Marked Circadian Variation in Number and Type of Hyperacute Strokes During the 24 Hour Day-Night Cycle

Eeman Khorramian
Thomas Jefferson University, eeman.khorramian@jefferson.edu

Sidney Starkman

Nerses Sanossian

David Liebeskind

Gilda Avila

Follow this and additional works at: https://jdc.jefferson.edu/siCtr_2022_phase1

Part of the Neurology Commons, and the Translational Medical Research Commons

Let us know how access to this document benefits you

Recommended Citation

Khorramian, Eeman; Starkman, Sidney; Sanossian, Nerses; Liebeskind, David; Avila, Gilda; Stratton, Samuel; Eckstein, Marc; Pratt, Frank; Sharma, Latisha; Restrepo, Lucas; Valdes-Sueiras, Miguel; Kim-Tenser, May; Villablanca, Pablo; Conwit, Robin; Hamilton, Scott; Saver, Jeffrey L.; and FAST-MAG Trial Investigators and Coordinators, "Marked Circadian Variation in Number and Type of Hyperacute Strokes During the 24 Hour Day-Night Cycle" (2020). *Phase 1*. Paper 49. https://jdc.jefferson.edu/si_ctr_2022_phase1/49

This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Phase 1 by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: JeffersonDigitalCommons@jefferson.edu.
Marked Circadian Variation in Number and Type of Hyperacute Strokes During the 24 Hour Day-Night Cycle

Introduction: Circadian variations in stroke onset provide critical information for the allocation of pre-hospital and hospital resources in clinical care. Confining analysis to patients with defined onset in waking and clearly distinguished ischemic and hemorrhagic stroke subtypes, would substantial benefit our understanding of stroke etiology.

Methods: We analyzed patients enrolled in the NIH FAST-MAG phase 3 trial of field-initiated neuroprotective agents in patients with hyperacute stroke within 2h of onset. Onset times were analyzed in 1h time blocks throughout the 24h day-night cycle. Patient demographic and clinical features, medical history, imaging characteristics, and stroke deficit severity were correlated with onset times.

Results: Among 1632 patients, final diagnoses were acute cerebral ischemia in 76.2% and intracranial hemorrhage in 23.7%. Acute cerebral ischemia (ACI) had a unimodal distribution with peak onset at midday (12:00-12:59); intracerebral hemorrhage (ICH) a bimodal distribution with peaks at mid-morning (08:00-08:59) and early evening (18:00-18:59). Events were markedly reduced in early morning, with only 3.4% starting in the first 25% of the day. The proportion of hemorrhagic was higher in the first 8h of the day (00:00-07:59) than the remaining 16h, 33.3% vs 22.5%, p=0.006. ACI and ICH patients
displayed fairly homogeneous vascular risk factors, presenting deficit severity, and initial brain imaging findings across all time periods.

Discussion: There is marked, more than 10-fold, circadian variation in onset of acute cerebrovascular disease, and circadian variation in the ratio of ischemic to hemorrhagic neurovascular events. These findings can inform resource planning for regional systems of acute stroke care.