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Abstract
Background/Aims: Pim-1 is a serine/threonine kinase that is highly expressed in the heart, 
and exerts potent cardiac protective effects through enhancing survival, proliferation, 
and regeneration of cardiomyocytes. Its myocardial specific substrates, however, remain 
unknown. In the present study, we aim to investigate whether Pim-1 modulates myofilament 
activity through phosphorylation of cardiac troponin I (cTnI), a key component in regulating 
myofilament function in the heart. Methods: Coimmunoprecipitation and immunofluorescent 
assays were employed to investigate the interaction of Pim-1 with cTnI in cardiomyocytes. 
Biochemical, site directed mutagenesis, and mass spectrometric analyses were utilized to 
identify the phosphorylation sites of Pim1 in cTnI. Myofilament functional assay using skinned 
cardiac fiber was used to assess the effect of Pim1-mediated phosphorylation on cardiac 
myofilament activity. Lastly, the functional significance of Pim1-mediated cTnI in heart disease 
was determined in diabetic mice. Results: We found that Pim-1 specifically interacts with 
cTnI in cardiomyocytes and this interaction leads to Pim1-mediated cTnI phosphorylation, 
predominantly at Ser23/24 and Ser150. Furthermore, our functional assay demonstrated that 
Pim-1 induces a robust phosphorylation of cTnI within the troponin complex, thus leading to 
a decreased Ca2+ sensitivity. Insulin-like growth factor 1 (IGF-1), a peptide growth factor that 
has been shown to stimulate myocardial contractility, markedly induces cTnI phosphorylation 
at Ser23/24 and Ser150 through increasing Pim-1 expression in cardiomyocytes. In a high-
fat diabetic mice model, the expression of Pim1 in the heart is significantly decreased, 
which is accompanied by a decreased phosphorylation of cTnI at Ser23/24 and Ser150, 
further implicating the pathological significance of the Pim1/cTnI axis in the development of 
diabetic cardiomyopathy. Conclusion: Our results demonstrate that Pim-1 is a novel kinase 
that phosphorylates cTnI primarily at Ser23/24 and Ser150 in cardiomyocytes, which in turn 
may modulate myofilament function under a variety of physiological and pathophysiological 
conditions.
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Introduction

Pim-1 is a highly conserved serine/threonine kinase that belongs to the calmodulin-
dependent protein kinase related group and prefers to phosphorylate the consensus 
sequence (K/R)-(K/R)-(K/R)-X-(S/T)-X [1]. It is originally identified as a cellular oncogene 
that inhibits apoptosis and promotes proliferation [1]. Recently, accumulating evidence 
suggests that Pim-1 plays a pivotal role in protecting heart function from ischemia induced 
damage and cardiac hypertrophy [2, 3], as well as protecting mitochondrial integrity in 
cardiomyocyte [4]. Moreover, Pim-1-engineered cardiac progenitor cells dramatically 
improve the cardiac function after myocardial infarction [5, 6]. Systemic delivery of human 
Pim-1 via cardiotropic adeno-associated virus serotype-9 improves diabetic cardiomyopathy 
by induction of prosurvival signaling [7]. Furthermore, Pim-1 has been shown to promote 
cardiomyocyte survival and protect heart muscles from ischemic damage downstream of 
Akt through regulating expression of anti-apoptotic proteins and calcium channels [8]. 
Notably, Pim-1 maintains cardiomyocyte contractility by increasing Ca2+ transient amplitude 
and percentage of cell shortening in isolated cardiomyocyte [8]. However, the molecular 
mechanisms underlying Pim-1-mediated cardiac contractility still remain unclear.

Cardiac troponin complex has three major components, cardiac troponin I (cTnI), 
Troponin T (TnT), and Troponin C (TnC) [9, 10]. cTnI is the inhibitory unit that interacts 
with the major proteins present in the sarcomeric thin filament, including actin, cTnC, 
α-tropomyosin (α-TM), and cTnT [11]. These interactions reveal the pivotal roles of cTnI 
in regulating heart muscle crossbridge kinetics and contraction in response to changes of 
intracellular Ca2+ concentrations [12]. Phosphorylation of specific serine and threonine 
residues on cTnI by several different kinases represents a major physiological mechanism for 
alteration of myofilament properties. For example, cAMP-dependent protein kinase (PKA) 
mediates phosphorylation of the two serine residues (Ser-23/24) in the unique N-terminal 
domain of cTnI, leading to a reduction in myofilament Ca2+ sensitivity and an increase in 
crossbridge cycling rate by reducing the Ca2+-binding affinity of cTnC [13]. Likewise, PKD1 
phosphorylates cTnI at Ser-23/24, resulting in desensitization of the myofilament response 
to Ca2+ as well as an increase in cross-bridge kinetics [14, 15]. Another important protein 
kinase family, protein kinase C (PKC) is found to phosphorylate cTnI at Ser-23/24, Ser-43/45, 
and Thr144 residues [16]. Phosphorylation of the Ser-43/45 sites depresses the maximum 
tension and crossbridge kinetics, which is in contrast to phosphorylation of Ser-23/24 
[17]. Moreover, the effect of phosphorylation at Ser-43/45/Thr144 dominates the effects 
of phosphorylation at Ser-23/24 [18]. Other kinases such as P21-activated kinases (PAK) 
have been found to cause phosphorylation of cTnI at Ser-149, which results in an increase 
in myofilament Ca2+ sensitivity [19]. More recently, 5’-AMP kinase (AMPK) has been shown 
to induce an increase in Ca2+ responsiveness of the myofilaments and blunt PKA-dependent 
function through phosphorylation of Ser-150 of cTnI [20-22]. Importantly, by using mass 
spectrometric (MS) approaches, Zhang et al. demonstrated that there is a depression in 
phosphorylation at cTnI-Ser23/24 but an increase in phosphorylation of cTnI-Ser43/45 in 
human ischemic and dilated cardiomyopathy [23]. Thus, alteration of cTnI phosphorylation 
levels has a great clinical relevance that may shed light on the discovery of novel therapeutic 
targets of heart failure.

Pim-1 is implicated in regulating cardiomyocyte contractility and calcium transient, the 
role of Pim-1 in modulating cardiac myofilament activity, however, remains largely unknown 
[8]. In the present study, we for the first time identified Pim-1 as a novel kinase that specifically 
interacts with cTnI and causes cTnI phosphorylation at Ser23/24 and Ser150, thus leading 
to a reduced Ca2+ sensitivity of contractile regulation. Furthermore, we demonstrated that 
IGF-1, a peptide growth factor that has been shown to stimulate myocardial contractility and 
protects cardiac injury [24, 25], significantly induces cTnI phosphorylation at Ser23/24 and 
Ser150 in a Pim-1 dependent manner in cardiomyocytes. Collectively, these results suggest 
that cTnI phosphorylation by Pim-1 may represent a novel mechanism underlying the Pim-
1-mediated protective effects in the heart.
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Materials and Methods

Cell culture
Human embryonic kidney cells HEK293T and Ad293 cells (ATCC) were cultured in Dulbecco’s modified 

Eagle’s medium (DMEM) supplemented with 10% FBS (GIBCO), 1% penicillin/streptomycin (GIBCO) in a 
humidified atmosphere of 5% CO2 at 37°C.

Animal model of diabetes
Wild-type (WT) and db/db mice on C57BLK6/J background were obtained from Jackson Laboratory. 

Animals were fed either regular chow diet or high fat diet (HF) from 8 week old to 16 week old as described 
previously [26]. Mice were sacrificed by inhalation of CO2 for the collection of the heart. This study was 
reviewed and approved by the Institutional Animal Care and Use Committee at Thomas Jefferson University.

Isolation of adult rat ventricular myocytes
Ventricular myocytes were isolated from the hearts of adult male Sprague-Dawley rats by collagenase-

based enzymatic digestion, as described previously [15]. In brief, hearts were excised and perfused for 5 
min with modified HEPES-Krebs solution (pH 7.3 at 37°C) containing (in mmol/L) NaCl 130, MgCl2 4.5, 
NaH2PO4 0.4, CaCl2 0.75, HEPES 4.2, taurine 20, creatine 10 and glucose 10. The buffer was saturated with 
95% O2/5% CO2 (pH 7.4, 37°C). Hearts were then consecutively retrogradely perfused with Ca2+-free HEPES-
Krebs solution containing 100 μmol/L EGTA (4 min) and HEPES-Krebs solution containing 100 μmol/L 
CaCl2 and 1 mg/mL type II collagenase (Worthington, Lakewood, USA). Hearts were then removed from 
the perfusion apparatus, the ventricles cut into small pieces, and isolated myocytes were separated from 
undigested ventricular tissue by filtering through nylon gauze, and the latter was incubated in 30 mL of the 
collagenase solution for a further 8 min. This step was repeated, thereby generating three isolated myocyte 
fractions. In each fraction, myocytes were allowed to settle into a loose pellet and the supernatant was 
removed and replaced with HEPES-Krebs solution containing 1 % BSA and 500 μmol/L CaCl2. Myocytes 
were again allowed to settle, the supernatant removed and the cells finally pooled and resuspended in 30 
mL of HEPES-Krebs solution containing 1 mmol/L CaCl2. The pooled isolated myocytes were pelleted by 
brief centrifugation at 50g and washed at room temperature.

Co-immunoprecipitation of cTnI and Pim-1 in HEK293T cells and heart tissues
HEK293T cells were transiently transfected with Flag-tagged cTnI and Myc-tagged Pim-1 expression 

plasmids using PEI following our standard protocol for 48 hours. HEK293T cells or rat heart tissues were 
lysed or homogenized in a buffer containing 50 mM Tris/HCl (pH 8.0), 1% Nonidet P40, 150 mM NaCl 
and protease inhibitors. Co-immunoprecipitation of cTnI and Pim-1 was performed as described previously 
[27]. The following antibodies and beads were used for detection and immunoprecipitation: rat polyclonal 
anti-Myc antibody (Genescript), mouse monoclonal anti-FLAG antibody (Genescript), rabbit monoclonal 
anti-Pim1 antibody (Santa Cruz) and rabbit monoclonal anti-TnI antibody (Cell Signaling), anti-c-Myc-
agarose affinity gel (Sigma) and anti-FLAG M2-agarose (Sigma).

Immunoblotting
Cell lysates were made using RIPA buffer (Thermo Scientific) containing 25 mM Tris-HCl pH 7.6, 150 

mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS and proteinase inhibitor cocktail containing 2 mM  
PMSF, 20 μg/mL aprotinin, 10 μg/mL leupeptin. After 1 h extraction with rocking at 4°C, insoluble material 
was removed by centrifugation. Supernatants were resolved by SDS-PAGE, and transferred to nitrocellulose 
membranes (Bio-Rad), which were blocked with 5% non-fat milk in PBS with 0.1% Tween 20 (PBS/T) 
and then incubated with diluted antibodies overnight at 4°C with agitation. After washing with PBS/T for 
three times, membranes were incubated with appropriate secondary antibodies (Thermo Scientific). Blots 
were visualized on an Odyssey Imaging System (LI-COR) as we described previously [28]. The following 
antibodies were used for detecting phosphorylated TnI: anti-phospho-Troponin I (Cardiac) (Ser23/24) 
antibody (Cell Signaling), Troponin I Type 3 (cardiac) [p-Ser150] Antibody (Ser150) antibody (Novus).

Immunofluorescent staining
The myocytes cultured on the laminin-coated glass coverslips were fixed with 4% paraformaldehyde for 

10 min, washed three times in PBS, and then permeabilized with 0.25%Triton-X100 for 15 min. Following a 
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blocking step with 10% of goat serum in PBS for 60 min, the cardiomyocyte were co-immunostained with a 
rabbit monoclonal primary antibody against cTnI (1:200, Cell Signaling) and a mouse monoclonal antibody 
against Pim-1 (1:200, Santa Cruz) for overnight at 4°C. After washing three times in PBS for 10 min, cells 
were stained with TRITC-conjugated anti-rabbit IgG and FITC-conjugated anti-mouse IgG second antibodies 
at 1:250 (Invitrogen, USA), respectively, at 37 ºC for 2 h and then were rinsed three times with PBS. Cell 
nuclei were stained with DRAQ5. The stained cells were observed by laser-scanning confocal microscopy 
(Leica, Heidelberg, Germany).

In vitro phosphorylation assays
Recombinant human cTnI, human troponin complex (Prospec, East Brunswick, NJ), skinned myocyte 

were incubated with active recombinant Pim-1 (EMD Millipore) and 100 μmol/L 32P-ATP (PerkinElmer) in 
a kinase assay buffer containing (in mmol/L) Tris-HCl (pH 7.5) 25, beta-glycerophosphate 5, dithiothreitol 
(DTT) 2, Na3VO4 0.1, MgCl2 10 for up to 120 min at 37 °C as we described previously [28]. The reaction was 
terminated by the addition of 0.5 volumes of 3×Laemmli sample buffer and incubated at 95 °C for 5 min, and 
then resolved by SDS/PAGE (12% gels) and autoradiography. For western blot analysis, recombinant cTnI 
or its mutants was phosphorylated by incubating with active Pim-1 in the presence of non-radiolabelled 
ATP (500 μmol/L).

Identification of phosphorylation sites by mass spectrometry
Peptides contained Ser23/24 and Ser150 (APIRRRSSNYRA and TLRRVRISADAM) were synthesized 

by Genscript. Peptides were incubated with active Pim-1 in the presence of non-radiolabelled ATP (500 
μmol/L) at 30 °C for 60 min. For peptide mass spectrometry analysis of the tryptic digestion products, 50 μL 
of the solution was analyzed by LC-MS, using an HPLC system (Series 1100, Agilent Technologies) coupled to 
an electrospray ionization mass spectrometer (Finnigan LCQ Advantage MAX, Thermo Electron Corp.). For 
HPLC separation of the peptides, a CC 250/4 Nucleosil 100-5 C18 Nautilus column (Macherey-Nagel GmbH) 
was used, with a linear gradient over 60 min of 0-65 % solution B in solution A (solution A, 0.1 % formic acid 
in water; solution B, 0.1 % formic acid in acetonitrile). Mass spectra were analyzed using Finnigan Xcalibur 
software (Thermo Electron Corp.) and the peptide masses assigned, using ExPASy software.

Expression of cTnI mutants and immunoprecipitation kinase assay
Mutants of Flag-tagged cTnI plasmids (Ser23/24→Ala23/24, TCC/TCC→GCC/GCC; Ser42/44→Ala42/44, 

TCC/TCG→GCC/GCG; Thr143→Ala143, ACC→GCC; Ser150→Ala150, TCT→GCT) were generated using Quick-
Change II kit as described by the manufacturer (Agilent). Wild type or mutated plasmids were transiently 
transfected into HEK293T cells and lysed with IP lysis buffer. Immunoprecipitation was performed as 
described previously [27]. In brief, cell lysates were incubated with anti-Flag M2-agarose (Sigma) overnight 
at 4°C with rotation. Agarose beads were centrifuged for 30 sec at 4°C, followed by three times washing 
with 500 μl of 1X kinase buffer. The beads pellets were resuspended in 20μl 1X kinase buffer supplemented 
with 100 μmol/L 32P-ATP (PerkinElmer) and active Pim-1 protein and then incubated 60 min at 30°C. The 
reaction was terminated by the addition of 0.5 volumes of 3×Laemmli sample buffer and incubated at 95 °C 
for 5 min, and was then resolved by SDS/PAGE (12% gels) and autoradiography.

Skinned myocyte preparation
Skinned myocyte was prepared as described previously with modifications [21]. Hearts from Sprague-

Dawley rats were excised and immersed in ice-cold relaxing solution, containing (in mmol/L) EGTA 10, 
2-[N,N-Bis(2-hydroxyethyl)amino] ethanesulfonic acid (BES) 100, potassium proprionate 55, ATP 5, 
creatine phosphate 10, free Mg2+ 1, and protease inhibitor. The myocardial tissue was homogenized in a 
Waring blender (~10 s in ice cold relaxing solution) and, following centrifugation (1400 rpm, 1 min), the 
myocyte pellet was re-suspended in Triton X-100 (1 % v/v in relaxing solution) for 10 min, to disrupt lipid 
membranes. Following two further cycles of similar centrifugation and re-suspension, the myocyte pellet 
was washed, re-suspended and kept in ice-cold relaxing solution, until used for in vitro phosphorylation 
assays or mechanical measurements.

Functional studies in skinned myocyte fragments
Rat skinned cardiac muscle fibers were pre-incubated with or without 0.1 mg/ml Pim1 in a relaxing 

solution for 30 min. Force measurement was performed as previously described [14]. For mechanical 
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measurements, myocyte fragments were clamped to a sensitive force transducer (Model 403A, 200 mV/
mg, Cambridge Technology, Inc.) and a high-speed length controller (Model 308B, Aurora Scientific, Inc.) 
at either end. All mechanical experiments were performed at 18 °C. Sarcomere length was acquired (240 
Hz CCD camera) and analyzed using commercial software (IonOptix Corp.). The sarcomere length was set 
to ~2.0 μm in relaxing solution for all functional measurements. Solution changes were made using a fast 
stepper motor attached to 2 parallel capillary tubes (Model SF-77B Perfusion Fast-Step, Warner Instrument 
Corp.). pClamp software (Axon Instruments) was used to trigger the stepper motor for solution changes 
or to impose rapid length changes on the myocyte fragment. Force and length signals were recorded on 
a computer using a 12-bit analog/digital board, sampling at 2 kHz. Skinned myocytes were activated in 
solutions (pH 7.0) containing a Ca2+ concentration ranging between 10-9 (pCa 9.0; relaxing solution, 
composition as given above) and 10-4.5 mol/L (pCa 4.5; maximal Ca2+ activating solution), to measure the 
Ca2+ sensitivity of myofilaments.

Statistical analyses
Data are expressed as means ± SE. The statistical significance of differences was assessed by Student’s 

t-test or analysis of variance (ANOVA) with Bonferroni’s post hoc test, as appropriate; a value of P < 0.05 was 
considered statistically significant.

Results

Interaction of Pim-1 with cTnI
To elucidate the mechanism underlying the regulation of cardiac contractility by Pim-1 

[8, 29], we attempted to investigate whether the cardio-protective kinase Pim-1 interacts 
with cTnI. In this regard, Myc-tagged human Pim-1 and Flag-tagged human cTnI plasmids 
were co-transfected into HEK293T cells, co-immunoprecipitation was then performed. 
As shown in Fig.  1A, immunoprecipitation of Myc-tagged Pim-1 led to co-precipitation of 
FLAG-tagged cTnI. Similarly, 
immunoprecipitation of Flag-
tagged cTnI resulted in the 
co-immunoprecipitation of 
Myc-tagged Pim-1 (Fig. 1A). To 
determine whether there is an 
endogenous interaction of cTnI 
and Pim-1 in cardiomyocytes, 
we performed co-immuno-
precipitation with anti-Pim-1 
antibody using mouse heart ly-
sates. As shown in Fig.  1B, cTnI 
co-precipitated with the anti-
Pim-1 antibody, but not with the 
nonimmune IgG. To investigate 
the intracellular localization of 
this interaction, we performed 
immunofluorescent staining in 
adult mouse cardiomyocytes. 
Immunofluorescent microscopy 
showed a strong colocalization 
of Pim-1 and cTnI in the sarco-
mere of cardiac cells (Fig.  1C). 
Together, these results indicate 
that Pim-1 interacts with cTnI 
in cardiomyocytes under physi-
ological conditions.

Fig. 1. Interaction of Pim-1 with cTnI. (A). HEK293T cells were 
co-transfected with Flag-cTnI and Myc-Pim-1. Co-immunprecipi-
tation were performed by using anti-Flag or anti-Myc antibodies 
and then analyzed by western blot. (B). Adult mouse heart tis-
sue samples were extracted and immunoprecipitated with either 
anti-Pim-1 antibody or control IgG and then analyzed by western 
blot. (C) Fixed adult mouse cardiomyocyte were stained with anti-
Pim-1 and anti-cTnI antibodies and then processed for fluorescent 
staining analysis.
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Pim-1 phosphorylates cTnI 
primarily at serine 23/24 
and serine 150
Since Pim-1 is a serine/

threonine kinase, the interaction 
of Pim1 with cTnI prompted us 
to investigate whether cTnI is a 
good substrate of Pim-1. To test 
this hypothesis, in vitro phos-
phorylation assays were carried 
out using purified recombinant 
human cTnI as substrate, which 
was incubated with active Pim-1 
in the presence of [γ-32P] ATP. As 
shown in Fig.  2A and 2B, incuba-
tion of recombinant Pim-1 with 
cTnI resulted in a robust phos-
phorylation of cTnI in a time 
and dose-dependent manner. To 
determine the phosphorylation 
kinetics of troponin complex by 
Pim-1, the time course of Pim-
1-induced phosphorylation of 
the reconstituted troponin (Tn) 
complex was determined in an 
in vitro kinase assay. Interest-
ingly, Pim-1 phosphorylates 
cTnI in the troponin complex 
in a time-dependent manner, 
while TnT was also phosphory-
lated by Pim-1 in the Tn com-
plex (Fig.  2C). Taken together, 
these results suggest that cTnI 
is a good substrate of Pim-1 ki-
nase.

Because Pim-1 prefer-
entially phosphorylates the 
consensus sequence (K/R)-
(K/R)-(K/R)-X-(S/T)-X [30], 
and phosphorylation of several 
serine/threonine sites in cTnI 
has been reported to play im-
portant roles in regulation of 
cardiac contraction/relaxation. 
We attempted to map the Pim1-
induced phosphorylation sites 
in cTnI by a site-directed mu-
tagenesis of Ser (S) to Ala (A) 
[28]. Mammalian expression 
plasmids bearing Flag-tagged 
S23/24A, S42/44A, T143A and 
S150A mutants were construct-
ed and then transfected into 
HEK293T cells. 48 hours after 

Fig. 2. cTnI is phosphorylated by Pim-1 at Ser-23/24 and Ser-150. 
Recombinant cTnI was incubated with active Pim-1 in the pres-
ence of [γ-32P]ATP for different times (A) or different doses (B). 
Phosphorylation was detected by autoradiography and cpm was 
counted. (C), The Tn complex was incubated with 0.5 μg of active 
Pim-1 for different time points as indicated in the presence of [γ 
-32P]ATP in an in vitro phosphorylation assay. Both the autora-
diograph (left panel) and the Coomassie-stained gel (right panel) 
are shown.
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Fig. 3. Identification of Pim-1-induced phosphorylation sites in 
cTnI. (A), Autoradiograph of 12% SDS-polyacrylamide gel showing 
the phosphorylation levels of wild-type and different mutants of 
cTnI by Pim-1. Expression vectors bearing WT and different mutants 
of cTnI were transfected into HEK293 cells. 48hr after transfection, 
overexpressed protein was immunoprecipitated by anti-Flag an-
tibody and then subjected to an in vitro kinase in the presence of 
active Pim-1 and [γ -32P]ATP. ** P<0.01 vs WT group. (B). Autora-
diograph of 12% SDS–polyacrylamide gel showing Pim-1-induced 
phosphorylation levels of human cTnI containing either wild-type 
or combined mutation of cTnI in an in vitro kinase assay. Expression 
vectors bearing WT and various mutants of cTnI were transfected 
into HEK293 cells. 48hr after transfection, overexpressed protein 
was immunoprecipitated by anti-Flag antibody and then subjected 
to an in vitro kinase in the presence of active Pim-1 and [γ -32P]ATP. 
** P<0.01 vs WT group. (C). cTnI was incubated with active Pim-1 in 
the presence of ATP and Pim-1, phospho-ser23/24 and ser-150 was 
detected by western blot and quantitated by densitometric analysis.
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transfection, overexpressed 
proteins were immunopre-
cipitated by anti-Flag anti-
body and then used for an 
in vitro kinase assay in the 
presence of active Pim-1 
and [γ-32P]-ATP. As shown 
in Fig.  3A, TnI S23/24A 
mutant significantly abol-
ished Pim-1-mediated cTnI 
phosphorylation by ap-
proximately 80%, whereas 
S150A mutant caused a ~60 
% reduction in cTnI phos-
phorylation, suggesting 
that Pim-1 phosphorylates 
cTnI primarily at Ser-23/24 
and Ser-150. Furthermore, 
a S23/24/150A triple mu-
tant was generated and the 
mutant protein was overex-
pressed and immunoprecipitated for 
an in vitro phosphorylation assay. No-
tably, triple mutant of S23/24/150A 
almost completely abolished Pim-
1-induced cTnI phosphorylation (Fig.  
3B). Moreover, Pim-1 induced in vitro 
phosphorylation of cTnI was detected 
by western blot using anti-phospho-
Ser/23/24 and phosphor-Ser150 spe-
cific antibodies. As shown in Fig.  3C, 
both Ser-23/24 and Ser-150 of cTnI 
were robustly phosphorylated by Pim-
1 in a dose-dependent manner.

Verification of the phosphorylation 
sites by MALDI–TOF-MS
To further confirm the Pim-1-in-

duced phosphorylation sites in cTnI, 
two peptides derived from cTnI span-
ning the potential phosphorylation 
residues of Ser23/24 and Ser150 were 
synthesized, respectively, and then 
treated with active pim1 protein. Phos-
phorylation of peptides was analyzed 
by the high resolution mass spectrom-
etry. As shown in Fig.  4A and 4B, both 
peptides were efficiently phosphory-
lated at Ser23/24 and Ser150 by Pim1, 
further indicating that Pim1 could potentially phosphorylate cTnI at Ser23/24 and Ser150.

Pim-1 regulates cardiac myofilament function
To determine the effect of Pim1-induced cTnI phosphorylation on cardiac myofilament 

activity, we first investigated whether Pim1 phosphorylates cTnI Ser23/24 and Ser150 

Fig. 5. Effects of Pim-1-mediated phosphorylation on Ca2+-
sensitive tension development in skinned myocytes. (A). 
Pim-1-mediated cTnI phosphorylation in skinned myo-
cyte preparations, as detected by western blot and quan-
titated by densitometric analysis. Equal protein loading is 
indicated by actin on coomassie-stained gels. ** P<0.01 vs 
non-treatment group. (B). Relative maximum force devel-
opment by skinned myocytes in the presence or absence 
of Pim-1 incubation. (n=5 per group). (C). Tension-pCa re-
lationship under control and after Pim-1-mediated phos-
phorylation in the presence of solutions at pCa 9.0 to 4.5 
(n=5 per group).
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(A). Spectrum of phosphorylated peptide containing Ser23/24 of cTnI. 
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residues in skinned fibers from the adult rat left ventricle. As expected, there was a significant 
increase in the phosphorylation of Ser23/24 and Ser150 after a 60-minute exposure of 
the skinned fiber preparation to active Pim1, indicating that cTnI is a natural substrate of 
Pim1 and Pim1 may regulate Ca2+ sensitivity in skinned myocardial preparations (Fig.  5A). 
Then, we determined whether Pim-1-mediated cTnI phosphorylation affects myofilament 
contractility and calcium selectivity in skinned myocytes from the adult rat left ventricle. 
Although there was no significant difference between the control and Pim1-treated groups 
in maximum force and Hill coefficient (nH) (Fig.  5B), Pim1-mediated phosphorylation of 
cTnI significantly reduced the Ca2+ sensitivity of skinned myocardial fibers, resulting in a 
rightward shift of the force-pCa curve (Fig.  5C). As shown in Fig.  5D, pCa at 50% maximal 
tension (pCa50) was 5.912 ± 0.029 in the control group (n=4) and 5.760 ± 0.010 in the 
Pim1-treated group (n=5; P<0.05), suggesting that there was a reduction of Ca2+ sensitivity 
of Pim1-modified skinned fiber preparations.

IGF-1 phosphorylates cTnI through inducing expression of Pim-1 in cardiomyocytes
Insulin like growth factor 1 (IGF-1) has been shown to stimulate cardiac growth and 

contractility and exert protective effects in the heart, although the mechanism of this 
effect still remains elusive [25]. Interestingly, IGF has recently been shown to potently 
induce Pim1 expression in the heart [8], which prompted us to speculate that IGF-1 may 
regulate cardiomyocyte contractility via Pim-1-induced cTnI phosphorylation. To test this 
hypothesis, rat ventricle cardiomyocytes were stimulated with IGF-1 and phosphorylation 
of cTnI at Ser-23/24 and Ser-150 were then determined by western blot. Indeed, consistent 
with a previous report [8], IGF-1 treatment of cardiomyocytes markedly induces Pim-1 
expression, which parallels the increased phosphorylation of cTnI at Ser23/24 and Ser150 
in cardiomyocytes (Fig.  6A and 6B). To further determine the molecular signaling pathway 
(s) involved in IGF-1-induced cTnI phosphorylation, several pharmacological inhibitors of 
protein kinases were utilized. As shown in Fig.  6C, pretreatment of cardiomyocytes with 
PKA inhibitor H89 barely affected IGF-I-induced cTnI phosphorylation, while inhibition 
of AKT pathway with LY294002 partially, but significantly, blocked IGF-1-induced cTnI 
phosphorylation. Importantly, pretreatment of cardiomyocytes with SMI-4a, a Pim-1 specific 

Fig. 6. Pim-1 is involved in IGF-1-induced cTnI phosphorylation in cardiomyocytes. (A). Rat ventricular 
cardiomyocytes were stimulated with IGF-1 (20 ng/ml) at different time points (A) and doses for 60 min 
(B), phosphorylation levels of cTnI at Ser23/24 and Ser150, total cTnI, and Pim-1 were detected by western 
blot and quantitated by densitometric analysis. * P<0.05; ** P<0.01 vs basal level. n=3. (C). Cardiomyocytes 
were treated with SMI-4a (10 µM), LY294002 (30 μM) or H89 (10 µM) for 1 hr, followed by stimulating with 
IGF-1 (20 ng/ml) for 2 hr, phosphorylation levels of cTnI at Ser23/24 and Ser150, total cTnI, and Pim-1 were 
detected by western blot and quantitated by densitometric analysis. * P<0.05 vs. CTL. # P<0.05 vs. IGF-1 
treated group. SMI-4a, Pim-1 inhibitor; LY294002, PI3K inhibitor; H89, PKA inhibitor.
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inhibitor [30], almost completely blocked IGF-1-induced cTnI phosphorylation, suggesting 
that IGF-1-induced cTnI phosphorylation in cardiomyocytes is Pim-1 dependent.

Implication of the Pim1/cTnI axis in diabetic cardiomyopathy
Our previous studies have shown that the expression of Pim-1 is dramatically 

downregulated in diabetic mouse heart tissues [30]. Furthermore, the cardiac contractility 
and cTnI phosphorylation have been shown to be significantly reduced in diabetic hearts 
[31, 32]. To further substantiate the pathophysiological significance of Pim-1-induced 
cTnI phosphorylation, we determined whether Pim-1 expression is correlated with cTnI 
phosphorylation in vivo. In this regard, Pim1 expression and cTnI phosphorylation levels 
were analyzed in heart homogenates from the diabetic db/db mice fed with a HF and 
their normal controls by western blot analysis. As shown in Fig.  7A and 7B, consistent 
with previous reports [30, 33], the expression of Pim-1 was significantly decreased in the 
diabetic hearts. Likewise, the phosphorylation levels of cTnI at Ser23/24 were markedly 
reduced by approximately 60%, while the phosphorylation of cTnI at Ser150 was slightly, 
but statistically significantly, decreased by approximately 25%, as compared to their normal 
controls (Fig.  7C). Together, these results suggest that decreased Pim1 expression with a 
resultant reduction of cTnI phosphorylation in the heart might play important roles in the 
development of diabetic cardiomyopathy.

Discussion

Covalent modification of cTnI by kinase-mediated phosphorylation is an important 
mechanism in the regulation of thin filament function and thereby the cardiac contractile 
phenotype [11, 12]. Furthermore, altered phosphorylation of cTnI and other myofilament 
proteins have been shown to contribute causally to the cardiac dysfunction in the 
transition from compensated hypertrophy to heart failure [23]. Thus far, several protein 
kinases, including PKA, PKC, AMPK, and PKD, have been shown to phosphorylate cTnI and 
regulate myofilament activity [34, 35]. In the present study, we provide the compelling 
evidence implicating Pim-1 as a novel protein kinase that specifically interacts with and 
phosphorylates cTnI at Ser23/24 and Ser150 in the heart. Indeed, Pim1 and cTnI were found 
to colocalize in adult cardiomyocytes. The functional consequence of this interaction was 
demonstrated by the ability of Pim1 to induce cTnI phosphorylation and reduce myofilament 
calcium sensitivity. Indeed, IGF-1, a cardiac protective hormone that has been shown to 
increase cardiac contractility, increases Pim-1 expression and cTnI phosphorylation cardiac 
cells. These results suggest that the phosphorylation of cTnI by Pim1 may be an important 
determinant of cardiac myofilament activity.

Recently the pathophysiological roles of Pim-1 in the heart have received a significant 
attention. Both loss- and gain-of-function studies have implicated Pim-1 as an essential 
kinase in the regulation of cardiomyocyte survival, calcium dynamics, cardiac contractility, 
and mitochondrial function in cardiomyocytes. For instance, cardiac specific overexpression 

Fig. 7. Phosphorylation 
of cTnI and expression 
of Pim-1 are decreased 
in the heart of diabetic 
mice. (A). Hearts were 
harvested from control 
C57BLKS/J mice (WT) 
and db/db mice. cTnI 
phosphorylation and 
expression of Pim-1 were analysed by western blot. Phosphorylation of cTnI (B) and expression of Pim-1 (C) 
were quantitated by densitometric analysis. * P<0.05; ** P<0.01 vs. with WT mice (Student’s t-test), n = 6.
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of Pim-1 has been shown to decrease infarct size and maintain contractility after myocardial 
infarction  [2, 29], whereas Pim-1 knock out displayed a significant prolongation of calcium 
decay and the sarcomeric relaxation period and this was accompanied by a decrease 
in sarcoendoplasmic reticulum Ca2+ATP-ase (SERCA) and sodium-calcium exchanger 
(NCX) expression [8]. However, it is still unknown whether Pim-1 regulates cardiac 
myofilament function by posttranslational modulation of sarcomere proteins. Indeed, our 
coimmunoprecipitation and colocalization assays demonstrated a direct binding of Pim-
1 with cTnI in cardiac cells, which led us to further investigate whether Pim-1 regulates 
myofilament activity through phosphorylating cTnI. In vitro phosphorylation assays showed 
that cTnI was robustly phosphorylated by Pim-1 in a time and dose dependent manner. To 
our knowledge, this is the first evidence demonstrating cTnI as a natural substrate of Pim-1 
kinase in cardiomyocytes. Furthermore, by applying a site directed mutagenesis strategy 
and mass spectrometry analysis, we demonstrate that Pim-1 phosphorylates cTnI primarily 
at Ser23/24 and at Ser150. Furthermore, our in vitro study shows that Pim-1 preferentially 
phosphorylates cTnI at Ser23/24, and the precise mechanism underlying this process is 
unknown. We speculate that once Pim-1 binds to cTnI, it will cause a conformational change 
of cTnI that favors the binding of Pim-1 to the site of Ser23/24. It is well established that 
phosphorylation of cTnI at different sites results in different myofilament function [34]. For 
example, both PKA and PKD have been shown to phosphorylate cTnI at Ser23/24, which 
resulted in a reduction of Ca2+ sensitivity and acceleration of relaxation and crossbridge 
cycle kinetics [13-15]. In contrast, p21-activated kinase (PAK), which phosphorylates cTnI 
at Ser150, has been shown to increase Ca2+ sensitivity [19]. Furthermore, AMPK, which 
causes a cTnI phosphorylation predominantly at Ser150 as compared to Ser23/24, has been 
shown to increase myofilament Ca2+ sensitivity and prolong cardiac relaxation [21, 22]. In 
the present study, we herein provided a novel phosphorylation pattern of cTnI as regulated 
by cardioprotective Pim-1 kinase in the heart. Indeed, our biochemical assays showed that 
compared to Ser150, Pim-1 preferentially phosphorylates cTnI at Ser23/24, leading to 
a reduction of myofilament Ca2+ sensitivity. It should be noted that the change of cardiac 
myofilament Ca2+ sensitivity does not always correlate with the change of maximum force. 
For example, J van der Velden et al. reported that the maximum force was not significantly 
changed, but the Ca2+ sensitivity was significantly increased in end-stage failing hearts, which 
may be attributed to the altered phosphorylation of contractile proteins such as myosin light 
chain 2 (MLC-2) and cTnT [36]. In our study, we also found that in addition to cTnI, cTnT may 
also function as a substrate of Pim-1 in the heart, which may contribute to the reduced Ca2+ 
sensitivity and unchanged maximum force.

Insulin-like growth factor I (IGF-I) is an important growth factor for cell differentiation 
and proliferation [37]. In the heart, it has been shown to stimulate cardiac growth and 
increase contractile function [24, 25]. Moreover, cardiac specific overexpression of IGF-1 has 
been shown to reduce myofilament isometric tension and increase cTnI phosphorylation, 
through a yet unknown mechanism [38]. Recently, IGF-1 has been found to potently induce 
Pim-1 expression in cardiomyocytes [8]. In our study, we found that Pim-1 increases cTnI 
phosphorylation at Ser23/24 and Ser150 in a Pim-1- dependent manner in cardiomyocytes. 
In this regard, our studies provided a novel mechanism by which IGF-1 may exert some of its 
cardioprotective effects through regulation of cTnI phosphorylation and myofilament activity 
in the heart. Previously, Akt has been shown to be essentially involved in the induction of 
Pim-1 expression by IGF-1 in the heart [8]. Consistent with this finding [8], treatment of 
cardiomyocytes with AKT inhibitor LY294002 markedly, but not completely, blocked IGF-1-
induced cTnI phosphorylation, indicating that other molecular pathways may be involved in 
the IGF-1-induced Pim-1 expression and cTnI phosphorylation in the heart, which warrants 
further investigation. Indeed, in a diabetic cardiomyopathy model, it has been shown that 
the changes in myocardial pAkt and Pim-1 levels were not synchronous, with Pim-1 starting 
to decrease earlier than pAkt [39]. At this point, the molecular mechanism(s) responsible 
for Pim-1 downregulation in DCM remains elusive. Decreased phosphorylation of STAT3 
and increased expression of protein phosphatase 2A (PP2A), have been reported to mainly 
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contribute the regulation of Pim-1 expression at transcriptional and posttranslational levels 
in the diabetic hearts [7, 39].

It is well established that diastolic dysfunction is the most prominent defect of diabetic 
cardiomyopathy, which is characterized by decreased compliance, prolonged myocardial 
relaxation, and altered intracellular Ca2+ homeostasis [40]. In streptozotocin (STZ) induced 
diabetic cardiomyopathy, reduced SERCA2a expression is still not sufficient to explain the 
contractile deficit [41]. In this study, we found that Pim-1 expression was significantly 
reduced in diabetic hearts, which is consistent with previous published studies [39]. 
Moreover, this reduction was accompanied by decreased phosphorylation levels of Ser23/24 
and Ser150, suggesting that Pim-1 may represent an important upstream kinase responsible 
for modulating cTnI phosphorylation in diabetic cardiomyopathy. Indeed, several studies 
have shown that IGF-1 levels are significant reduced under diabetic conditions [42-44]. 
These results suggest that preservation of IGF-1/Pim-1 pathway in the heart may represent 
a novel therapeutic strategy to prevent the development of diabetic cardiomyopathy.

Conclusion

In summary, we have shown that Pim-1 is a novel kinase that interacts with cTnI in 
cardiomyocytes. This interaction is relatively specific, as it causes cTnI phosphorylation; it 
is functional, as it leads to a reduction of myofilament Ca2+ sensitivity; and it is physiological, 
as it may mediate the cardioprotective effects of IGF-1 on cardiomyocytes. These findings 
suggest that Pim-1 may be an important therapeutic target for promoting cardiac muscle 
contractility under various pathophysiological conditions, such as diabetic cardiomyopathy 
and heart failure.
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