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Flexible Needle-Tissue Interaction 
Modeling With Depth-Varying Mean 
Parameter: Preliminary Study

Abstract

Flexible needle steering has aroused a lot of research interest in recent years. It has the potential to 
correct targeting errors, which may be caused by needle bending, tissue deformation, or error in 
insertion angle. In addition, control and planning based on a steering model can guide the needle 
to some areas that are currently not amenable to needles because of obstacles, such as bone or 
sensitive tissues. Thus, there is a clear motivation for needle steering. In this paper, a spring–beam–
damper model is proposed to describe the dynamics during the needle–tissue contact procedure. 
Considering tissue inhomogeneity, depth-varying mean parameters are proposed to calculate the 
spring and damper effects. Local polynomial approximations in finite depth segments are adopted 
to estimate the unknown depth-varying mean parameters. Based on this approach, an online 
parameter estimator has been designed using the modified least-square method with a forgetting 
factor. Some preliminary experiments have been carried out to verify the steering model with the 
online parameter estimator. The details are given in this paper. Finally, conclusions and future 
studies are given at the end.

Index Terms: Depth-varying mean parameter, needle steering modeling, 

percutaneous surgery, spring–beam–damper model.

I. Background
Medical procedures, such as brachytherapy, biopsies, and treatment injections, require inserting a 
needle to a specific target location inside the human body to implant a radioactive seed, extract a 
tissue sample, or inject a drug. Precise needle placement is very important. Poor placement may 
cause tissue damage, misdiagnosis, poor dosimetry, and tumor seeding. Unfortunately, precise 
needle placement is hard to achieve in real practice. Errors caused by the target movement and 
needle deflection have been observed for a long time.1-4 Yet to date, there are few effective physically 
based needle steering systems existing for correcting the targeting error automatically when it 
is observed. It is interesting to note that during clinic practice, some surgeons make use of a 
combination of lateral, twisting, and inserting motions of the needle under visual feedback from 
imaging systems, such as ultrasound, to correct the targeting errors. Surgeons accomplish this 
from experience, making it difficult to teach and limiting the accuracy to that of human hand/
eye coordination.
Flexible needle steering was first addressed by DiMaio et al.5 using a finite-element model. His 
model was later extended by other researchers to 3-D models.6, 7 In the Medical Image Computing 
and Computer-Assisted Intervention Conference 2005, Daniel Glozman and Moshe Shoham8 
presented a simplified virtual spring model for the needle insertion procedure. Modeling of a 
flexible needle was based on the assumption of quasistatic motion and a third-order polynomial 
was used to calculate the displacement of each element. Compromise had to be made between the 
computational efficiency and the model accuracy.
Needle steering making use of the needle bending has also been explored in the past few years. 
Some researchers have generated needle bending using different strategies, such as incorporating 
a prebent stylus inside a straight canula,9 or a telescoping double canula, where the internal 

canula is prebent.10 Other researchers showed 
that needles with bevel tips bend more 
than symmetric-tip needles.11 Making use 
of this effect, thin highly flexible bevel-tip 
needles using Nitinol were developed, and a 
nonholonomic model was built accordingly 
for steering flexible bevel-tip needles in 
rigid tissues.12 The nonholonomic model, a 
generalization of a 3-D bicycle model, was 
experimentally validated using a very stiff tissue 
phantom. Recent advances in nonholonomic 
path planning include stochastic model-based 
motion planning to compensate for noise 
bias,13 probabilistic models of dead-reckoning 
error in nonholonomic robots,14 a diffusion-
based motion planning to search for a feasible 
path in full 3-D space, and motion planning 
under Markov motion uncertainty using 
dynamic programming to search for a feasible 
route while avoiding obstacles.15

In this paper, a needle steering model is 
proposed for flexible needle steering purpose. 
A spring–beam–damper model is adopted 
to model the dynamics between the lateral 
needlebased force and the corresponding 
lateral needle tip movement with consideration 
of the needle flexibility and tissue deformation. 
Considering the tissue inhomogeneity, depth-
varying mean parameters are proposed to 
calculate the spring and damper effects. Local 
polynomial approximations in finite-depth 
segments are adopted to estimate the unknown 
depth-varying mean parameters. Unlike the 
models proposed in5 and,8 this model takes into 
consideration not only the viscoelastic tissue 
reactions but also the tissue inhomogeneity. 
In the literature, the spring–damper model 
has been adopted by many research groups 
in studying tissue deformation.16–18 But how 
the coupled interaction of the instrument 
and soft tissue is and how to control the 
instrument while in collision with such an 
environment have received little attention. 
Some researchers studied the collision of 
the flexible link with the environment in the 
application of grinding or surface turning 
operation.19,20 They modeled the environment 
as a simple spring–damper system, which was 
assumed to be stationary and was arbitrarily 
placed along the trajectory such that the beam 
would only make contact with it at the tip. In 
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the application of needle steering, the flexible instrument interacts with  
the environment with changing force along the needle body from time 
to time. The situation is much more complicated compared with the
point contact.

Based on the proposed model, an online parameter estimator has been 
designed using the modified least-square method with a forgetting 
factor. Preliminary experiments have been carried out to verify the 
steering model with the online parameter estimator. Results have shown 
its effectiveness. Finally, conclusions and future studies are given at the end.

II. Needle Lateral Steering Force Modeling
 And Analysis

A. Needle Lateral Steering Force Modeling
A spring–beam–damper system, as shown in Fig. 1, is considered in 
this study to model the system dynamics between the lateral steering 
forces acting at the needle base and the corresponding needle tip lateral 
movement during insertion in the soft tissue. The flexible needle is 
assumed to follow the Bernoulli–Euler beam model and is required to 
be clamped tightly at the base. The initial lengths of springs are decided 
by the needle tip trajectory, as shown in the figure. At the beginning, the 
needle is placed next to the tissue. With time progressing on, the needle 
inserts into the tissue. Then, the springs and dampers come into contact 
with the needles and exert forces on it accordingly. The forces of the 
springs at time instant t are determined by the needle body shape at that 
time and the needle tip trajectory; while the forces of the dampers are 
determined by the velocities of the contact points. During this procedure, 
not only the tissue deformation and the needle flexibility, but also their 
interaction effects, should be taken into consideration.
To derive the equations of needle insertion, the following assumptions 
are made.

1) For simplicity, the needle is considered to move only in the XY 
plane. X is the insertion direction and Y is the steering direction.

2) There is no longitudinal compression of the beam and only lateral 
deflection is possible. Furthermore, the lateral deflection of the 
beam is small compared with the length of the beam.

3) The rotational effect of the beam with respect to the local coordinate 
system is neglected.

Under the aforesaid assumptions, the system dynamic equation can be 
derived using Hamilton’s principle as follows:

where T is the kinetic energy, V is the potential energy, and Wnc is the 
work done by nonconservative forces.
A local coordinate system is introduced by the Galilean transformation 
to replace the fixed coordinates (x) with a moving coordinate system 
(x͂), which is attached at the needle base and moves with it. vx is the 
needle insertion velocity, which is assumed to be constant for modeling 
simplicity.

The system kinetic energy T includes the kinetic energy of the fixture 
and the needle, as shown in the first and second terms of the following 
equation (3), while the potential energy V includes the potential energy 
of the needle caused by needle bending (the first term) and the potential 
energy of the springs resulting from the forces between the needle and the 
tissue (the second term), as given in (4). The integration of the difference 
between the needle body positions and the needle tip trajectory gives the 
summation of the elongated or compressed spring length (decided by 
the sign of the difference) at the contact points. Because only the needle 
portion inside the tissue has springs exerting force on it (5), the Heaviside 
unit step function is used to exclude the portion outside the tissue. 
h(x) = L - vx t is the position of the insertion point in the moving 
coordinates system at time instant t. Thus, the potential energy of the 
springs can be calculated using the second term of (4)

Needle position
without deflection Needle body trajectory

Tip trajectory

Figure 1. Mechanism of the needle insertion procedure.
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Here, M is the mass of the fixture that links the needle with the 3-D
motion platform, L is the length of the elastic beam, ρ is the mass per unit 
length of the elastic beam, E is the Young’s modulus of the needle, I is the 
second moment of inertia about the z-axis, k is the stiffness coefficient 
of the spring per unit length, c is the damper coefficient per unit length, 
y is the needle base position in y-axis,  ⋅y(t) is the corresponding velocity 
at time instant t, ω is the deflection of the beam along the needle body at 
time instance t, and  ⋅ω and ω″ are the first and second derivatives of the
beam deflection with respect to time and space, respectively.
The virtual work done by all the nonconservative forces (steering force Fy 
and damping forces), is given by

The equation of motion and the boundary conditions of the system are 
obtained by substituting the aforesaid equations (3), (4), and (6) into (1), 
integrating the resulting equation by parts, and considering that the time 
t1 and t2 are arbitrary and that δy, δω are arbitrary and independent. 
Thus, the equations of motion for the spring–damper system are obtained 
as follows:

where 

Boundary conditions:

To solve the partial differential equations shown in (7) and (8), 
unconstrained modal analysis is adopted in this approach.21 The 
deflection of the elastic beam and the displacement of the fixture are 
expressed, respectively, in terms of n mode shapes using the obtained
φ(x͂), βi, qi (t) as follows:

and accordingly, the position of fixture is given as

where α(t) describes the motion of the center of mass of the total system 
without perturbation, ϕ(x͂) is the shape function that is the space solution 
of the deflection, q(t) is the time-varying amplitude of motion that is the
time solution of the deflection, and β is defined to satisfy 

After some algebraic manipulation (refer to [22] for more details), the 
model is finally obtained as follows:

with

Here, Mt is the total mass of the fixture and needle; Y (t1) =                                                        
      is the needle tip position at time instant t1,
which is time varying and derived from (10)–(12); and Fy is the lateral 
steering force, which acts at the needle base in the y direction.

These partial differential equations can be solved using the explicit 
Runge–Kutta (4, 5) formula, and the Dormand–Prince pair. A Matlab 
simulation program has been composed to simulate this model. With the 
applied needle base force Fy serving as the input of the model, α and qi 
will change with time, thus causing the change of the needle tip position
Y (t1) in the y-axis, which is the output of the model, as well as the tissue 
reaction forces.

B. Local Polynomial Approximation of Depth-Varying Mean Parameters 
Considering the inhomogeneous human tissue and the multiple tissue 
layers that the needle will penetrate through during surgery, here we
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Figure 2. Local polynomial approximations of the parameter functions.
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propose to use depth-varying mean parameters to calculate the spring/
damper reaction forces and use local polynomials to approximate the 
depth-varying mean parameters.

Assumption 1: The spring and damper coefficients are different at 
different depths of the tissue. At each insertion step, the spring/damper 
effects along the needle body that is inside the tissue can be calculated 
using mean spring/damper coefficients θ(s) = [c̄ k̄]T. These mean 
coefficients will vary with each step.

This assumption takes into consideration the inhomogeneous human 
tissue, and at the same time, releases the computation intensity by using 
mean values to calculate the spring/damper forces along the needle body 
at each insertion step. Furthermore, the adoption of the mean values 
guarantees that θ(s) is continuously distributed regardless of the abrupt 
change of the tissue properties, e.g., pathological changes of the tissue, 
or multilayer insertion.

Assumption 2: The depth-varying mean parameters θ(s) can be represented 
by a series of local polynomial approximations in finite segments.

This can be justified using Taylor series expansion. Recall that the functions 
θ(s) can be expanded around certain points s0, as shown next. Here, θ(s) is 
approximated by the first p + 1terms. The last term represents the error due 
to the approximation

From the aforesaid assumptions, we can divide the whole insertion length 
into several segments and adopt piecewise continuous p-order differentiable 
functions θij , i = 1, 2, j = 1, 2, . . . , n to represent the depth-varying mean 
parameter θi(s), i = 1, 2 in each segment, as illustrated in Fig. 2. Here, the
index i refers to the ith parameter (spring or damper coefficient), while 
the index j refers to the jth segment and n is the number of segments. 
The S coordinate system is adopted for convenient representation of the 
parameters. So, the polynomial approximation of θij is represented as 

where l is the length of the segment and p is the order of 
the polynomial. s0,j  refers to the resetting depth at which the jth 
window of the local polynomial approximation for parameter 
θi begins. s0, j  is given by the sequence s0 = {s0,j},  j  =  1 ,  .  .  .  ,  n
and

          where                is the kth depth derivative evaluated at

is  the  unknown  constant  vector  and 
                                        is a column vector.  Notice that
is constant only within each segment [s0,j, s0,j+1), and in general, differs 
from one segment to another for the inhomogeneous tissue.

Therefore, it is possible to use (16) to approximate θij
 (s) more precisely 

by choosing either a higher order polynomial, that is, p large, or a 
smaller segment l, or both. If we partition the whole insertion length 
into segments with the length of each segment equal to l, then the 
depth-varying function θi

(s) can be approximated by a number of 
polynomials θij

 (s) located in each segment with constant coefficients 
aijk

, as shown in (16).

C. Online Parameter Estimator Design
The discretized needle steering model is considered here. The needle 
steering force model can be reorganized as

where

Here, y1 refers to the needle tip trajectory, while y2 is the needle base 
trajectory that is measured to facilitate the computation of the system 
state x.

After some algebraic manipulation, we can get

Rm is the unknown depth-varying mean parameter vector with an 
additional constant 1.

The measured output
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Substituting the polynomial approximations for the depth-varying mean 
parameters, (19) can be represented as

Here, for simplicity, we select the same-order polynomials for the two 
parameters.

The transformation between the s domain and x͂ domain is given by 

under the same assumption that the needle is inserted at constant 
velocity.

To facilitate the computation of the dynamic equation, the dataset s0 = 
{s0 , j}, j = 1, 2, . . . can be converted to the time domain using

In discretized form

Based on this approach, the modified least-square estimation with 
covariance resetting and forgetting factor is adopted to estimate the 
coefficients that take the form

where ̂ϑ is the estimated parameter vector, Z is the measurement, λ is the 
forgetting factor, P is the covariance matrix, and K is the gain.

D. Lateral Steering Force Model Validation

1) Material and Method: 
To validate the effectiveness of the proposed steering model, a physical 
experiment has been carried out. The experimental setup, shown in 
Fig. 3, is used to carry out the experiment. The 3-DOF motion platform 
drives the needle into the phantom/animal organ following some 
predesigned trajectory. A 6-DOF force/torque (F/T) sensor is mounted 
at the needle base to measure the needle base force. The needle adopted 
here is a 5-DOF MagTrax needle probe. It is a 130-mm-long needle and 
has a sensor located at the stylet’s proximal symmetric tip. This needle 
tip movement in the 5-DOF, except rotation about the needle axis, can 
be observed in real time via an electromagnetic system called Aurora.

An “active” way of validating the proposed model by steering the needle 
tip to a defined position is infeasible now, since it will require a steering 
strategy, which is our future task. Instead, a “passive” way of validation 
is adopted to show that the model could accurately predict the needle 
tip trajectory when giving some inputs – needle-based lateral forces. The 
detailed validation procedure is described as follows.

The needle is first driven into the prepared phantom by the 3-DOF platform 
following some predetermined trajectories with various insertion speeds. 
The needle tip/base positions and corresponding needle base force data 
are collected during the procedure. These collected datasets are first 
passed through a designed filter to remove the measurement noises and 
smooth the data. After that, the filled datasets go through the online 
parameter estimator to estimate the depth-varying mean parameters. 
At the same time, the model is simulated using the online estimated 
parameters and the collected dataset to predict the output, the needle 
tip position. The output is then regulated using the collected output data 
instead of the simulated ones during the simulation. This regulation 
method can prevent the simulator from accumulating estimation errors, 
which will gradually lead to the divergence of the estimation. At last, the 
simulated outputs and the needle tip position data are compared with 
the measured positions during experiments.

2) Preliminary Experiments in Tissue-Like Phantoms: 
Phantoms made of different gelatin/water ratios were first adopted to 
simulate the soft tissue, for it is easy to obtain and the properties are 
easy to control and replicate. The needle was driven into the phantom 
for 8 cm in the x-direction and 2 cm in the y-direction. The insertion 
speed was set to be 8, 4, and 2 mm/s, respectively. The lateral speed was 
chosen accordingly in order to keep the movements in x and y to start 
and stop simultaneously.

Fifth-order polynomials were chosen to represent the spring and damper 
coefficients. The initial coefficients were set to be [3 × 105 × ones
(6, 1); 2 × 106 × ones(6, 1); 1]. The initial covariance matrix was set to 
be [1016 × eye(13, 12)zeros(13, 1)]. The forgetting factor was selected to 
be 0.99. For comparison purpose, one segment was chosen first. Fig. 4 
shows one typical example of the simulated output versus the measured 
output. The corresponding measurement errors and the reconstructed 
depth-varying mean spring/damper coefficients using the estimated 
polynomial parameters are shown in Figs. 5–7.

To improve the tracking accuracy, two segments were chosen next. 
The same initial settings were used as in the one-segment estimation. 
The simulation errors of one-segment estimation and two-segment 
estimation are compared and shown in Fig. 8. We can see that the overall 
accuracy has improved when using two segments.

Figure 3. Experimental setup.

3DOF Motion 
Platform Aurora Field 

Generator

5DOF Tracking
Needle

Force Sensor
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3) Discussion: 
In this set of gelatin experiments, fifth-order polynomials were adopted 
for the spring and damper coefficients. Orders lower than fifth have 
shown larger estimation errors; while orders larger than fifth can 
give better accuracy, but no significant improvement. Dividing the 
whole insertion depth into more segments will improve the overall 
tracking accuracy, but not much improvement on the convergent 
rate, as can be detected in Fig. 8. The large estimation errors at the
beginning were caused by poor initial estimation and the large sensor 
noises due to the sudden oscillation of the sensors when the needle was
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accelerated to penetrate into the phantom; the relatively large estimation 
errors at the end were due to the erratic sensor output when the needle 
was decelerated to stop. The adjustment of the initial estimation has been 
found to be capable of decreasing the magnitude of the initial estimation 
error but cannot give much improvement on the convergent rate. This 
will be further investigated in later experiments.

The initial covariance matrix with magnitude larger than 1016 showed 
a better convergent rate, but not much improvement could be achieved 
especially when the magnitude is larger than 1018; less than 1016 would 
give a poor convergent rate with a decrease in overall accuracy.

The design of the online parameter estimator guarantees that the 
estimated coefficients will lead to minimum errors between the 
measured and estimated needle positions; this means that the process 
and measurement errors during the procedure may be incorporated 
into the parameter estimates, which is allowable since our goal is to 
achieve accurate needle position prediction, instead of precise parameter 
estimation. That is why even in the homogeneous gelatin phantom, the 
estimated spring/damper coefficients were found to be nonuniform in 
depth. In addition, the estimation is specific to the chosen trajectory. 
Thus, even in the same medium, it is highly possible that the estimated 
parameters will be different when choosing different trajectories.

More experiments will be carried out in the near future to further test the 
robustness of the steering model, as well as finding a method to improve 
the convergent rate.

III. Conclusion And Future Work
A needle steering model is proposed in this paper. Considering the 
tissue inhomogeneity, depth-varying mean parameters are adopted 
to calculate the tissue reaction effects. Local polynomials in finite 
segments are adopted to approximate the unknown depth-varying mean 
parameters. Based on this approach, an online parameter estimator has 
been designed using the modified least square method with a forgetting 
factor. Some preliminary experiments have been carried out to verify 
the steering model with the online parameter estimator. Results have 
shown its effectiveness. More experiments will be carried out in the 
near future to test the robustness of the steering model and improve the 
convergent rate. 

In the future, we will use the proposed needle steering model with an 
online parameter estimator to design an adaptive needle steering system 
that can steer the needle tip following some prescribed trajectory. The 
Aurora system and force sensor system can be adopted to measure 
the needle tip positions and needle base forces during the procedure.
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