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ABSTRACT 

Extracellular pH is an important physiological determinant of vascular tone that is normally 

maintained within 7.35-7.45. Any change outside this range leads to severe pathological 

repercussions. We investigated the unknown effects of extracellular acidosis on relaxation in the 

superior mesenteric artery (SMA) of goat. SMA rings were employed to maintain isometric 

contractions at extracellular pH (pHo) 7.4 and 6.8. We analyzed the effect of acidosis (pHo 6.8) 

compared to physiological pH (pHo 7.4) on three signaling mediators of endothelium-dependent 

hyperpolarization: nitric oxide (NO), prostaglandin I2 (PGI2), and myoendothelial gap junctions 

(MEGJ). NO and cyclic guanosine monophosphate (cGMP) levels were compared between 

normal and acidic pH. Quantitative real-time PCR (qPCR) studies determined the change in 

expression of vascular connexin (Cx), Cx37, Cx40, and Cx43. Under acidosis, acetyl choline-

induced relaxation was augmented in an endothelium-dependent manner via eNOS-NO-cGMP 

signaling. Conversely, at normal pH, acetyl choline-induced vasorelaxation was mediated 

primarily via COX-PGI2 pathway. The functional activity of MEGJ was increased under acidosis 

as evident from increased sensitivity of connexin blockers and upregulated gene and protein 

expression of connexins. In conclusion, acetyl choline-induced augmented vasorelaxation under 

acidosis is mediated by NOS-NO-cGMP, with a partial role of MEGJ as EDH mediators in the 

SMA. Present data suggest a novel role of connexin as therapeutic targets to attenuate the 

detrimental effect of acidosis on vascular tone. 

 

Keywords: vasorelaxation, connexin, hyperpolarization, superior mesenteric artery 
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1. Introduction 

The superior mesenteric artery (SMA) plays a vital role in supplying blood to the large part 

of the gastrointestinal tract (Williams et al., 2016), and plays a direct role in the pathophysiology 

of the intestinal motility disorders, absorption of nutrients, and blood pressure regulation 

(Fleming, 2000). It carries more than 10% of the systemic output (Crimi et al., 2012). 

Pathological changes that reduce this output, such as diarrhea, lactic acidosis, or metabolic 

acidosis, may be life threatening because they can affect pH. Changes in pH are often diagnosed 

late and prognosis is difficult in humans and animals (Clair and Beach, 2016). 

Present studies were performed in the SMA to determine the pathophysiological mechanisms 

and therapeutic targeting for ruminal acidosis leading to rumenitis, liver abscesses and laminitis 

(Penner et al., 2007). The mesenteric arteries are characterized with high sensitivity to 

extracellular pH (pHo), high permeability to H+, a rapid (< 2 min) and sustained decrease in pH, 

and reproducibility of the preparation of isolated arterial rings for the functional and molecular 

studies (Celotto et al., 2008; Mohanty et al., 2016). The SMA was selected as an ex vivo acidosis 

model for study of vasomotor changes in small ruminants at molecular and functional levels. 

Previous studies from our laboratory have reported an attenuated vasocontractile response under 

acidosis (Mohanty et al., 2016). Therefore, it was considered important to examine the effect of 

acidosis on mediators of vasorelaxation in the SMA.  

Vascular endothelial cells (EC) express GPR4 receptor, a pH-sensing G-protein coupled 

receptor which detects the H+ ion and regulates the vascular tone (Chen et al., 2011; Yang et al., 

2007) by releasing different vasodilators, namely NO, prostacyclin (PGI2), epoxyeicosanoids, 

anandamide, hydrogen peroxide, C-type natriuretic peptide, cytochrome P450, or by activating 

small Ca2+ channels (SKCa), intermediate Ca2+ channels (IKCa), voltage-gated potassium 
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channels, ATP sensitive potassium channels (Gurevicius et al., 1995) or by a combination of 

these mediators (Ishizaka and Kuo, 1996). The mechanisms regulating acidosis-mediated 

relaxation are often complex, contradictory, and inconclusive (Celotto et al., 2008). They tend to 

vary with respect to neurohumoral mechanisms (Standen and Quayle, 1998), species, strain, 

vessels (Smith et al., 1998), and acidosis model (de Wit and Griffith, 2010). The present study 

examined for the first time the influence of acidic pH on the mediators of relaxation in goat 

SMA, a model directly relevant in understanding the pathophysiology and novel therapeutic 

strategies of ruminal disorders. 

 Despite its heterogeneity, mechanisms underlying the vascular smooth muscle cell (VSMC) 

relaxation following acidosis are not clear. The hyperpolarization of VSMC induced by simple 

current transfer from the adjacent endothelium through myoendothelial gap junctions (MEGJ) 

consisting of connexin (Cx) plays a key role in the vasorelaxation (de Wit and Griffith, 2010). It 

is conceivable that vascular tissues expressing specified Cx isoforms are modulated under 

acidosis, a condition especially prevalent among stall-fed ruminants. The present study aims to 

investigate the role of eNOS-NO-cGMP and COX-PGI2 in relation to MEGJ in mediating 

endothelium-dependent hyperpolarization (EDH) in SMA under acidosis compared with the 

physiological pH. 

2. Materials and methods 

2.1. Investigational compounds 

We employed the following drugs for isometric contraction studies and Griess assays: 

noradrenaline (NA) (Merck, Kenilworth, NJ); NG-nitro-L-arginine methyl ester, indomethacin, 

1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1one or ODQ (Cayman Chemical Co., Ann Arbor, MI); 
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acetyl choline (Himedia, Mumbai, India.); 18β glycyrrhetinic acid or 18β GA (MP Biochemicals, 

Santa Ana, CA); phosphoric acid, N-(1-naphthyl) ethylenediaminedihydrochloride, 

sulfanilamide, sodium nitrite, 3-Isobutyl-1-methylxanthine or IBMX (Sigma-Aldrich, St. Louis, 

MO); sodium nitroprusside (LOBA Chemie, Mumbai, India); 1,2-bis(2-aminophenoxy)ethane-

N,N,N′,N′-tetracetate or BAPTA-AM  (Life Technologies, Eugene, OR). All the solutions were 

prepared fresh in triple distilled water except for 18βGA, ODQ and BAPTA-AM which were 

dissolved in dimethyl sulfoxide (DMSO), and indomethacin, which was dissolved in ethanol.  

For qPCR study, we used a 100bp DNA ladder, 1x gel loading dye, acrylamide, ammonium 

persulfate, chloroform, ethidium bromide (SRL); diethyl pyrocarbonate (DEPC) (Genetix, New 

Dehli, India); dNTPs, high capacity cDNA synthesis kit, multi scribe reverse transcriptase, 

SYBR Green, Taq DNA polymerase (Applied Biosystems, Foster City, CA); isopropanol 

(Merck); nuclease free water (Promega, Madison, WI); RNAase Zap, RNAlater (Life 

Technologies, Carlsbad, CA); and Trizol reagent (ThermoFisher Scientific, Carlsbad, CA).  

For immunonoblot studies, we used rabbit polyclonal Connexin 37 and Connexin 40 

(Cusabio, Baltimore, MD), rabbit polyclonal Connexin 43 (Abcam, Cambridge, MA), rabbit 

anti-iNOS  (Millipore, Lake Placid, NY), mouse anti-eNOS (BD Biosciences, San Jose, CA), 

mouse anti-nNOS, mouse anti-phospho eNOS (Santa cruz, Dallas, Texas) and anti-GAPDH 

mouse monoclonal antibody (ThermoFisher Scientific, Rockford, IL).  

For cGMP assay we used cGMP detection kit (R&D Systems, Minneapolis, MN). 

2.2. Methods 

2.2.1. Animals 



Mohanty et al., 6 

The goat mesenteric artery studies have been approved by the Institutional Animal Ethical 

Committee (Registration No: 433/CPCSEA/20/06/2001) vide ID130/CVS/dt.31.03.2015. Adult 

Black Bengal goats of 13-15 months of age and 20-25 kg in body weight were used in this study. 

Superior mesenteric arteries from both male and female goat were isolated and employed for this 

study. 

2.2.2. Preparation of isolated superior mesenteric arterial rings and tension recording 

After careful exposure of intestinal mesentery, a branch of the goat SMA adjacent to the 

duodenum and jejunum just before its splitting into inferior branch was dissected out and placed 

in cold aerated modified Krebs-Henseleit solution (MKHS) with the following composition (in 

mM): 118 NaCl, 4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 11.9 NaHCO3, 1.2 KH2PO4 and 11.1 D-

glucose. The solution was aerated with Carbogen (95 % O2 + 5 % CO2) for 20 min and then 

adjusted to either extracellular pH (pHo) 7.4 or 6.8 by using 1N HCl (Celotto et al., 2011). The 

arteries were cleared of adventitious and connective tissues, and the endothelium was removed 

by cotton swab method (Rosolowsky et al., 1991). 

The arterial rings of 1.5-2 mm were then mounted between two fine stainless steel L-shaped 

hooks and kept under a resting tension of 1.5 g in a thermostatically controlled (37.0±0.5ºC) 20 

ml organ bath containing MKHS continuously aerated with Carbogen. Isometric contraction 

studies were performed as described previously with minor modifications (Anderson et al., 2014; 

Dash and Parija, 2013; Mohanty et al., 2016; Singh et al., 2016; Sharma et al., 2017). Briefly, the 

arterial rings were equilibrated for 90 min before recording of muscle tension, washed every 15 

min (using MKHS freshly adjusted to pH 7.4 or 6.8) and the experiment repeated for both 

endothelium intact (ED+) and denuded (ED-) vessels wherever necessary. The change of 
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isometric tension was measured by a high sensitive isometric force transducer (Model: 

MLT0201, AD Instruments, Australia) and analyzed using chart 7.1.3 software.  

2.2.3. Experimental protocol 

Sub-maximal concentration of NA (10 μM) or KCl (60 mM), inferred from their 

concentration response curve (CRC) was used to obtain an initial phasic followed by a sustained 

contractile response (Mohanty et al., 2016). Acetyl choline- or sodium nitroprusside - (1 nM - 

100 μM) induced vasorelaxation was elicited by its subsequent addition into organ bath at an 

interval of 4 min with a dose increment of 1 log unit in a cumulative manner for either ED+ or 

ED- SMA rings. This protocol was repeated at both pHo 7.4 and 6.8 in SMA rings pre-incubated 

with 100 µM L-NAME (eNOS inhibitor) or 10 µM indomethacin (COX-inhibitor) or a 

combination of 100 µM L-NAME  and 10 µM indomethacin or 10 µM ODQ (sGC blocker) or 

10 µM ketoconazole (a cytochrome P450 inhibitor) for a period of 30 min. For certain 

experiments, we used 100 µM 18β GA (a gap junction inhibitor) for a period of 5 min prior to 

NA- (10 µM) induced contraction and acetyl choline or sodium nitroprusside -induced 

vasorelaxation. The percent contractile response at each concentration of acetyl choline or 

sodium nitroprusside was calculated by taking the net plateau tension (g) induced by NA/KCl as 

100%. The percent relaxation response (Emax or EBmax) at each concentration was obtained by 

reducing percent contractile response from 100%. Percent maximal relaxation of AIR and SIR 

for each group was calculated using relaxation recorded at 100 µM acetyl choline (pH 6.8) and 

sodium nitroprusside (pH 7.4) as 100%.  

2.2.4. Nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) measurement 
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The mesenteric arterial rings (of equal weight) were incubated in normal (pHo 7.4) and acidic 

(pHo 6.8) MKHS maintained at 37°C and continuously aerated with Carbogen for 3 h. The 

solution in the organ bath was replenished with fresh MKHS (adjusted to pHo 7.4 or 6.8) every 

15 min, following wash. The arterial rings were homogenized in physiological buffer saline 

(PBS), centrifuged at 10,000 g for 40 min in 4°C. The supernatant was used for nitrite 

quantification by subsequent addition of Griess reagent-A (sulfanilamide) followed by Griess 

reagent-B (N-1-naphthyl ethylenediamine) under complete darkness and absorbance recorded 

within 15 min at 540 nm in spectrophotometer. 

The mesenteric arterial rings were pretreated with IBMX (1 mM) for 1 h at 37°C to prevent 

cGMP degradation and improve assay sensitivity (Pattison et al., 2016). The SMA rings (around 

1.0 g in each group) were then incubated in normal (pHo 7.4) and acidic (pHo 6.8) MKHS (each 

with 1mM IBMX) maintained at 37°C under continuous aeration for 3 h. Parallelly, SMA rings 

were incubated with BAPTA (1 µM, 10 µM) under normal and acidic pH to investigate the role 

of Ca2+ in activating NO-cGMP cascade. The pH of the MKHS solution was monitored every 30 

mins and adjusted to pH 7.4 or 6.8 whenever needed using 1N HCl. cGMP concentrations in 

SMA rings perfusates were determined using an enzyme-linked immunosorbent assay (ELISA)-

based cGMP detection kit in accordance with the manufacturer’s instructions. All recordings 

were made at 540 nm and 450 nm, wavelength correction done by subtracting readings at 540 

nm from 450 nm. 

  

2.2.5. qPCR and Western blot (WB) analyses 

Goat mesenteric arterial rings were incubated in normal (pHo 7.4) and acidic (pHo 6.8) MKHS 

maintained at 37°C under continuous aeration for 3 h in the same manner as for NO assay. At the 
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end of the incubation, the tissues were collected in RNAlater for RNA extraction using Trizol 

reagent according to the manufacturer's instructions and concentration measured by Nanodrop. 

First-strand cDNA synthesis was performed from 2 µg of total RNA using High Capacity cDNA 

synthesis kit according to the manufacturer's instructions (Applied Biosystems, Foster City, CA). 

Gene-specific primers were designed for connexin 37 (Cx37), connexin 40 (Cx40), connexin 43 

(Cx43) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and synthesized by Eurogentec 

USA (Fremont, CA) (Table 1). 2 µl of each cDNA samples were used as a template for 

performing qPCR. Relative expression of Cx37, Cx40, Cx43, and GAPDH were analyzed by 

qPCR using SYBR Green (Applied Biosystems) on the MJ Research Real-time PCR System 

(Bio-Rad, Hercules, CA) with an annealing temperature of 50-55°C. GAPDH was used as an 

internal control. The quantification of relative fold change in connexin expression was performed 

using 2-ΔΔCt method.  

WB studies were performed to determine a correlation between the PCR and protein 

expressions. The goat SMA tissues were harvested in the same manner as that for RNA 

extraction and were subjected to WB analysis for protein expression analysis, as described 

previously (Singh et al., 2016). Briefly, total protein from each sample was separated by sodium 

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to 

polyvinylidenedifluoride membranes (Millipore, Bedford, MA). The membranes subjected to 

immunoblot analysis using  rabbit polyclonal Connexin 37, rabbit polyclonal Connexin 40,  

rabbit polyclonal Connexin 43, rabbit anti-iNOS, mouse anti-nNOS, mouse anti-eNOS, mouse 

anti phospho eNOS antibodies relative to anti-GAPDH mouse monoclonal antibody  were 

imaged, as described previously (Singh et al., 2016). Densitometric analysis using ImageJ 
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software was conducted for the protein bands from immunoblotting to determine the relative 

protein expressions. 

2.2.7. Statistical analysis 

All values expressed as mean±S.E.M. in ‘n’ experiments were analyzed in Graph-Pad prism5 

software (San Diego, CA) and compared using either 2 way ANOVA followed by Bonferroni’s 

least significant difference post hoc test to make multiple comparisons or unpaired student’s ‘t’ 

test using GraphPad Software Quick Calcs. ‘P’ value < 0.05 was considered statistically 

significant. 

3. Results 

3.1. Effect of acidic pHo on acetyl choline (AIR) and sodium nitroprusside (SIR)-evoked 

relaxation and their correlation to nitric oxide (NO)  

In noradrenaline (NA)-pre-contracted SMA, acetyl choline-produced a concentration-

dependent vasorelaxation at pHo 7.4, which was augmented at pHo 6.8 with a leftward shift of 

CRC (Fig. 1A). Endothelium  denudation (ED-) abolished acetyl choline-induced relaxation 

(AIR) at both pHo 7.4 and 6.8 compared to the endothelium intact (ED+) preparations. Similarly, 

AIR in KCl-pre-contracted SMA rings was increased significantly (P < 0.05) at pHo 6.8 

compared to pHo 7.4 (Fig. 1B). On the contrary, following NA-pre-contraction, sodium 

nitroprusside -induced relaxation (SIR) did not differ significantly at either pHo (Fig. 1C).  

The NO values for SMA rings increased significantly (P < 0.05) to 131.58±4.77% at pHo 6.8 

(P < 0.05) considering 100% at pHo 7.4 (Fig. 1D). The absolute values of NO under pHo 6.8 and 

pHo 7.4 were 31.49±0.09 and 23.99±1.43 µM g-1, respectively (n = 6). Thus, AIR in NA-pre-

contracted ED+ SMA was potentiated with a decrease in pHo while endothelium denudation 
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abolished the relaxation suggesting activation of eNOS and increased release of NO under 

acidosis. 

3.2. Influence of eNOS and COX inhibitors on augmented AIR during acidosis in NA-pre-

contracted SMA 

  At pHo7.4, both indomethacin and the combination of L-NAME and indomethacin inhibited 

AIR with a rightward shift of CRC, but not by L-NAME alone. Under acidosis (pHo 6.8) 

compared to control, AIR was inhibited by L-NAME and indomethacin used individually, and 

by their combined use (Fig. 2A-B). Percent inhibition by the blockers was calculated based on 

the formula [{Emax - EBmax/Emax}× 100] (Volpe et al., 2014). Percent maximal inhibition by L-

NAME, indomethacin, and combination of L-NAME and indomethacin, revealed an increase in 

inhibition following acidosis (Fig. 2C-D). Simultaneously, the pEC50 of both L-NAME and 

indomethacin was significantly (P < 0.05) increased under acidosis (5.88±0.39 at pHo 7.4 vs. 

6.95±0.31 at pHo 6.8). These data suggest that the SMA relaxation is mediated by COX-PGI2 at 

physiological pH, while at acidic pH it involves both COX-PGI2 and eNOS-NO. 

 

3.3. Influence of eNOS and COX inhibitors on augmented AIR during acidosis in KCl-pre-

contracted SMA 

At pHo 7.4, AIR was inhibited in the presence of indomethacin and combination of L-NAME 

and indomethacin, but not by L-NAME alone. In contrast however, at pHo 6.8 both L-NAME, 

and a combination of L-NAME and indomethacin inhibited AIR (Fig. 3A-B). In resemblance 

with the NA-precontracted data, percent maximal inhibition by L-NAME, indomethacin, and 

combination of L-NAME and indomethacin was increased under acidosis (Fig. 3C-D). 

Comparing the pEC50 value of L-NAME and indomethacin (6.51±0.28 at pHo 7.4 vs. 5.86±0.18 
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at pHo 6.8) revealed an increase in the potency of combination of L-NAME and indomethacin 

under acidosis. Consequently, acidosis increased the AIR due to increased release of EDH 

mediators.  

Considering the pattern of responses to above inhibitors, and that AIR was more pronounced 

in NA-pre-contracted preparations, further mechanistic studies were performed in the NA-pre-

contracted SMA.  

3.4. Role of NO-cGMP and myoendothelial gap junctions (MEGJ) on augmented AIR during 

acidosis 

ODQ and 18β GA inhibited AIR with a rightward shift of CRC at both pHo 7.4 and 6.8 (Fig. 

4A-B), with an (Fig. 4C-D). In addition, data revealed a significant increase in percent maximal 

inhibition of AIR under acidosis, thus implying an increase in the potency of both ODQ and 18β 

GA under acidosis. These suggest the predominant role of the sGC-cGMP and gap junctions in 

the mediation of EDH in SMA.  

Additional studies with cGMP assay revealed a significant increase in the cGMP levels in the 

SMA rings at pHo 6.8 (P < 0.05) in comparison to the values at pHo 7.4 (Fig. 4E). The absolute 

values of cGMP under pHo 7.4 and pHo 6.8 were 0.79±0.06 and 1.21±0.07 pmol ml-1, 

respectively (n = 4).  

3.5. Role of NO-cGMP and myoendothelial gap junctions (MEGJ) on sodium nitroprusside -

induced relaxations (SIR) during acidosis 

Both ODQ and 18β GA inhibited sodium nitroprusside -induced relaxation (SIR) at both pHo 

7.4 and pHo 6.8 as compared to their respective controls (Fig. 5A-B). Comparing the % maximal 

inhibition at 10μM of SIR (38.96±7.33 at pHo 7.4 vs. 56.37±4.23 at pHo 6.8) and pEC50 values 
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(5.82±0.19 at pHo 7.4 vs. 7.23±0.2 at pHo 6.8), we observed an increased sensitivity of ODQ 

under acidosis (Fig. 5C). Similarly, 18β GA inhibited the SIR at both pHo levels, with a 

significant increase in % maximal inhibition at 1μM of SIR (65.58±6.91 at pHo 7.4 vs. 

100.00±5.95 at pHo 6.8) and pEC50 (5.98±0.06 at pHo 7.4 vs. 6.94±0.13 at pHo 6.8) under 

acidosis (Fig. 5D). These increase in the inhibitory potencies of ODQ and 18β GA under acidosis 

suggests an increased contribution of sGC-cGMP and MEGJ in the SMA relaxation. 

3.6. qPCR and Western blot data  

qPCR results revealed an upregulated gene expression for Cx37, Cx40 and Cx43 under 

reduced pH (Fig. 6A) in the order of Cx37>Cx40<Cx43. 

To further determine whether these increase in the transcriptional levels translated into 

increase in the corresponding proteins, WB studies revealed a significant increase in Cx37 and 

Cx43 protein expression in the SMA under acidic pH, but not Cx40 (P < 0.05; Fig. 6B-C). 

Parallely, we observed a significant increase in iNOS expression under acidosis (P < 0.05). 

Western blot data was analyzed as integrated optical density (as ratios of GAPDH). 

4. Discussion 

These studies reveal for the first time the underlying signaling cascade following acidosis in 

SMA relaxation, as depicted in the model in Fig. 7. Acidic pH augments the AIR in an 

endothelium-dependent manner, primarily via eNOS-NO-cGMP pathway, in contrast with the 

physiological pH (COX-PGI2 pathway). The functional role of MEGJ in SMA relaxation is 

increased at acidic pH associated with the upregulation of connexins. This suggests that acidosis-

induced augmented vasorelaxation is mediated via different ions and second messengers that are 
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linked to NO signaling is associated with an increased number of gap junctions through 

upregulation of certain connexins. 

 Acetyl choline acting on muscarinic type 3 receptor subtype stimulates endothelium-

dependent NO release (Celotto et al., 2008; Shi et al., 2011; Shi and Sarna, 2004). NO then binds 

to sGC to induce smooth muscle relaxation through PKG-cGMP pathway (Andreopoulos and 

Papapetropoulos, 2000; de Wit and Griffith, 2010; Hutcheson et al., 1999; Li et al., 2004; 

Murthy, 2006; Rattan and Thatikunta, 1993; Rattan and Chakder, 1992). In the present studies, a 

limited amount of AIR in NA pre-contracted ED+ in goat SMA rings may be species-specific 

(Dash and Parija, 2013). This effect is apparently endothelium-dependent (considering complete 

abolition of acetyl choline relaxation in ED-rings at either pH), indicating eNOS or PGI2 as the 

mediators for NO release. Our data involving eNOS at normal pH in SMA, resistant to L-

NAME, but sensitive to indomethacin, suggest that L-NAME may stimulate COX-2 to produce 

PGI2-induced relaxation through the COX-PGI2 pathway (Cohen et al., 1997; Dong et al., 1997; 

Hayashi et al., 1994; Ignarro et al., 1985). AIR on KCl pre-contracted tissues is attenuated in the 

presence of L-NAME and indomethacin, ruling out the role of K+ ions in the mediation of EDH 

at physiological pH as K+-depolarization is known to prevent the EDH response. This 

phenomenon has been described before in different systems (Cohen et al., 1997; Dong et al., 

1997; Hayashi et al., 1994; Ignarro et al., 1985), via yet unidentified mechanism. 

Previously published studies have shown that MEGJs play a significant role in the mediation 

of vasorelaxation by activating inwardly rectifying K+ channels and/or the Na+-K+-ATPase 

(Mathewson and Dunn, 2014). Lack of effect of ketoconazole on AIR in the SMA at normal or 

acidic pH (data not shown) rules out the contribution of cytP450, suggesting MEGJ as the 

potential mediator of EDH. This effect of MEGJ is influenced by PGI2-NO signaling (Griffith et 
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al., 2004). Speculatively, connexins are polymerized to organize MEGJ transmitting EDH 

signaling from endothelium to VSMC, and that an interference of formation of MEGJ by 

connexin uncouplers results in attenuation of AIR. This mechanism is supported from previous 

reports in SMA of rodents (Hilgers and De Mey, 2009; Sandow and Hill, 2000; Shimokawa and 

Morikawa, 2005). 

 Present studies further suggest an important role of NOS activation in the AIR during 

acidosis. These data are in agreement with those in other systems suggesting activation of NO 

signaling pathway under acidosis (Cencioni et al., 2013; Celotto et al., 2016; Dabertrand et al., 

2012; de Wit and Griffith, 2010; Hattoriet al., 2002; Nagao and Vanhoutte, 1992; Riemann et al., 

2017). Acidosis elicits release of NO from vascular endothelium that plays an important role in 

coronary vasodilation as demonstrated in dog coronary artery  (Gurevicius et al., 1995). Present 

data show an increase in the sensitivity of both L-NAME and ODQ (as shown by an increase in 

their % blocking effect of AIR) establishing the role of NOS-NO-cGMP during acidosis-induced 

augmented relaxation in SMA. The blocking effects of L-NAME/ODQ were calculated from 

their respective maximal response (EBmax) as compared with their control maximal effects (Emax). 

The effectiveness of the inhibitor was determined by comparing IC50 (a concentration that 

produces 50% decrease in maximal inhibition of AIR).  An increase in the sensitivity to eNOS 

inhibition during acidosis may be explained through an increase in endothelial free Ca2+ 

concentration under acidosis that exceeds the threshold for activation of eNOS, thus suggesting 

Ca2+-dependent activation of eNOS under acidosis. In addition we also observed a significant 

increase in the expression profile of iNOS, another possible mediator of increased NO release 

under acidosis. However, neither eNOS (total and phospho) nor nNOS had any change at 

translational level under acidosis. In these studies, exact reason for the preferential increase in 
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the expression of iNOS vs. e- and nNOS is not clearly understood other than that the former is 

easily inducible and may affect the expression of the latters under the present experimental 

conditions.  The ultimate answer to this important issue may be in the activation assays for 

different NOSs under different time intervals of acidosis, not within the scope of present studies. 

 Data further suggest a partial role of PGI2-NO pathway based on an increase in the blocking 

potency of indomethacin, combination of indomethacin, and L-NAME under acidosis, as 

proposed before in cultured bovine corneal endothelial cells (Cha et al., 2005), and in rat 

mesenteric arterial bed (Hiley et al., 1995). Similarly, following KCl-pre-contraction, an 

increased AIR at pHo 6.8 is inhibited by L-NAME, or by L-NAME plus indomethacin, indicating 

activation of EDH signaling. Further studies however are needed to determine relative 

contributions of different mediators of EDH at normal versus acidic pH. 

 Interestingly, we observed no change in SIR at either pHo, suggesting that the endothelium 

plays a pivotal role in acidosis-mediated relaxation in the SMA. Moreover, we observed an 

increased inhibitory effect of ODQ for endothelium-dependent as well as increased potency of 

ODQ for endothelium-independent relaxation under acidosis, possibly via increased binding 

affinity of ODQ to sGC, as suggested before (Dasgupta et al., 2015). This indicates the role of 

NO-sGC-cGMP in the acidosis induced augmented AIR. We observed a significant increase in 

the release of cGMP under acidosis through ELISA which was blocked by BAPTA (1 μM, 10 

μM), an intracellular Ca2+ chelator (Khan and Joseph, 2010), thus suggesting activation of Ca+2-

eNOS-NO-cGMP pathway in our model as suggested in other systems (Devika and Jaffar Ali, 

2013). 

 Our studies further suggest an increased sensitivity of MEGJ to the connexin uncouplers, and 

increased expression of connexins, as proposed before during ischemia (Peracchia, 2004; 
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Davidson et al., 2012). In support of these phenomena, our studies show an increase in the 

blockade by the connexin uncouplers via both endothelium-dependent and endothelium 

independent pathways, during acidosis. It has been proposed that undocked hemichannels or 

connexon (hexamer of connexin), which are normally closed, open following exposure to stress 

(Bol et al., 2013). This may allow the passage second messengers and mediators of 

vasorelaxation (up to 1.5 kDa molecules) to synergistically pass through gap junctions leading to 

vascular dysfunction, as previously suggested (Davidson et al., 2012; Hiley et al., 1995; 

Peracchia, 2004). Furthermore, we observed that connexin inhibitors had no significant effect on 

AIR in ED-rings at either pH (data not shown). These data demonstrate that connexin inhibitor 

interfere with gap junction communication only in ED+, suggesting an involvement of MEGJ as 

a hyperpolarization factor in SMA. 

 Gap junctions are formed by connexin 37, 40, 43, and 45, but only Cx37, Cx40, and Cx43 are 

localized to EC borders (Gabriels and Paul, 1998; Inai and Shibata, 2009). To the best of our 

knowledge, no information is available on the effect of acidic pH on Cx protein in SMA. Our 

qPCR results revealed distinct upregulation of Cx37 and Cx43 under acidic stress. This increased 

expression following a short incubation (3 h) may be explained on the basis of short half-life of 

connexin (1-5 h), which modulates the cell-cell communication (Liu et al., 2012; Martin and 

Prince, 2008; Segretain and Falk, 2004). Gel analysis of qPCR products indicates Cx37, Cx40 

and Cx43 are widely expressed in SMA. These Cx are involved in the promulgation of 

hyperpolarization waves along the MEGJ to the SM layer, as previously suggested (Figueroa et 

al., 2003; Chaytor et al., 2005). Furthermore, Cx40 itself has been shown to be involved in the 

basal release of NO and cyclooxygenase products, and in the regulation of acetyl choline 

sensitivity by Cx40-eNOS interaction (Meens et al., 2015). Importantly, the upregulated rank 
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order of gene expression of connexin in our model correlates with the functional data. Further 

studies examining the translational expressions confirmed that the increase in the gene 

expressions of Cx37 and 43. 

 In conclusion, AIR in the SMA is endothelium-dependent via the COX-PGI2 pathway at 

normal pH, and acidosis augments this relaxation with an additional participation of NOS-NO-

cGMP and MEGJ. These studies have strong implications in the pathophysiology and therapeutic 

targeting for acidosis-associated gastrointestinal and metabolic disorders. 
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Table 1. Primers for connexin 37, connexin 40, connexin 43 and GAPDH genes and their 

respective cycle parameters. 

Receptor Primer sequence 

NCBI Reference 

Sequence 

Product  

Size (bp) 

Connexin37 

Forward TCCTTGAGAAGCTGCTAGAC 

XM_005678726.1 185 

Reverse GTCGTAGCAGACATTGGTG 

Connexin40 

Forward ATCTCCCACATTCGATACTG 

XM_005677755.1 194 

Reverse CAGGACAGCTCTGTCTTCTC 

Connexin43 

Forward ACCTGGCTCATGTGTTCTAC 

XM_005684517.1 194 

Reverse GATGTAGGTTCTCAGCAAGC 

GAPDH 

Forward GAGATCAAGAAGGTGGTGAA 

XM_005680968.1 175 

Reverse CATACCAGGAAATGAGCTTG 

 

Legends to Tables 

Table 1. Primers for connexin 37, connexin 40, connexin 43 and GAPDH genes and their 

respective cycle parameters. 
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Legends to Figures 

Fig. 1. Acetyl choline but not sodium nitroprusside -induced relaxation is increased under 

acidosis in an endothelium-dependent manner due to increased release of nitric oxide. 

Acetyl choline-induced relaxation in noradrenaline- (A) and KCl (B) pre-contracted SMA is 

augmented at pHo 6.8. AIR at pHo 7.4 as well as pHo 6.8 (*P < 0.05) is nearly abolished by 

endothelium denudation (#P < 0.05). (C) sodium nitroprusside  produces similar vasorelaxation 

at pHo 7.4 and 6.8. (D) NO release is increased under acidic pHo (6.8) vs. pHo (7.4). 

Fig. 2. Percent maximal inhibition by both L-NAME and indomethacin against AIR in NA-

pre-contracted SMA is increased under acidosis. (A-B) At pHo 7.4, both indomethacin and 

combination of L-NAME and indomethacin inhibit the AIR (*P < 0.05), but not L-NAME alone. 

Conversely, during acidosis, all these maneuvers further significantly inhibit the AIR with a shift 

of the CRC to right (*P < 0.05, n = 5-9) (C-D). 

Fig. 3. Percent maximal inhibition of both L-NAME and indomethacin against AIR in KCl-

pre-contracted SMA is increased under acidosis. (A-D) These data demonstrate that the 

effects of different inhibitors examined are similar to those described above in Fig. 2, except that 

the % maximal relaxation with AIR was higher in NA-pre-contracted preparations. For that 

reason, the remaining studies were done in NA-pre-contracted vessels. 

Fig. 4. The blocking effect of ODQ and 18β-glycyrrhetinic acid (18β GA) is significantly (*P  

< 0.05) increased and cGMP pathway is activated under acidosis. Both ODQ (A) and 18β 

GA (B) significantly attenuate AIR with a rightward shift of CRC at pHo 7.4 and pHo 6.8. (*P < 

0.05, n = 6-12.). Maximal percent inhibition of ODQ (C) and 18β GA (D) is significantly 
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increased under acidosis (*P < 0.05, n = 6-12). (E) The cGMP level is increased under acidic 

pHo (6.8) vs. pHo (7.4), which was blocked by BAPTA, AM (1 μM, 10 μM). 

Fig. 5. Percent maximal inhibition of both ODQ and 18β GA is increased under acidosis. 

ODQ (A) and 18β GA (B) significantly inhibit SIR at pHo 7.4 and pHo 6.8 (*P < 0.05, n = 6-12). 

The inhibitory effect of ODQ (C) and 18β GA (D) is significantly increased under acidosis (*P < 

0.05, n = 6-12). 

Fig. 6.  qPCR and WB data show an increase in connexin expression following acidosis. (A) 

qPCR analysis for Cx37, Cx40 and Cx43 in goat SMA (A), and WB analysis  (B-C) in goat SMA 

showing significant increase in Cx37,  Cx43 and iNOS following acidosis (*P < 0.05, n = 4). 

Fig. 7.  Schematic representation of the effect of acidosis on mediators of relaxation in SMA. 

Acetyl choline binds to muscarinic type 3 receptor (M3R) in the vascular endothelial cell to 

activate PLC-IP3-DAG pathway increasing [Ca2+]i which then activates eNOS and COX to 

release NO and PGI2, respectively. Subsequently, NO and PGI2 diffuse to the adjacent SMC 

where they interact with sGC and IP, thus increasing cytosolic cGMP and cAMP, the mediators 

of vasorelaxation. MEGJ, the channels allowing for the electrical and metabolic coupling between 

EC and SMC are formed by oligomerization of hexameric connexin to form connexon or 

hemichannel (HC). Acidosis augments the vasorelaxation by (i) activating eNOS-cGMP, (ii) 

stimulating COX-2-PGI2, (iii) opening up the connexon and hemichannels, and (iv) increasing the 

expression of connexins. 

Abbreviations used in figure 7: [Ca2+]i intracellular Ca2+; 18β-GA, 18β-glycyrrhetinic; AA, 

arachidonic acid; AC, adenylyl cyclase; cAMP, cyclic adenosine monophosphate; cGMP, cyclic 

guanosine monophosphate; COX, cyclooxygenase; Cx, connexin; DAG, diacylglycerol; eNOS, 
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endothelial nitric oxide synthetase; GJ, gap junction; HC, hemichannels; IP, PGI2 receptor; IP3, 

inositol triphosphate; PGI2, prostacyclin; MEGJ, myoendothelial gap junctions; M3R, muscarinic 

receptor; PGIS, prostacyclin synthetase; sGC, soluble guanylyl cyclase; SER, sarcoplasmic 

reticulum; PLC, phospholipase C; NO, nitric oxide; L-NAME, L-NG-nitroarginine methyl ester; 

ODQ, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one; SMC, smooth muscle cell. Arrows indicate 

stimulation, and red bars indicate inhibition. 
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