. Subsequent

validation and calibration work should be completed in the case of non-trauma centers and

for models including younger patients, and additional years beyond 2013–2014 may also be

warranted. Nonetheless, it will be possible to create general models easily given that the same

variables are available across all hospitals that serve Medicare patients, and that similar data

and coding is used in numerous other data sources captured for billing purposes.

Methods

Data sources and population

We used two data sources. One was the Pennsylvania Trauma Outcomes Study (PTOS) regis-

try data from the Pennsylvania Trauma Systems Foundation, which are the type of data used

for conventional trauma center benchmarking. The second source was CMS claims data for

hospitals in Pennsylvania, including inpatient stays from the Medicare Provider Analysis and

Review (MedPAR) Research Identifiable File (RIF), outpatient visits from the Outpatient

claims RIF, and demographic, geographic, date-of-death, and enrollment information from

the Master Beneficiary Summary File (Base Segment) and Vital Status File. All injury-related

patients from the PTOS and CMS data were included for analysis if they were�65 years and

treated in a Pennsylvania hospital in 2013 or 2014. In the CMS data, ICD-9-CM codes were

used to identify injury as a primary or secondary diagnosis, (ICD9-CM 800–959 (injuries)

excluding 905–909 (late effects of injury), 930–939 (foreign bodies), or 958 (complications of

injury), as defined by the National Center for Injury Prevention and Control).

Feature engineering

For each dataset, admission date and date of birth were divided into month, day, and year

components to facilitate matching. Naming conventions for Race/Ethnicity data were stan-

dardized across data sources. In-hospital death in CMS data was derived from the Vital Status

file, and a beneficiary was coded as deceased if they had a valid date of death on or before the

date of discharge, regardless of the disposition code. Injury severity scores (ISS), Abbreviated

Injury Scores (AIS), and maximum AIS by body region in claims data were calculated using

ICD-9 and E-Codes via the icdpicr (version 1.0.0) package [18]. In registry data, age, systolic

blood pressure, and pulse rates were categorized into seven percentiles to allow for easier

interpretability and more parsimonious models.
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Matching patients across data sources

In order to compare risk adjustment between claims data and the gold standard registry data,

we created a matched cohort comprised of patients whose records could be identified in the

two data sources, Medicare claims and PTOS. All trauma cases in the PTOS registry were eligi-

ble for the matching process if they met age criteria (�65 years) and contained values for the

following attributes: sex, birth date, injury date, race/ethnicity, residential zip code, and hospi-

tal ID. Trauma cases in the CMS data were deemed eligible for the matching process if they

met the inclusion and exclusion criteria of the PTOS registry for the year of their claim [19].

To increase the match rate and validate matches between the two datasets, we requested per-

mission from Pennsylvania trauma centers to use their hospital identity.

Linking claims and registry records

Facility to facility matching. To improve the quality of matches, we first performed pair-

wise comparisons between all facilities in the PTOS and CMS datasets using deidentified hos-

pital facility identifiers. For each facility pair, we calculated two metrics:

1. CMS cohort metric: each individual Medicare trauma case in the candidate facility was

given the maximal score when compared against each PTOS case in the candidate facility.

One point was earned for matching each attribute (sex, residential zip code, year of birth,

month of birth, day of birth, year of admission, month of admission, day of admission, and

a combined race/ethnicity value). The mean score across all Medicare cases for the candi-

date facility was used as the CMS cohort metric.

2. PTOS cohort metric: because the number of cases in the CMS and PTOS cohorts differed,

we calculated a similar metric in the opposite direction. Specifically, each individual PTOS

case in the candidate facility was given the maximal score when compared against each

CMS case in the candidate facility using the same point system noted above. The mean

score across all PTOS cases for the candidate facility was used as the PTOS cohort metric.

For each CMS facility, the compared PTOS facilities were ranked in decreasing order of the

CMS cohort metric. Similarly, for each PTOS facility, the compared CMS facilities were ranked

in decreasing order of the PTOS cohort metric. A facility was deemed a match only if both the

CMS and PTOS cohort metrics were top-ranked for the pair. Manual validation of the

matched facilities occurred using known facility pairs from the subset of facilities that provided

permission.

Matching claims and registry records within facilities

Within each matched facility, a similar process was used to identify cases whose Medicare

record could be linked to their PTOS record. Using the same attributes as in the preceding sec-

tion, pairwise comparisons were performed between CMS and PTOS records within the

matched facility, earning one point for each attribute. Records were considered linked only if

all of the following conditions were met: (i) there was no more than one mismatched attribute,

(ii) for either patient in the pair, there was no other patient it paired with that scored the same

or better, and (iii) the patient outcome (died vs survived) status agreed between the CMS and

PTOS datasets.

Model development

All models used in-hospital death (survival to discharge) as the outcome. Two registry-based

models were estimated using demographics, injury characteristics, comorbidities [10,12], and
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clinical characteristics to create a parsimonious model: model 1 was estimated using General-

ized linear models (GLM); and model 2 was estimated using Least absolute shrinkage and

selection operator (LASSO) (Table 3) [15,20]. For all claims-based models, LASSO was used

given the large number of clinical features.

Table 3. Variables of interest for each trauma risk adjustment model.

Variable PTOS Data Medicare Claims Data

Registry LASSO Model Demographics Demographics + Clinical Risk

Factors

Procedure

Codes

Diagnosis

Codes

Procedure

+ Diagnosis Codes

Age Categorized into 7 percentiles Continuous Continuous

Female Male/Female Male/Female Male/Female

Race White/Black/

Other

White/Black/ Other

Transferred Yes/No Yes/No

Skilled Nursing

Facility Resident

Yes/No

Year of Injury/

Admission

2013/2014

Abbreviated Injury

Score

0–6, Unknown 0–6, Unknown

Maximum Score,

Overall

Maximum Score–

Head

0–6, Unknown 0–6, Unknown

Maximum Score–

Face

0–6, Unknown

Maximum Score–

Chest

0–6, Unknown

Maximum Score–

Abdomen

0–6, Unknown

Maximum Score–

Extremities

0–6, Unknown

Maximum Score–

External

0–6, Unknown

Injury Severity Score 1–75, Unknown

Mechanism of Injury Fall, Fire/Burn, Pedal Cyclist,

Motor Vehicle, Other or

Unknown

Fall, Fire/Burn, Pedal Cyclist,

Motor Vehicle, Other or Unknown

External Cause of

Injury Code

Primary ECode

Systolic Blood

Pressure

Categorized into 7 percentiles Shock

Pulse Categorized into 7 percentiles Tachycardia

Cardiac Arrest Systolic BP <90 Yes/No ICD-9-CM Code 427.5 primary

diagnosis: Yes/No

Glasgow Coma Score Categorized Score Altered Mental Status; Impaired

Sensorium

Comorbidities Diabetes, Peripheral Vascular

Disease

All Elixhauser Comorbidities

Procedure Codes

(CMS)

Up to 500 Up to 500

Diagnosis Codes

(CMS)

Up to 500 Up to 500

https://doi.org/10.1371/journal.pdig.0000263.t003
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Models were generated using matched patients. They were also evaluated against

unmatched (out-of-sample) cases to gauge their generalizability against unseen outcomes (Fig

1). To avoid data leakage and overfitting, no cases evaluated in the unmatched cohort were

part of the matched training set used during model creation. Ninety-five percent confidence

intervals (CI) were computed using 2000 stratified bootstrap replicates. All analyses were con-

ducted using R version 3.6.3 (R Foundation for Statistical Computing, Vienna, Austria). GLMs

and the LASSO models were created using the stats and glmnet packages, respectively [15]. For

LASSO, 10-fold cross-validation was used to choose the optimal lambda value. For both the

GLM and LASSO models, CI for the area under the curve (AUC) were calculated using the

pROC version 1.16.2 package [21]. Injury characteristics in claims data were calculated using

the icdpicr (version 1.0.0) package [18].

Table 3 lists the variables used across the registry and claims-based models. Registry models

included previously identified variables [10,12]. For claims-based models, variables were

selected for inclusion if they were an exact match for those in TQIP (age, sex, single worst

Abbreviated Injury Score, mechanism of injury, transfer status), or if they were the billing

code equivalent of the physiologic factors captured in registry data (impaired sensorium,

tachycardia, altered mental status, shock). Additional comorbidities, patient demographics,

clinical characteristics, and the 500 most frequent diagnosis and procedure codes were also

considered. Variables were then grouped into three categories: demographics, procedure and

diagnosis codes, and clinical risk factors.

Correlations using patient-level probability of death

After fitting each model outlined above, the probability of death was estimated for each patient

in the matched cohort. For out-of-sample testing, the same models were used to predict death

outcomes for the eligible but unmatched cohort. The AUC was calculated for each model, and

separately for each out-of-sample evaluation, to estimate the models’ ability to predict a death

outcome. To avoid data leakage when calculating the out-of-sample AUC, the models were

created using only the matched cases with no overlap with the unmatched cohort. For compar-

ison between each of the claims-based models and the registry model, we calculated the Spear-

man rank correlation coefficient using the patient-level outcome probabilities for the matched

patients between each model pair.

Meeting Presentations: A portion of this work was presented at the 2020 American Associ-

ation for the Surgery of Trauma Annual Meeting and Clinical Congress of Acute Care Surgery

and the 2020 European Congress of Trauma and Emergency Surgery (cancelled due to

COVID-19).
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