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Introduction
As the most common cause of adult onset motor 
neuron disease (MND), amyotrophic lateral sclerosis 
(ALS) is traditionally classified as a neuromuscular 
disorder because the presenting symptoms are 
caused by muscle weakness and atrophy. However, 
clinical, genetic, and molecular discoveries over 
the past 20 years have challenged this convention. 
ALS shares features of frontotemporal dementia, a 
group of neurodegenerative disorders that causes 
cognitive, behavioral, and motor dysfunction. 
Nearly half of all patients with ALS have varying 
degrees of cognitive and/or behavioral impairment, 
with approximately 15% meeting the diagnostic 
criteria for frontotemporal dementia.1 Conversely, 
about 15% of patients with behavioral variant 
frontotemporal dementia and 18% of patients 
with primary progressive aphasia have ALS.2 3 
These disorders also have overlapping genetics, 
with hexanucleotide repeat expansion (HRE) in 
C9ORF72 being the most common genetic cause of 
ALS, frontotemporal dementia, or both in people 
of European ancestry.4 Additionally, abnormal 
aggregation of transactive response DNA binding 
protein 43 (TDP-43) or fused in sarcoma (FUS) is 
present in the cytoplasm of cortical neurons in ALS 
and frontotemporal dementia.5 6 As such, ALS is 
widely recognized as a complex neurodegenerative 
disorder in the frontotemporal dementia-MND 
continuum.7 8 The reconceptualization of ALS in 
this continuum of disorders has allowed for novel 
approaches toward understanding fundamental 
disease mechanisms contributing to pathogenesis 
and has opened new avenues in approaches toward 
therapy. In this review, we provide a comprehensive 
summary of the clinical and genetic heterogeneity 
of ALS and advances in molecular pathology and 
biomarkers, and we highlight key interventions 

that improve quality of life. The intended audience 
includes students, trainees, general neurologists, 
and neuromuscular subspecialists.

Epidemiology
The worldwide prevalence and incidence of ALS 
are estimated to be 4.42 per 100 000 population 
and 1.59 per 100 000 person years, respectively, 
and population based studies have shown 
geographic variation with the highest in western 
Europe (prevalence 9.62 per 100 000 population 
and incidence 2.76 per 100 000 person years) and 
lowest in South Asia (prevalence 1.57 per 100 000 
population and incidence 0.42 per 100 000 person 
years). The incidence and prevalence of ALS are 
higher in developed regions, and a temporal trend 
has been observed, with the incidence rising by 
0.00013 per year.9 10 The prevalence and incidence 
of ALS is higher in men (prevalence 5.96 per 100 000 
population; incidence 1.91 per 100 000 person 
years) than in women (prevalence 3.90 per 100 000 
population; incidence 1.36 per 100 000 person 
years). 9 10

Sources and selection criteria
We independently did searches using the Boolean 
search criteria in the PubMed and Embase databases, 
between January 1990 and December 2022, using 
search terms such as amyotrophic lateral sclerosis, 
motor neuron disease, frontotemporal dementia, 
diagnosis, diagnostic criteria, prognosis, genetics, 
pathology, biomarker, and treatment. We identified 
articles published in the English language and 
selected them for inclusion on the basis of other 
criteria including relevance, peered review, and 
study type (randomized controlled trials, systematic 
reviews and meta-analyses, and observational 
studies). We prioritized publications in high impact 

Abstract

Although the past two decades have produced exciting discoveries in the genetics 
and pathology of amyotrophic lateral sclerosis (ALS), progress in developing an 
effective therapy remains slow. This review summarizes the critical discoveries 
and outlines the advances in disease characterization, diagnosis, imaging, and 
biomarkers, along with the current status of approaches to ALS care and treatment. 
Additional knowledge of the factors driving disease progression and heterogeneity 
will hopefully soon transform the care for patients with ALS into an individualized, 
multi-prong approach able to prevent disease progression sufficiently to allow for a 
dignified life with limited disability.
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and ALS specific journals published in the past 15 
years. Several important publications could not 
be included owing to the scope of this review. We 
excluded case reports and articles not published in 
English.

Clinical complexity of ALS
Clinical heterogeneity
ALS is a clinically heterogeneous disorder (fig 1), and 
the biological underpinning of the heterogeneity is 
poorly understood. Typically, the symptom onset is 
localized with spread of motor impairment to adjacent 
muscle groups and/or regions of the neuroaxis. 
Usually, the progression rate is linear for any given 
person, but the rate often varies between patients.11 
ALS of spinal onset with weakness first appearing 
in limb muscles occurs most frequently (two thirds 
of patients), followed by bulbar onset with initial 
weakness in lingual and oropharyngeal muscles (a 
third of patients). Axial or respiratory muscles are 
rarely the first to be affected.12 Uncommon subtypes 
of ALS with spinal or limb onset exist, with atypical 
patterns of weakness in which the motor impairment 
tends to be regionally confined early in the disease 
course. In brachial amyotrophic diplegia or flail arm 
syndrome, weakness tends to affect proximal upper 
extremities symmetrically. Similarly, in flail leg 
syndrome or lower extremity amyotrophic diplegia, 
weakness is mainly in the lower extremities.13 Other 
rarer ALS phenotypic variants include isolated 
bulbar ALS and hemiplegic ALS presenting with 
asymmetric hemibody weakness.14 Although the 
symptoms rarely remain restricted in these subtypes, 
the progression is typically slow.12

Another contributor to phenotypic heterogeneity 
is the burden of neuronal degeneration in the cortex 
(upper motor neuron; UMN), brainstem, and spinal 
cord (lower motor neuron; LMN). Typically, the 

neurological examination shows UMN and LMN 
dysfunction, but the contribution of each likely 
falls on a continuum and can vary with patients 
having predominantly upper or lower motor signs 
(fig 1).11 One explanation for this variability may 
be differences in the pattern of spread in the 
course of the disease.11 15 At the extremes are rare 
phenotypes such as primary lateral sclerosis (PLS) 
presenting as a pure UMN disorder and progressive 
muscular atrophy (PMA) presenting as a pure LMN 
disorder.16-18 Some clinical features distinguish PLS 
from typical ALS. In PLS, symptoms are symmetric 
and slowly progressive, and they frequently have 
an ascending pattern of spread.19 PMA is clinically 
similar to typical ALS in the rate and pattern of 
symptom spread, but a subgroup of PMA may have 
slower disease progression.17 Prognostic factors 
associated with longer survival include UMN or 
LMN predominant symptoms, flail arm variant, and 
younger age at onset. Factors associated with shorter 
survival include bulbar and/or respiratory onset, 
comorbid frontotemporal dementia, poor nutritional 
status, neck flexion weakness, and older age at 
onset.12

Cognitive and behavioral dysfunction
Although ALS is synonymous with MND, cognitive 
and/or behavioral dysfunction are recognized core 
clinical features.1 Neuropsychological abnormality 
is associated with faster disease progression and 
shorter survival and occurs more frequently in 
advanced disease.20 Motor symptoms that alert 
patients and their care givers to a neurological 
disorder may overshadow antecedent or concurrent 
neuropsychological symptoms.21 Because cognitive 
or behavioral changes may be obscured by motor 
dysfunction, validated screening tests specific for 
ALS such as the Edinburgh Cognitive and Behavioral 

Fig 1 | Amyotrophic lateral sclerosis (ALS) phenotypic spectrum. PBP=progressive bulbar palsy; PLS=primary lateral sclerosis; PMA=progressive 
muscular atrophy. Created using BioRender.com

 on 17 N
ovem

ber 2023 at T
hom

as Jefferson U
niversity. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j-2023-075037 on 27 O
ctober 2023. D

ow
nloaded from

 

http://www.bmj.com/


State of the Art REVIEW

the bmj | BMJ 2023;383:075037 | doi: 10.1136/bmj-2023-075037� 3

ALS Screen or ALS Cognitive Behavioral Screen are 
recommended in all patients.22 23 If the screening test 
is abnormal, a more extensive neuropsychological 
evaluation can determine the cognitive and/or 
behavioral changes.24 ALS specific behavioral 
measures such as the Motor Neuron Disease Behavior 
Scale, the ALS-FTD-Questionnaire, or the Frontal 
Behavioral Inventory-ALS Version can be used to 
characterize and assess the severity of behavioral 
dysfunction.25-27 The findings of these tests can 
classify patients as having ALS with cognitive 
impairment, ALS with behavioral impairment, ALS 
with combined cognitive and behavioral impairment, 
ALS with frontotemporal dementia (ALS-FTD) (fig 
2),24 or none of the above (no cognitive or behavioral 
impairment). Approximately half of all patients 
with ALS will show impairment on a comprehensive 
assessment, with approximately 5% classified 
as ALS with combined cognitive and behavioral 

impairment, 8% as ALS with behavioral impairment, 
17% as ALS with cognitive impairment, and 15-20% 
as ALS-FTD.1 28-30

The most commonly affected cognitive domain 
in ALS is executive function, with abnormal verbal 
fluency being a consistent and sensitive marker even 
after control for bulbar motor dysfunction.31-33 In 
patients who develop cognitive symptoms, impaired 
word fluency is an early finding.33 Other features of 
executive dysfunction such as mental inflexibility, 
inattention and disinhibition, or inability to 
plan or problem solve can emerge as the disease 
progresses.1 20 22 Impairment in multiple cognitive 
domains is less common in ALS and, when present, 
tends to involve language or memory and may be 
confounded by co-pathology such as Alzheimer’s 
disease.1 34 Isolated amnestic syndrome is not a 
feature in ALS and should prompt evaluation for an 
alternative cause. Overall, progression of cognitive 

Fig 2 | Amyotrophic lateral sclerosis with frontotemporal dementia (ALS-FTD) clinical syndromes and disease mechanisms contributing to 
neurodegeneration. ALS=amyotrophic lateral sclerosis; ALSbi=ALS with behavioral impairment; ALScbi=ALS with combined cognitive and behavioral 
impairment; ALSci=ALS with cognitive impairment; bvFTD=behavioral variant FTD; CBS=corticobasal syndrome; FTD=frontotemporal dementia; 
LMND=lower motor neuron predominant; nfvPPA=non-fluent variant primary progressive aphasia; PBP=progressive bulbar palsy; PLS=primary 
lateral sclerosis; PMA=progressive muscular atrophy; PSP=progressive supranuclear palsy; svPPA=semantic variant primary progressive aphasia; 
UMND=upper motor neuron predominant
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dysfunction in ALS is slow and may remain stable 
over time.33

Behavioral abnormalities are a frequent 
neuropsychiatric feature in ALS, apathy being 
the most common. Others include disinhibition, 
perseverative behavior, change in food preferences, 
loss of empathy, or impaired social cognition 
including emotional processing.35-39 Pathological 
crying and laughing, also known as emotional lability 
or pseudobulbar affect, is present in approximately 
one in three patients with ALS and is associated 
with gray and white matter pathology in the cortico-
cerebellar network.40 41 Pathological crying and 
laughing does not correlate with neuropsychological 
measures and should be distinguished from other 
cognitive and behavioral symptoms.42

Diagnostic criteria and disease progression 
measures
ALS is a clinical diagnosis requiring findings of 
progressive motor neuron dysfunction in the absence 
of an alternative diagnosis. In typical ALS, few tests 
are needed to support the diagnosis and exclude 
mimics because other disorders rarely mimic ALS 
perfectly. The most common tests obtained in the 
diagnostic process are electrophysiology to establish 
a lower motor neuronopathy and neuroimaging of the 
brain and spine to exclude mimics causing structural 
abnormalities as a cause for UMN dysfunction. 
Routine laboratory studies are frequently obtained to 
exclude other causes of a patient’s symptoms and are 
typically normal in ALS. The first widely used criteria 
in ALS were the El Escorial criteria, which aimed 
to provide a standardized diagnostic framework to 

conduct clinical research, with subsequent revisions 
and updates improving sensitivity allowing for 
earlier enrollment in clinical trials.43 44 Although 
El Escorial and Awaji criteria are useful in clinical 
research, they are hampered by the heterogeneity 
of ALS and do not capture the full disease spectrum. 
For example, cognitive impairment and behavioral 
impairment are not included in these criteria and 
pure lower motor neuron variants are excluded.43 
Furthermore, patients with ALS do not necessarily 
progress through the El Escorial categories of 
diagnostic certainty and may never attain the criteria 
for clinically definite ALS.45 The ALS-frontotemporal 
spectrum diagnostic (ALS-FTSD) criteria proposed by 
Strong and colleagues use three diagnostic axes to 
define MND, cognitive and behavioral dysfunction, 
and other non-motor features.24 Although the ALS-
FTSD criteria more fully incorporate the ALS-FTD 
spectrum disorders, they still rely on El Escorial and 
Awaji criteria to define MND. The recently proposed 
Gold Coast criteria have attempted to simplify the 
diagnosis and recognize the potential utility of 
the development of biomarkers; however, further 
validation in different populations will be needed 
before routine use in clinical care or research.46

Variability in rate of symptom progression and 
survival in ALS represents a major obstacle in clinical 
trials.47 Disease progression, most often measured by 
the decline in the revised ALS functional rating scale 
(ALSFRS-R) over time, differs considerably between 
patients, and survival ranges from less than one 
year to more than 10 years.47 48 Respiratory failure 
is the most common cause of death. Clinical factors 
that contribute to heterogeneity in survival include 

Table 1 | Rare causative genes for amyotrophic lateral sclerosis (ALS)
Gene (OMIM number) Protein Associated clinical diagnosis/feature
RNA/DNA binding proteins (involved in pre-mRNA processing, metabolism, and transport)
TARDBP (*605078) TAR DNA binding protein 43 (TDP-43) ALS with or without FTD; FTD
FUS (*137070) Fused in sarcoma protein ALS with or without FTD; hereditary essential tremor
hnRNPA1 (*164017) and 
hnRNPA2B1 (*600124)

Heterogeneous nuclear ribonuclear protein A1 and 
A2B1

ALS; inclusion body myopathy with early onset Paget’s disease with or without 
frontotemporal dementia

MATR3 (*164015) Matrin 3 ALS with or without cognitive impairment or dementia; distal myopathy
ANG (*105850) Angiogenin Frequent bulbar onset ALS; co-existing parkinsonism with FTD
Genes that encode for structural proteins (cytoskeleton proteins)
TUBA4A (*191110) Tubulin-α 4A (α tubulin) ALS with or without FTD
ANXA11 (*602572) Annexin A11 Later onset ALS (average 67 years); inclusion body myopathy and brain white matter 

abnormality
PRPH (*170710) Peripherin ALS
DCTN1 (*601143) Dynactin 1 Distal motor neuronopathy with vocal paresis
PFN1 (*176610) Profilin 1 ALS
KIF5a (*602821) KIF5a (kinesin family member 5A) Also implicated in HSP-10, CMT
Loss-of-function mutations in genes encoding proteins important for protein degradation or autophagy pathways
UBQLN2 (*300264) Ubiquilin-2 ALS with or without FTD; X linked dominant familial ALS; onset younger in males than 

females
SQSTM1 (*601530) p62/sequestosome 1 FTD with or without Paget’s disease of the bone; distal myopathy with rimmed 

vacuoles
OPTN (*602432) Optineurin ALS with or without FTD; allelic with primary open angle glaucoma
VCP (*601123) Vasolin containing protein FTD with or without ALS; inclusion body myopathy with Paget’s disease of bone and 

frontotemporal dementia (IBMPFD); CMT type 2Y
CHMP2B (*609512) Charged multivesicular body protein 2B FTD with or without ALS
VAPB/VAMP (*605704) Synatobrevin associated protein B/vesicle 

associated membrane protein
Lower motor neuronopathy

TBK1 (*604834) TANK binding kinase 1 FTD with or without ALS
CMT=Charcot-Marie-Tooth disease; FTD=frontotemporal dementia; HSP=hereditary spastic paraplegia.
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age at symptom onset, sex, site of symptom onset 
(bulbar versus spinal), time to diagnosis, respiratory 
measures, pre-symptomatic body mass index, 
cigarette use, genetics, and the diagnosis of FTD.49-51 
Neurofilament, a biomarker for neurodegeneration, 
is a predictor of the progression and prognosis of 
ALS.52 53 A recently proposed survival prediction 
model for ALS identified eight prognostic predictors 
and generated five different survival groups 
applicable to European patients at the individual 
level.54 This model is an important step toward more 
effective stratification of patients in clinical studies, 
but validation in non-European groups is needed, 
and the model will likely evolve as other predictors 
are identified.

Clinical staging is an important tool for research 
and care planning because it informs the extent and 
severity of disease. The two proposed staging systems 
are the King’s staging system and the Milano-Torino 
staging systems.55 56 The King’s staging system is 
defined by the number of body regions affected and 
bulbar and respiratory failure, whereas the Milano-
Torino system uses the number of impaired domains 
as delineated by the ALSFRS-R to define successive 
stages.57 58 These systems provide parallel clinical 
information, using different measures to establish 
escalating stages, and both have been used to analyze 
patient population data and are promising endpoints 
for clinical trials.58-60 A limitation of both systems is 
the lack of cognitive and behavioral change captured 
by staging, although higher disease stage portends 
more severe cognitive impairment.29

Advances in molecular biology
Molecular pathology
A new chapter in ALS pathology began in 2006 with 
the discovery of TDP-43 as the major constituent 
of ubiquinated aggregates in motor neurons of 
sporadic ALS and most familial ALS and in cortical 
neurons in a subgroup of frontotemporal dementia.5 
TDP-43 staining is routinely done in postmortem 
tissue to characterize the pathology when ALS is 
suspected.61 Abnormal accumulation of the protein 
as either neuronal or glial cytoplasmic inclusions or 
aggregates is found in 97% of cases of sporadic ALS. 
Rarely, TDP-43 pathology is not a feature and is seen 
in ALS caused by superoxidase dismutase 1 (SOD1) 
or fused in sarcoma (FUS) gene mutations. Although 
accumulation of wild type TDP-43 has become the 
pathological hallmark of ALS, mutations in TDP-
43 are rare and are found in 4-5% of dominantly 
inherited familial ALS and 1% of sporadic ALS. 
Additionally, cytoplasmic TDP-43 aggregation can be 
seen in Alzheimer’s disease, atypical parkinsonism, 
dementia with Lewy bodies, and limbic predominant 
age related TDP-43 encephalopathy, leading to 
the recognition of this group of neurodegenerative 
disorders as TDP-43 proteinopathies.62 63 TDP-43 
was first discovered in 1995, and its function was 
described as a suppressor of HIV-1 expression. As an 
RNA/DNA binding protein, it is involved in multiple 
processes such as RNA processing and maturation, 

RNA transport, microRNA maturation, and stress 
granule formation. It normally shuttles between 
the nucleus and the cytoplasm.63 The cellular 
dysfunction leading to TDP-43 aggregation in the 
cytoplasm and the resultant neurodegeneration is a 
topic of active research.64 65 Both loss-of-function and 
gain-of-function mechanisms have been proposed. 
An example of the loss-of-function mechanism is 
the TDP-43 function as a repressor of cryptic exon 
inclusion.66 As a result of depletion from the nucleus 
and loss of the repressor function, cryptic exons 
(exons that are otherwise excluded from the mRNA) 
are included in at least two known loci, STMN2 and 
UNC13A, causing reduced protein expression.67-70 
Of note, cryptic exons are not always shared 
between species, necessitating the development of 
new, humanized models. The mild motor neuron 
degeneration and the inability to replicate the loss of 
nuclear localization with concomitant cytoplasmic 
accumulation in animal models have been 
considered as evidence that these may be late events 
in the pathogenic cascade.

Genetics
Whereas the vast majority of ALS is classified as 
sporadic disease—that is, without known history 
of another family member with either ALS or 
frontotemporal dementia—approximately 10% is 
familial ALS, which can be autosomal dominant, 
autosomal recessive, or X linked. The list of different 
causative genes for ALS has grown tremendously 
(>40 genes), mostly owing to advances in sequencing 
technologies. Genes causing two thirds of familial 
ALS and 10% of sporadic ALS are known. Only an 
overview of the genetics of ALS will be provided here 
(table 1), as detailed descriptions of all known ALS 
associated genes are beyond the scope of this review 
and can be found in other publications.71

SOD1
The earliest understanding of the pathobiology of 
ALS derived from disease models based on mutations 
in SOD1, the first gene discovered in familial ALS in 
1993, which accounts for 20% of familial ALS.72 
Several different mechanisms of neurodegeneration 
have been proposed, including conformational 
instability of SOD1 protein, interactions with other 
proteins, and formation of toxic aggregates, but 
the exact mechanism remains unclear.73 74 The 
consensus is that the many mutations spanning the 
whole length of SOD1 confer a toxic gain of function, 
which has led to development of silencing mutant 
gene expression as a therapeutic approach.75 76

C9ORF72
The largest genetic contributor to familial ALS was 
not discovered until 2011 because it is an HRE in an 
intron of a previously unknown gene named after 
the region of the chromosome where it is located, 
C9ORF72 (chromosome 9, open reading frame 72). 
Repeats are typically not detectable by standard 
sequencing methods and require instead repeat 
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primed polymerase chain reaction (PCR), a PCR 
that overcomes the limitations of standard PCR by 
flanking the repeat region,77 or a careful analysis of 
the reason for a drop-off in the sequence coverage of 
the region in standard next generation sequencing.4 
Intronic nucleotide repeat expansions are known to 
occur in genes linked to different disorders including 
myotonic dystrophy, spinocerebellar ataxias (SCA10, 
SCA 31, SCA 36), and Friedreich’s ataxia. In unaffected 
people, the C9ORF72 alleles have approximately two 
to 25 repeats. In contrast, ALS and/or frontotemporal 
dementia linked to chromosome 9 carry one normal 
allele and one expanded allele that can have hundreds 
to thousands of repeats. Somatic instability may 
further complicate the assessment of the repeat size, as 
different tissues may have different repeat sizes even 
within a single patient. The process by which HRE lead 
to neurodegeneration is not precisely known; however, 
three major hypotheses have been proposed: the (G4C2) 
repeats function similarly to repeat expansions in 
other disorders (myotonic dystrophy, fragile X tremor/
ataxia syndrome) binding and sequestering RNA 
binding proteins impairing their ability to regulate RNA 
targets; HRE may cause epigenetic changes resulting in 
decreased C9ORF72 mRNA expression; and an atypical 
mode of polypeptide translation across expanded 
repeats despite absence of an initiating codon, known 
as repeat associated non-ATG translation, which is 
also seen in spinocerebellar ataxia 8 and myotonic 
dystrophy.78 79

Epigenetics
Similar to the growing list of familial ALS linked 
genes, our knowledge of genetic modifiers in 

sporadic ALS has increased. Expression levels of 
genes such as EphA4, which encodes a tyrosine 
kinase receptor that regulates developmental axon 
outgrowth, inversely correlate with age of disease 
onset and survival.80 Variants of ANG increase 
the risk of development of ALS and Parkinson’s 
disease,81 82 and variants in NEK-1 (NIMA (never 
in mitosis gene-A) related kinase-1) were found in 
nearly 3% of ALS patients.83 An intermediate length 
ataxin 2 gene (ATXN2) polyglutamine repeats (>23 
but <34 polyglutamine repeats) was found in some 
patients with sporadic ALS, and this finding was 
later confirmed in additional cohorts.84-86

Although interactions between polymorphisms 
and causative genes of ALS were previously 
appreciated, the idea that some families with ALS 
can harbor more than one of these genes was new. 
Van Blitterwijk et al discovered mutations in more 
than one ALS linked gene in five out of 97 families.87 
As our knowledge grows, we are likely to find more 
complex genetic interplay as the basis for disease 
in individual families.88 These genes contribute to 
less than 1% of familial ALS, but their discovery has 
identified three main cellular functions that, when 
abnormal, can lead to neuronal degeneration in ALS: 
RNA/DNA metabolism, protein turnover/autophagy, 
and cytoskeletal and vesicular regulation (fig 2). This 
will hopefully improve understanding of disease 
mechanisms in the search for treatable targets.

Advances in biomarkers
Imaging
Neuroimaging is used to look for structural 
abnormalities in the central nervous system that 

Fig 3 | Neuroimaging changes in amyotrophic lateral sclerosis. A: motor cortex (red) atrophy. B: axial T2-FLAIR (fluid attenuated inversion recovery 
sequence) magnetic resonance image at level of midbrain, showing hyperintensity in cerebral peduncles corresponding to corticospinal tracts (black 
arrow)
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can mimic symptoms and signs of ALS. In most 
patients with ALS, the brain and spinal cord appear 
unremarkable or show non-specific abnormalities 
including corticospinal tract hyperintensity 
or motor cortex hypointensity in T2 weighted 
magnetic resonance imaging (MRI) sequences (fig 
3).89 90 Advanced imaging methods are powerful 
non-invasive research tools that can be used to 
study and quantify structural, functional, and 
metabolic abnormalities.91 For example, voxel based 
morphometry and surface based morphometry can 
determine global or regional gray matter atrophy and 
cortical thinning, and diffusion tensor imaging (DTI) 
can evaluate the integrity of white matter tracts.89 Task 
based and resting state functional MRI can identify 
differing patterns of blood oxygen level dependent 
(BOLD) activity to interrogate connectivity neural 
networks, and magnetic resonance spectroscopy 
(MRS) allows for quantification of neuronal and 
glial metabolites such as N-acetylaspartate, a 
marker of neuronal integrity, creatine, a marker 
of energy metabolism, choline, a marker of cell 
membrane, and myo-inositol, a glial marker.92 93 
Other imaging modalities such as positron emission 
tomography (PET) can show regional changes 
in brain metabolism by using different receptor 
ligands.94 The use of these tools has limitations in 
research, but technical improvements may prove 
them useful for group stratification in clinical trials, 
tracking disease progression, and predicting disease 
onset in pre-symptomatic carriers of gene mutations. 
Additionally, they have the potential to provide 
greater insight into the evolution of pathology.

The most frequent abnormal findings in structural 
brain imaging studies in ALS are thinning of the 
motor cortex and atrophy of the precentral gyrus (fig 
3) and structural integrity loss in the corticospinal 
tract and the corpus callosum.15 95-100 Morphometric 
changes correlate with the clinical phenotypes 
and the site of symptom onset, supporting the 
hypothesis of focal disease onset.100-102 Another 
clinical-imaging correlation is the association 
of cognitive and/or behavioral impairment with 
extra-motor gray matter volume loss and white 
matter DTI diffusivity changes.103-107 The structural 
abnormalities, however, do not consistently correlate 
with measures of disease progression such as the 
ALSFRS-R.101 103 108-112 More widespread frontal 
atrophy is associated with faster disease progression 
and is consistent with the observation that faster 
disease progression occurs in patients with cognitive 
and behavioral impairment.113 114 Longitudinal 
imaging is invaluable to track disease progression; 
however, studies show conflicting findings, with 
a few studies showing progressive gray and white 
matter changes over time, whereas others show no 
discernible changes.97100 102 109 111 115 The causes of 
these differences include unequal or small sample 
sizes, clinical heterogeneity, variable follow-up 
intervals, and different data acquisition and analysis 
methods. The role of neuroimaging to track clinical 
progression in ALS remains unresolved, but evolving 

imaging changes may mirror spread of pathology (for 
example, TDP-43).116-119

In ALS, MRS typically shows decreases in 
N-acetylaspartate or in N-acetylaspartate/creatine 
or N-acetylaspartate/choline in the motor cortex 
and brain stem corresponding to neuronal 
degeneration.120-123 MRS indices correlate with 
clinical UMN disease burden in some studies, but 
their association with functional and cognitive 
measures are less consistent.120-122 124 Additionally, 
longitudinal MRS studies are often limited by small 
sample size.121 125 126 Other metabolites such as 
γ-aminobutyric acid and glutamate have been 
examined but need further validation.122 127

Early PET studies in ALS using the ligand18 

fluorodeoxyglucose show diffusely reduced uptake 
in the cortex and deep gray nuclei, mostly in 
patients who have signs of UMN dysfunction.128 
Other studies show hypometabolism in the frontal 
regions and hypermetabolism in the temporal 
regions, cerebellum, and upper brainstem.129-131 
PET ligands binding to the dopamine D2/D3, 
5-hydroxytryptamine 1A, and γ-aminobutyric 
acid A receptors have been examined in ALS, 
suggesting widespread neuronal dysfunction or 
degeneration.132-134 More recently, interest has been 
growing in examining the role of neuroinflammation 
in ALS. This has led to the development of PET 
ligands that bind to the 18-kDa translocator protein 
expressed by activated glial cells. Studies using this 
ligand show increased uptake in the primary motor 
cortex and frontal regions that also show structural 
and metabolic abnormalities.135-137 Additional 
studies are needed to understand the complex 
interactions between neuronal and glial cells in ALS.

In ALS, task based functional MRI shows 
increased activation of contralateral, and sometimes 
ipsilateral, brain regions such as the supplementary 
motor areas, sensorimotor cortex, temporal regions, 
deep gray nuclei, and cerebellum.138-141 These 
abnormalities are hypothesized to represent adaptive 
or compensatory responses to the neurodegenerative 
process. Unlike task based functional MRI, resting 
state functional MRI shows varying patterns of 
coherence in the spontaneous BOLD activity. In ALS, 
the functional connectivity of brain regions can 
increase, decrease, or be mixed within different brain 
networks.15 142 143 The variability in findings can be 
attributed to methodological differences. Regional 
decrease in functional connectivity in default mode 
and sensorimotor networks correlate with greater 
functional impairment.143 144

Electrophysiology
MUNE, MScanFIT, MUNIX
Motor unit number estimation (MUNE) is a promising 
electrophysiological technique to track disease 
progression in ALS by estimating the number of 
motor units in a muscle. Distal small muscles such as 
the intrinsic hand muscles (that is, abductor pollicis 
brevis) are examined. The concept of MUNE extends 
from the observation that incremental increases in 
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the intensity of a stimulus delivered to the motor 
nerve results in stepwise increases in the amplitude 
of the compound muscle action potential (CMAP) 
recorded at the innervated muscle. If the average size 
of a single motor unit potential contributing to the 
CMAP can be determined, an estimate of the motor 
units in that nerve can be calculated by dividing 
the maximal CMAP amplitude by the average single 
motor unit potential amplitude.145 Different methods 
to determine the average amplitude to calculate 
MUNE have been developed on the basis of this 
principle and applied in clinical studies in ALS.146 
Across studies using different methods, MUNE 
declines with disease progression and correlates 
with functional rating scales.147-149

More recently, the MScanFit MUNE method was 
developed to estimate the number of motor units 
from an objective stimulus response curve.150 
MScanFit MUNE may be more accurate, reliable, and 
easier and quicker to perform and may detect earlier 
motor neuron loss than other MUNE methods.151 
One limitation is the accessibility of nerves to 
peripheral stimulation, precluding its use to assess 
larger proximal muscles. The ease of applying this 
technique and ability to perform the study using 
standard electromyography machines make MUNE 
an attractive biomarker.

Motor unit number index (MUNIX) is an 
electrophysiological method that estimates the 
number and size of motor units by recording 
the maximum CMAP and epochs of surface 
electromyographic interference pattern at varying 
force levels.152 MUNIX can be easily used to assess 
proximal and distal muscles and has been shown 
to track disease progression in ALS clinical trials.153 
MUNIX values also decline before development 
of muscle weakness and may be more sensitive to 

detect early motor neuron loss.154 155 However, the 
inter-rater variability across sites may limit the use of 
this method in clinical trials.154

Transcranial magnetic stimulation
Transcranial magnetic stimulation (TMS) is a non-
invasive electrophysiological technique that can 
objectively assess the integrity of the corticospinal 
motor neurons. Several different parameters can 
be measured, including motor threshold, motor 
evoked amplitude, central motor conduction time, 
cortical silent period, and intracortical facilitation 
or inhibition.156 Compared with controls, the 
motor threshold is decreased and the motor evoked 
amplitude is increased in early ALS.156 157 Other TMS 
findings include reduced duration of the cortical 
silent period with increasing stimulation intensity, 
reduced short intracortical inhibition, and increased 
intracortical facilitation.157 158 Collectively, these 
abnormalities reflect altered cortical excitability. The 
resting threshold and central motor conduction time 
have been shown to correlate with clinical findings of 
UMN dysfunction and are suggested to be useful for 
tracking disease progression.126 159 Further studies 
are needed to establish TMS as a robust biomarker of 
disease progression.

Electrical impedance myography
Electrical impedance electromyography (EIM) is 
mostly a research tool to assess the health of the 
muscle. It is based on recording the voltage that 
results from applying a weak, high frequency 
electrical current across sampled muscle without 
inducing myofiber or neuronal action potentials. 
The volume conduction properties of the muscle 
depend on how strongly muscle resists or conducts 
alternating electrical current (conductivity) and on 

Table 2 | Clinical trials leading to US Food and Drug Administration approved therapies for amyotrophic lateral sclerosis (ALS)
Drug, study Design No of participants Primary outcome(s) Result
Riluzole180 Prospective, double blind, 

randomized, placebo controlled
155 1: survival; 2: rate of change in 

functional status (limb function, 
bulbar function, muscle testing 
score)

1: 45/78 (58%) in placebo group remained alive 
v 57/77 (74%) in riluzole group at 12 months 
(P=0.014); 2: Rate of deterioration for limb 
function, bulbar function, and muscle strength 
was slower in riluzole group, but only statistically 
significant for muscle testing score (P=0.028)

Riluzole181 Double blind, randomized, placebo 
controlled

959 Survival without tracheostomy 
on 100 mg dose

122 (50.4%) in placebo group and 134 (56.8%) 
in riluzole group survived; adjusted risk 0.65 
(P=0.002)

Edaravone182 Randomized, double blind, placebo 
controlled

137 Change in ALSFRS-R score from 
baseline to 24 weeks

Edaravone −5.01 v placebo −7.50; least squares 
mean difference 2.49 (95% CI 0.99 to 3.98; 
P=0.001)

Edaravone183 Post hoc analysis of 24 week 
randomized, placebo controlled study 
followed by 24 weeks of open label 
extension study

88 Change in ALSFRS-R score at 
week 48 in patients with FVC 
≥80% v <80% (FVC assessed at 
week 24)

FVC >80% subgroup: −7.63 v −9.69; difference 
2.05 (95% CI 0.16 to 3.94; P=0.034). FVC <80% 
subgroup: −10.26 v −15.20; difference 4.94 (95% 
CI 1.64 to 8.25; P=0.004).

Sodium phenylbutyrate–
taurursodiol (PB-TUDCA)184

Randomized, double blind; 2:1 
(drug:placebo)

137 Mean rate of decline in 
ALSFRS-R at 24 weeks

PB-TUDCA v placebo: −1.24/month v −1.66/
month; difference 0.42 points/month (95% CI 
0.03 to 0.81; P=0.03)

Tofersen*185 Randomized, double blind; 2:1 
(drug:placebo) followed by 24 weeks 
of open label extension study

108 Change in ALSFRS-R score at 
week 28, among participants 
predicted to have faster 
progressing disease

Tofersen v placebo: −6.98 v −8.14; difference 1.2 
points (95% CI –3.2 to 5.5; P=0.97). In open label 
extension (52 weeks), early start v delayed start: 
–6.0 v –9.5; difference 3.5 (95% CI 0.4 to 6.7) 
points

ALSFRS-R=revised ALS functional rating scale; CI=confidence interval; FVC=forced vital capacity.
*Did not meet primary endpoint.
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its ability to store electrical charge within (relative 
permittivity). These properties have been shown to 
differ in health and disease in murine models and 
patients.160 161 EIM was first used to evaluate the 
muscle in Duchenne muscular dystrophy, and has 
more recently been used in ALS.161 EIM parameters 
correlate moderately with standard ALS disease 
progression measures and MUNE. Surface EIM 
can be done at home, requires minimal training, is 
painless and repeatable, and has been assessed as 
an exploratory endpoint in different clinical trials. A 
motivated patient with ALS can collect surface EIM 
data more frequently than is done in standard clinical 
trials, thereby reducing the number of patients 
needed for a study.162 An in-depth discussion of 
the advantages and limitations of both surface and 
needle EIM can be found in a recent review and 
subsequent letters to the editor.163-165 Overall, EIM is 
a tool in development that may aid ALS patients and 
researchers to track disease progression.

Fluid based biomarkers
Significant efforts are being made to evaluate and 
validate ALS biomarkers of various types (diagnostic, 
prognostic, predictive, and pharmacodynamic).166 
Neurofilament light chain (NfL) and phosphorylated 
neurofilament heavy chain have been examined 
in cerebrospinal fluid and serum in patients 
with ALS as a marker of neuronal injury.167-169 
Although concentrations are lower in serum than 
in cerebrospinal fluid, serum is more accessible 
and can be measured reliably using technologically 
advanced methods such as single molecule array 
technology (simoa).170 In simoa, single molecules 
are trapped individually in wells followed by a 
digital readout of beads that are bound to their 
targets, leading to increased sensitivity for detecting 
protein at subfemptomolar concentration. Higher 
neurofilament concentrations tend to correspond 
to faster disease progression, a feature that can be 
explored in the design of future clinical trials.171 A 
study of pheno-converters (pre-symptomatic carriers 
of causative genes for ALS who develop symptoms of 
ALS or frontotemporal dementia) showed increased 
NfL concentrations occurring at least a year before 
clinical disease.169 Once disease begins, serum NfL 
concentrations are stable longitudinally allowing for 
its use as a pharmacodynamic marker. More recently, 
incorporating two related plasma micro-RNAs (mir-
181a-5p and mir181b-5p) to NfL concentrations 
improves the survival prognostication (higher 
concentrations correlated with shorter survival) 
especially in the patient group with intermediate 
(59-109 pg/ml) NfL concentrations.172 Similar 
approaches of combining protein(s) and/or RNA(s) 
biomarkers will be useful owing to enhanced 
prognostic power.

As an easily accessible biofluid, the urine is an 
attractive option for screening for biomarkers. The 
p75 neurotrophin receptor is found on the surface 
of apoptotic motor neurons and Schwann cells. 
During normal processing, the ecto domain of the 

p75 molecule (p75ECD) is cleaved and becomes 
detectable in urine. It is elevated in ALS and 
increases further with disease progression, thereby 
making it a putative biomarker.173 The p75ECD, 
unlike neurofilaments, increases at the time of 
pheno-conversion and not before, thereby serving 
as a potential marker of pheno-conversion. As a 
marker of neuroinflammation, chitinases and related 
proteins (CHIT-1, CHI3L1, CHI3L2) increase in the 
cerebrospinal fluid as ALS progresses.174 175 Although 
chitinases may be a proxy for neuroinflammation, 
their use as a biomarker in therapies may be hampered 
by accessibility (poor serum and cerebrospinal fluid 
correlation) and polymorphisms that may decrease 
the protein concentration.176

Advances in ALS therapy
Multidisciplinary care
The cornerstone of ALS care is an integrative 
approach because of the clinical and psychosocial 
complexities.177 178 A common care model in 
the US consists of an ALS specialist, nurse, 
pulmonologist, speech and language pathologist, 
nutritionist, physical therapist, occupational 
therapist, and social worker in one clinic visit (as 
“one stop shop”). Other clinicians with critical roles 
include a psychiatrist, neuropsychologist, genetics 
counselor, and gastroenterologist. The ALS team 
collaborates and seamlessly coordinates care with 
the primary care clinician and other community or 
home based health service providers. Additional 
support is achieved by referral to ALS/MND 
organizations. This patient centric model of care 
enhances engagement of patients and care givers 
in treatment and confers benefits such as improved 
quality and efficiency of care, access to health and 
governmental agency services, quality of life, and 
survival.

Disease modifying therapies
In the past 20 years, most trials evaluating 
ALS therapeutics aiming to slow or arrest the 
neurodegenerative process have failed to show 
efficacy. These therapies have primarily targeted 
excitotoxicity, oxidative stress, mitochondrial 
dysfunction, protein homeostasis, nucleocytoplasmic 
transport, neuroinflammation, cell death, 
cytoskeletal integrity, axonal transport, DNA repair, 
RNA metabolism, and stress granule regulation.179 
As new trials are planned, a collaborative effort has 
been made to identify contributors to the failure of 
studies such as clinical and biological heterogeneity. 
Critical future steps for the global ALS community to 
accelerate successful development of ALS therapy 
include ensuring equity of access, optimizing study 
design and analysis, endpoint harmonization, and 
data sharing.

Three disease modifying drugs are approved by 
the US Food and Drug Administration (FDA) with a 
primary indication for the treatment of ALS (table 
2). Riluzole, an anti-glutaminergic drug, increases 
survival and slows the decline in muscle testing 
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score.180 181 The most common side effects are 
asthenia, gastrointestinal symptoms, and an increase 
in liver enzymes. Edaravone, a free radical scavenger 
that acts to decrease oxidative stress, modestly slows 
ALS disease progression.182 186 Edaravone is not 
approved for ALS treatment in Europe, and its role in 
ALS therapy continues to be a contested topic.187 188 
The combination of sodium phenylbutyrate and 
taurursodiol targeting mitochondrial dysfunction, 
endoplasmic reticulum stress, and cell death, was 
approved by the FDA in 2022.184

Pulmonary intervention
Pulmonary system complications are common in 
ALS, and respiratory failure is the most frequent 
cause of death189 Pulmonary studies relevant in ALS 
care include spirometry, nocturnal pulse oximetry, 
arterial blood gas, polysomnography, maximal 
inspiratory pressure/maximal expiratory pressure, 
transdiaphragmatic pressure, and sniff nasal 
pressure.178 189 190 Serial evaluations are essential to 
identify respiratory muscle weakness and allow for 
early interventions using non-invasive ventilation, 
which has been shown to prolong survival with 
improved quality of life.191 Mechanical insufflation-
exsufflation is routinely used by ALS patients to 
augment weak cough to clear airway secretions; 
however, no systematic study has evaluated the 
benefits of this intervention. Respiratory muscle 
training to improve cough and swallowing is an area 
of active research.192

Diet and nutritional intervention
Weight loss (specifically fat loss) has been shown to 
correlate with decline in ALSFRS-R scores, and most 
patients are advised to adapt their diet to maintain a 
weight close to their premorbid state.193 Weight loss 
is multifactorial and associated with decreased food 
intake due to dysphagia, impaired limb dexterity 
in handling utensils, hypermetabolism (in about 
50% of patients),194 loss of appetite, and fatigue. 
Extremes in body mass index (<18, >40) were 
associated with shorter survival, and best survival 
was observed for body mass index maintained in the 
30-35 range.195 The consensus is that the diet should 
include fiber, carotenes, fruits, and antioxidants.196 
However, little consensus exists on the high calorie 
nutritional source—that is, carbohydrates versus 
polyunsaturated fats. Clinical guidelines recommend 
discussion of gastrostomy tube insertion for patients 
who have symptomatic dysphagia, prolonged eating 
time, negative caloric balance, unintentional weight 
loss of greater than 5-10%, and, in some cases, 
declining respiratory status (forced vital capacity 
approaching 50%).189 The benefits of a gastrostomy 
tube vary depending on proper patient selection, 
timing of the procedure, careful management of 
the insertion process, and post-procedure tube 
management.

ALS patients often ask about over-the-counter 
supplements and vitamins alone or in combinations. 
The ALS Untangled (www.alsuntangled.com) 

initiative has reviewed the evidence for many 
vitamins and supplements and is an excellent 
guide for patients, care givers, and clinicians. 
Unfortunately, most clinical trials have not shown 
slower ALS progression.197 198 A recent phase 3 
trial of ultrahigh dose methylcobalamin (50 mg) 
compared with placebo showed a modest slowing 
in clinical deterioration in treated patients, and 
evidence suggests that vitamin E may be protective 
against development of ALS.199 200

Emerging treatments
The modest effects of the current FDA approved 
therapeutics for such a devastating disease have 
spurred a growing pipeline of investigational agents. 
The development of the ALS platform trial allows 
for simultaneous testing of multiple agents, using a 
shared master protocol and central infrastructure.201 
Investigation of at least 50 small molecules with 
various mechanisms is under way. The successes of 
therapeutics targeting pathogenic gene expression 
such as antisense oligonucleotides have led to 
growing interest in this technology in genetic forms 
of ALS. This is realized in the accelerated approval 
of tofersen by the FDA for treatment of SOD1-ALS 
in April 2023. Several phase 1-2 trials are under 
way examining the benefits of different antisense 
oligonucleotides targeting C9ORF72 and FUS. 
Vectors for gene therapy using adeno-associated 
virus to reduce SOD1 concentrations are also being 
explored in a phase 1 trial. Monoclonal antibodies 
targeting misfolded proteins are being evaluated in 
phase 2 clinical trials.202

Guidelines
The American Academy of Neurology (AAN) 
practice parameters and European Federation of 
Neurological Societies (EFNS) guidelines review 
clinical management of ALS.177 178 189 The AAN 
parameters provide a comprehensive, systematic, 
evidence based review of class I-III studies. However, 
owing to insufficient evidence for the management 
of certain symptoms (for example, cramps, 
spasticity, cognitive/behavioral impairment, pain, 
and dyspnea), no formal recommendations were 
made in these domains. The EFNS guidelines 
include book chapters and review papers, and final 
recommendations were reached by consensus. 
Both the AAN and EFNS recommend access to 
a multidisciplinary center and treatment with 
riluzole. The EFNS guidelines also cover effective 
communication of the diagnosis and guidelines for 
genetic testing. Both the AAN and EFNS recommend 
percutaneous endoscopic gastrostomy placement 
for symptom progression and weight stabilization 
before the vital capacity falls below 50% predicted 
to minimize procedural related risk. Both guidelines 
recognize non-invasive ventilation to alleviate 
symptoms of respiratory insufficiency and to prolong 
survival. The use of invasive mechanical ventilation 
is discussed, recognizing that this decision varies 
according to many factors including economic and 
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cultural differences and that, although this prolongs 
survival, it may not improve quality of life. The AAN 
practice parameter recognizes the lack of adequate 
data on drug treatment for cognitive or behavioral 
impairment in ALS, so no formal recommendations 
were made.

Conclusions
In the past 20 years, considerable progress has 
been made in basic research on ALS. However, 
this accumulation of knowledge has been slow to 
translate into effective therapies, a major source 
of frustration to patients and care givers. With the 
inclusion of biomarkers, careful and innovative 
clinical trial design, and targeting of early disease 
in pre-symptomatic gene mutation carriers, the field 

is closer to converting basic science discoveries into 
disease modifying therapies. For the larger group 
of patients with sporadic ALS, the hope is that by 
uncovering gene variants that confer risk, and finding 
methods to define the predominant mechanism (for 
example, inflammation versus retro-transposon 
activation versus oxidative stress pathway) as the 
driver of disease, a personalized approach similar 
to that for cancer therapeutics can turn ALS into a 
chronic disease with limited disability and a dignified 
life.203
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