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Abstract

Oxygenated blood from the heart is directed into the systemic circulation through the aortic arch 

arteries (AAAs). The AAAs arise by remodeling of three symmetrical pairs of pharyngeal arch 

arteries (PAAs), which connect the heart with the paired dorsal aortae at mid-gestation. Aberrant 

PAA formation results in defects frequently observed in patients with lethal congenital heart 

disease. How the PAAs form in mammals is not understood. The work presented in this 

manuscript shows that the second heart field (SHF) is the major source of progenitors giving rise 

to the endothelium of the pharyngeal arches 3 – 6, while the endothelium in the pharyngeal arches 

1 and 2 is derived from a different source. During the formation of the PAAs 3 – 6, endothelial 

progenitors in the SHF extend cellular processes toward the pharyngeal endoderm, migrate from 

the SHF and assemble into a uniform vascular plexus. This plexus then undergoes remodeling, 

whereby plexus endothelial cells coalesce into a large PAA in each pharyngeal arch. Taken 

together, our studies establish a platform for investigating cellular and molecular mechanisms 

regulating PAA formation and alteration that lead to disease.
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1.0 INTRODUCTION

During embryogenesis, paired pharyngeal arch arteries (PAAs) form symmetrically relative 

to the embryonic midline, connecting the heart with the dorsal aortae. In birds and 

mammals, the first and second PAAs regress, whereas the PAAs 3, 4 and 6 undergo 

asymmetric remodeling giving rise to the aortic arch arteries (AAAs) (Hutson and Kirby, 

2007; Olson, 2002). Defects in PAA development are common features of congenital heart 

disease, warranting further detailed investigation into cellular and molecular mechanisms 

regulating their formation.

The argument of whether or not mammalian PAAs arise by angiogenesis or by 

vasculogenesis dates back to the early 1900s (Congdon, 1922). Investigations of human, 

rabbit, chicken and mouse embryos demonstrated the presence of endothelial plexus in the 

pharyngeal region prior to the appearance of PAA lumens, and it was hypothesized that this 

vascular plexus gave rise to the PAAs (Bremer, 1912; Congdon, 1922; DeRuiter et al., 

1993a; DeRuiter et al., 1993b; DeRuiter et al., 1992; Li et al., 2012; Waldo et al., 1996). 

However, the origin of the endothelial cells in the plexus and subsequently, in the PAAs has 

remained unknown. Resin filling of embryonic vasculature demonstrated the presence of 

small vascular branches connected to the dorsal aortae and the aortic sac at early stages of 

PAA formation, suggesting that the PAA endothelium arose by branching off from these 

vessels (Hiruma et al., 2002). In contrast, recent studies using genetic labeling and the Tie2-

Cre transgenic mice ruled out the dorsal aorta as the source of the PAA endothelium (Li et 

al., 2012). Understanding the origin of endothelial progenitors giving rise to the PAAs is 

imperative for elucidating the mechanisms regulating PAA formation and alterations that 

lead to congenital heart disease.

Broadly, the anterior mesoderm, which includes the PAA endothelium arises from Mesp1-

expressing progenitors during early gastrulation (Liang et al., 2014; Papangeli and Scambler, 

2013). It is also known that a small proportion of the PAA endothelium expresses Nkx2.5 or 

derives from Nkx2.5-expressing progenitors (Paffett-Lugassy et al., 2013). However, a 

precise embryonic tissue that gives rise to the PAA endothelium in mice is unknown. It is 

also not known how endothelial progenitors are recruited into the pharyngeal arches and the 

mechanisms regulating the formation of PAA lumens.

In the studies described below, we determined that the PAA endothelium in the pharyngeal 

arches 3 – 6 arises from a subset of the splanchnic mesoderm within the Mesp1 lineage. This 

subset is defined by the expression of the Isl1 transcription factor and the Mef2C-AHF-Cre 

transgene and is known as the second heart field (SHF) (Evans et al., 2010; Verzi et al., 

2005; Vincent and Buckingham, 2010). Using carefully-staged mouse embryos, we 
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demonstrate that cells within the SHF express VEGFR2, delaminate from the SHF, migrate 

into the pharyngeal mesenchyme, and form a plexus of small blood vessels, which then 

remodels into the PAA in each arch.

Mutations in Tbx1, Gbx2, PlexinD1 and Fgf8 interfere with PAA formation (Calmont et al., 

2009; Gitler et al., 2004; Jerome and Papaioannou, 2001; Lindsay et al., 2001; Macatee et 

al., 2003; Merscher et al., 2001); However, which particular stages of PAA formation are 

regulated by these genes is unknown. Identification of PAA endothelial progenitors and 

cellular mechanisms regulating PAA formation are important steps toward understanding the 

etiology of congenital heart disease.

2.0 MATERIALS AND METHODS

2.1 Mouse strains

Cdh5(PAC)-CreERT2 transgenic mice were a gift from Dr. Ralph Adams (Wang et al., 

2010). RosamTmG mice, Gt(ROSA)26Sortm4(ACTB-tdTomato–EGFP) generated by 

(Muzumdar et al., 2007) were purchased from Jackson Labs (stock number 007676). 

Tg(Mef2c-cre)2Blk/Mmnc strain, also known as the Mef2C-AHF-Cre transgenic mice 

(Verzi et al., 2005) were obtained from the Mutant Mouse Resource and Research Center 

(stock number 030262-UNC). The Isl1Cre strain was a gift from Sylvia Evans (Cai et al., 

2003). All experimental procedures were approved by the Institutional Animal Care and Use 

Committee of Thomas Jefferson University and conducted in accordance with federal 

guidelines for humane care of animals.

2.2 Tracing endothelial lineage in pharyngeal arches

Tamoxifen solution (20 mg/ml) was prepared by dissolving Tamoxifen (Sigma, #T5648) in 

corn oil. The solution was heated at 40°C and rocked at 1000 rpm using Eppendorf 

Thermomixer® for 3 hours; insoluble particles were removed by centrifugation. To label 

endothelial cells with GFP prior to the formation of the PAAs 3 – 6, we crossed ROSAmTmG 

females with Cdh5(PAC)-CreERT2 transgenic males, and injected 4 mg of tamoxifen per 

25g of body weight, into pregnant females in the morning (10–11am) of day E7.5. Embryos 

were dissected in the morning of day E9.5, and were subjected to whole mount staining with 

the antibodies against GFP (1:500, Aves labs, #GFP-1020) and VEGFR2 (1:200, R&D, 

#AF644). Nuclei were stained with DRAQ5. Stained embryos were then imaged using 

Olympus FV500 confocal microscope. Three-dimensional (3D) reconstructions and surface 

renderings were performed using Imaris (Bitplane, USA).

2.3 Whole-mount immunofluorescence staining and confocal image acquisition

Embryos at E9.5 or E10.5 were dissected and fixed at 4°C in 4% paraformadehyde overnight 

for ~ 15 hours with gentle rocking. Embryos were then rinsed and washed with PBS every 

30 min for 1 to 2 hours. The number of somites (s) was counted in each embryo analyzed. 

Prior to staining, the head, forelimb buds and trunk posterior to the forelimb buds in E10.5 

embryos were trimmed off. E9.5 embryos and younger were used without trimming. During 

all incubations, embryos were kept in 2 ml eppendorf tubes (Fisherbrand, #02-681-258), 

with 1 embryo per tube. Embryos were first incubated in 500 μl of blocking buffer (PBS 
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with 0.1% Triton X100 and 10% Donkey serum) overnight at 4°C with gentle rocking, then 

with 450 μl of blocking buffer containing 1° antibodies for 72 hours at 4°C, with gentle 

rocking. The following 1° antibodies were used: anti-PECAM1 (BD Pharmingen, #553370, 

1:200), anti-VEGFR2 (R&D, AF644, 1:200), anti-ERG (Abcam, ab110639, 1:100), and 

anti-GFP (Aves lab, #GFP1020, 1:500). After the incubation with 1° antibodies, embryos 

were rinsed and washed every hour with PBST (PBS with 0.1% Triton X100) for at least 5 

hours. Embryos were then incubated with 450 μl of 2° antibodies diluted 1:300 in blocking 

buffer for 48 hours at 4°C. Alexa-labeled 2° antibodies were purchased from Invitrogen. 

FITC conjugated anti-chicken IgY antibodies were from Jackson Immunoresearch, 

#703-546-155. After staining with 2° antibodies, embryos were washed as above, and 

incubated with DRAQ5 (1:500 dilution in PBST, Cell signaling technology, #4048) for 48 

hours to stain nuclei. This extra incubation step was necessary because the presence of 

serum in the blocking buffer interferes with DRAQ5 staining. Prior to imaging, embryos 

were dehydrated in 50% methanol in PBS for 5 minutes, followed by 100% methanol two 

times for 5 minutes each, and cleared in BABB generated by mixing benzyl alcohol (Sigma, 

#B1042) and benzyl benzoate (Sigma, #B6630) at 1:2 (v/v). This procedure eliminates the 

native GFP and tdTomato fluorescence from ROSAmTmG mice, allowing the use of any 

combination of the fluorophores described above. Images of entire pharyngeal arches were 

acquired with Olympus FV500 confocal microscope, collecting optical sections every 0.62 

μm through the entire thickness of the embryo.

2.4 3D quantitative analyses of confocal images

Overall, we analyzed 6 pharyngeal arches from embryos having 30 – 31 somites (s), 16 

pharyngeal arches from embryos having 33 – 34 s, and 10 pharyngeal arches from embryos 

with 36 – 39 s. 3D image reconstruction and analyses of cell numbers and distributions were 

performed using Imaris, and the methodology is illustrated in Sup. Figs. 1 – 2. To label and 

quantify the number of endothelial cells in the PAA and plexus of the 4th arch, we used the 

surface function in Imaris to create a segment encompassing the 4th pharyngeal arch, 

excluding all other regions (Sup. Fig. 1A – C). We then generated a new channel 

encompassing all of the endothelial cells within this segment (Sup. Fig. 1D, region in red). 

To separate the PAA endothelium from the plexus, we segmented the pharyngeal arch artery 

endothelium as shown in Sup. Fig. 1F – G and generated a new surface containing Pecam1+ 

cells within the PAA (Sup. Fig. 1H). We then generated a new channel containing 

endothelial cells in the PAA (Sup. Fig. 1I, PAA). The channel with plexus endothelial cells 

was generated by excluding endothelial cells in the PAA (Sup. Fig. 1J). To quantify the 

number of endothelial cells, ERG+ nuclei within these channels were counted using the 

Spots function in Imaris, as illustrated in Sup. Fig. 2. This number was confirmed by manual 

counting in several samples.

The number of SHF-derived endothelial cells in each PAA was quantified in 4 E10.5 

embryos, ranging from 33s to 35s, 2 of these embryos were from the Isl1Cre; RosamTmG 

strain and the other 2 embryos were from the Mef2C-AHF-Cre; RosamTmG strain. All 

embryos were stained with antibodies to GFP, VEGFR2 and ERG, and pharyngeal arches 

were imaged using confocal microscopy, collecting optical sections through the entire 

thickness of the embryo, sampling every 0.62 μm. The number of GFP+ and GFP− 
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endothelial cells in each pharyngeal arch was determined in optical sections spaced 15 – 20 

microns, using the Imaris software. A total of 707 endothelial cells were examined in the 3rd 

PAAs, 589 endothelial cells were analyzed in the 4th PAAs, and 370 endothelial cells were 

analyzed in the 6th PAAs. The results of these analyses were plotted in Fig. 2B‴, and 

statistical significance was determined using 2-way ANOVA and the GraphPad Prism 6 

software.

2.5 Staining of tissue sections

For frozen sections, fixed embryos were rinsed in PBS and incubated in 30% sucrose 

solution prepared in PBS until embryos sunk to the bottom of the tube. This was followed by 

incubation in 50/50 mix of 30% sucrose solution and optimum cutting temperature (OCT) 

compound (Tissue-Tek) at 4°C overnight. Embryos were then embedded in OCT and frozen 

using an isopentane/dry ice bath. The following primary antibodies were diluted in blocking 

buffer (10% donkey serum, PBS, 0.05% Tween-20) and used to stain frozen sections 

overnight at 4°C: anti-VEGFR2 (1:200, R&D, #AF644), anti-ERG (1:100, Abcam, 

#ab110639), anti-GFP (1:500, Aves labs, #GFP-1020), and anti-Cre (1:500, Millipore, 

#MAB3120). Slides were washed in PBS containing 0.05% Tween 20 (PBS-Tween) with 

three changes of washing buffer, 10 min each, and then incubated with Alexa-conjugated 2° 

antibodies, diluted 1:300 in blocking buffer for 2 hours at room temperature. After washing 

in PBS-Tween, sections were mounted using a 1:1 mixture of methanol and glycerol (v/v) to 

extinguish the native GFP and tdTomato fluorescence. Slides were imaged using Olympus 

FV500 confocal microscope. Each experiment was repeated at least three times, using 3 

independent embryos.

2.6 Cell proliferation

5 mg/ml BrdU solution was prepared by dissolving BrdU (Fisher Scientific, # BP2508250) 

in PBS. BrdU (30mg per kg of body weight) was injected intraperitoneally into pregnant 

females 30 minutes before they were sacrificed. 66 sections from 10 pharyngeal arches (5 

right and 5 left) were analyzed. Paraffin sections were stained with anti-ERG and anti-BrdU 

antibodies (Abcam, #ab6326, 1:100) after antigen retrieval with 10 mM citric acid buffer, pH 

6.0. Alexa-labeled secondary antibodies were used to detect the bound 1° antibodies, and 

nuclei were visualized using DRAQ5.

2.7 Cell survival

Anti-cleaved caspase-3 antibody (1:100, Cell Signaling Technology, #9661) was used to 

detect apoptosis in whole embryos (5 embryos were analyzed using whole-mount staining 

followed by confocal scanning, and an additional 3 embryos were sectioned to perform the 

TUNEL assay). Whole mount immunofluorescence staining and imaging were performed as 

described above. In Situ Cell Death Detection Kit, Fluorescein TUNEL was purchased from 

Roche (#11684795910). TUNEL labeling was performed using cryosections according to 

the manufacturer’s instructions.
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3.0 RESULTS AND DISCUSSION

3.1 Endothelium of the PAAs 3 – 6 is not derived from the dorsal aorta, endocardium, or 
the aortic sac

By 18 somites (s) of mouse development, pharyngeal endothelial cells are present as a 

uniform plexus within the region corresponding with the future arches 3 – 6 (Li et al., 2012). 

To determine whether the endothelium in these pharyngeal arches arose from the dorsal 

aorta, the aortic sac, or the endocardium, we performed transient lineage labeling studies 

with the aim of labeling the endocardium and endothelium prior to the formation of the 

PAAs 3 – 6. If pharyngeal endothelial cells were derived from the dorsal aorta, aortic sac, 

endocardium, or from an earlier progenitor in common with these vascular beds, they would 

express GFP due to the presence of the ROSAmTmG reporter. For these experiments, 

ROSAmTmG females were crossed with Cdh5(PAC)-CreERT2 transgenic males, in which the 

expression of tamoxifen-inducible Cre recombinase in the endothelium is driven by the 

Cdh5 regulatory elements (Wang et al., 2010). Pregnant females were injected with 

tamoxifen at E7.5. The half-life of tamoxifen in serum is ~12 hours (Robinson et al., 1991), 

and Cre-mediated expression of a reporter becomes detectable in 95% of cells within the 

first 24 hours after injection (Hayashi and McMahon, 2002). Thus, the injection of 

tamoxifen at E7.5 allows labeling of blood vessels formed by E8.5. These vessels include 

the endothelium of the dorsal aortae, the aortic sac, the ventral aortae (discussed in more 

details below), and the endocardium; but not the pharyngeal arteries 3 – 6, which are not 

present at that time.

We dissected labeled embryos at E9.0, 48 hours after the injection of tamoxifen, and 

performed whole mount confocal immunofluorescence microscopy followed by 3D image 

reconstruction. In these and all other imaging experiments, we inactivated the native GFP 

and tdTomato fluorescence by clearing embryos with methanol and BABB (see Methods). 

Endothelial cells were visualized using anti-VEGFR2 antibody, GFP was detected using 

anti-GFP antibody, and nuclei using DRAQ5. Confocal imaging of whole embryos shows 

that the injection of tamoxifen at E7.5 leads to the expression of GFP in the endocardium of 

the heart (h in Fig. 1A – C, 1I), in the dorsal aorta (da in Fig. 1D– H2, J – J2 ), and in the 

aortic sac (Fig. 2I and Sup. Movie 1). The endothelium of the ventral aortae is also GFP+ 

(Fig. 1I – H2, see further discussion of the ventral aortae in Section 3.3). Interestingly, the 

majority of endothelial cells in the pharyngeal region corresponding with the future arches 3, 

4 and 6 are GFP− (see the region circumscribed by the dashed line in Fig. 1D – F and 

surface-rendered in Fig. 1G). In contrast, the endothelium of the 1st and 2nd PAAs and that 

of intersomitic arteries are GFP+ (Fig. 1A – C, Sup. Movie 1). Intersomitic arteries arise 

from the dorsal aorta by angiogenesis (Coultas et al., 2005). Thus, the labeling of the 1st and 

2nd PAAs and the intersomitic arteries with GFP serves as the internal positive control for 

vessels that either arose from the dorsal aorta or have progenitors in common with the dorsal 

aorta. Alternatively, as is the case with the 1st and 2nd PAAs, the GFP labeling of these PAAs 

occurred because these vessels/endothelial cells were present contemporaneously with the 

injected tamoxifen.
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Even though tamoxifen mediated extensive labeling of the dorsal and ventral aortae, the 

endocardium, the aortic sac endothelium, and the endothelium in the 1st and 2nd pharyngeal 

arches in Cdh5(PAC)-CreERT2 transgenic embryos, endothelial cells in the pharyngeal 

arches 3 – 6 lacked GFP labeling (Fig. 1A – F and 1H1 – H2). The only GFP+ cell seen in 

this region (Fig. 1D – G) is derived from the common cardinal vein (Fig. 1F, Sup. Fig. 3, and 

Sup. Movie 2). Nearly all, 95 of 102, endothelial cells in the dorsal aorta were GFP+ 

(transverse and sagittal optical slices in Fig. 1H1 – J2). Similarly, nearly all endothelial cells 

in the heart, the aortic sac and the ventral aortae were also GFP+ (Fig. 1I, 1H1 – H2 and Sup. 

Movie 1, showing all sagittal optical sections through the embryo). The absence of GFP+ 

cells in the endothelium within the pharyngeal arch region 3 – 6 (with the exception of one 

GFP+ cell) suggests that the pharyngeal endothelium in arches 3 – 6 is derived from a source 

other than the dorsal aortae, the aortic sac, the ventral aortae or the endocardium.

3.2 PAA endothelial cells arise from the second heart field

The high dose of tamoxifen used in the experiments described above was necessary to 

achieve efficient cell labeling; however, its toxicity precluded examination of embryos at 

later time points. To complement these experiments and to identify the major source of 

endothelial cells in the PAAs 3 – 6, we used lineage tracing. Our earlier studies and the work 

of others showed that the majority of PAA endothelial cells in mice are derived from 

Mesp1+ precursors (Liang et al., 2014; Papangeli and Scambler, 2013). We also found that 

the majority of PAA endothelial cells express Isl1 in embryos older than 36s (Chen et al., 

2015), suggesting that PAA endothelial cells could have been derived from the second heart 

field (SHF) mesoderm. However, the expression of the Isl1 protein in the PAA endothelium 

does not indicate lineage. To determine whether precursors of the PAA endothelium 

originate in the SHF, we analyzed embryos from the Mef2C-AHF-Cre transgenic mice at 

different stages of development (Verzi et al., 2005). The Mef2C-AHF enhancer drives the 

expression of Cre exclusively in the SHF (Dodou et al., 2004; Verzi et al., 2005). 

Examination of GFP+ cells within the SHF in Mef2C-AHF-Cre; RosamTmG embryos at 24s 

demonstrated that many SHF cells express VEGFR2 (Fig. 2A – A″), extend cellular 

processes toward the gut endoderm, and appear to be emigrating from the SHF and joining 

with the pharyngeal endothelial plexus (arrowheads in 2A″). Patent PAAs 3 – 6 are formed 

by E10.5 (≥33s), and at this time, the majority of endothelial cells in the PAAs 3 – 6 are 

GFP+ (Fig. 2B – B‴). To determine whether GFP+ cells in the PAAs 3 – 6 were related to 

the SHF by lineage, we stained sections with antibodies against the Cre recombinase. 

Although Cre is expressed in the SHF (arrowheads and red signal in Fig. 2B, B″), it is not 

expressed in the majority of the GFP+ PAA endothelium (Fig. 2B′ – B″), indicating that the 

expression of GFP in the PAA endothelium represents a true fate map. In contrast, 

endothelial cells in the first and second pharyngeal arches were mostly GFP− in Mef2C-

AHF-Cre; RosamTmG embryos, while the mesodermal core of these arches was GFP+ (see 

Figs. 2C – C″, 2C1 – 2C1″ for E10.5 embryos and Fig. 4A – B″ for E9.5 embryos). This is 

consistent with the labeling experiments in Fig. 1, and supports the notion that the 

endothelium in the pharyngeal arches 1 and 2 arose earlier and is of different origin than the 

endothelium in the PAAs 3 – 6.
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Quantitatively, SHF contributes to 90+/−10% of endothelial cells in the 3rd PAAs, 95+/−5% 

of endothelial cells in the 4th PAAs, and 91+/−11% of endothelial cells in the 6th PAAs at 

E10.5 (Fig. 2B‴). The contribution of SHF-derived cells to the left PAAs 3 – 6 was slightly 

higher than to the right PAAs (Fig. 2B‴, p=0.03, 2-way ANOVA).

Symmetrical PAAs become remodeled into the AAAs by E13.5. To determine whether the 

AAAs retain the SHF-derived endothelium, we analyzed transverse and coronal sections 

through Mef2C-AHF-Cre;ROSAmTmG embryos isolated at E15.5 and E16.6. We found that 

indeed, the endothelium of the carotid arteries, which are derived from the left and right 3rd 

PAAs is GFP+ (Fig. 2D, rCA, lCA). Similarly, endothelial cells of the ductus arteriosus, 

which is derived from the left 6th PAA (Fig. 2E) and endothelial cells of the aortic arch, 

which is derived from the left 4th PAA are GFP+ (Fig. 2F – F″). The short proximal portion 

of the right subclavian artery is derived from the right 4th PAA, and have not been analyzed 

here. The right 6th PAA completely degenerates during the remodeling of the PAAs into the 

AAAs. Together, these experiments demonstrate that the AAA endothelium is mainly 

composed of SHF-derived cells.

3.3 SHF progenitors giving rise to the aortic sac and the PAAs are temporally and spatially 
distinct

The aorta and the pulmonary trunk arise from the OFT and the aortic sac, which connects 

the OFT with the PAAs (Waldo et al., 2005a; Waldo et al., 1996). Fate mapping studies show 

that the endothelium of the OFT and the aortic sac is derived from the SHF (Cai et al., 2003; 

Sun et al., 2007; Verzi et al., 2005). The endothelium of the aorta and pulmonary trunk is 

also derived from the SHF (Fig. 2F – F″). Despite the fact that the endothelium of the OFT 

and the PAAs 3 – 6 is SHF-derived, morphological and fate-mapping data discussed below 

argue that the aortic sac does not give rise to the PAA endothelium. To see this, we first need 

to consider endothelial components in the developing pharyngeal region, which were first 

described over a century ago by John Lewis Bremer (Bremer, 1912).

Bremer noted the presence of two vessels on either side of the midline, located dorsal to the 

OFT, and running along the embryo’s anterior-posterior axis (Bremer, 1912). These vessels, 

which Bremer referred to as the ventral aortae, connect the arterial pole of the heart with the 

nascent 1st and 2nd PAAs anteriorly and with the developing PAAs 3 – 6th posteriorly 

(Bremer, 1912). Using Imaris and confocal immunofluorescence microscopy of Mef2C-

AHF-Cre;ROSAmTmG embryos labeled with antibodies to VEGFR2 and GFP, we generated 

a 3D reconstruction of the ventral aortae extending posteriorly from the heart of the 25-

somite mouse embryo (E9.5) (Fig. 3A – A′). The region encompassing the ventral aortae 

(marked by arrows in Fig. 3A – A′) becomes incorporated into the OFT, as shown by dye 

injection experiments in chick (Waldo et al., 2005a; Waldo et al., 2005b; Waldo et al., 2001). 

Sagittal sections through the ventral aorta of Mef2C-AHF-Cre;ROSAmTmG embryos show 

that the endothelium of the ventral aorta is connected with the OFT anteriorly and expresses 

GFP (Fig. 3A″). The ventral aortae extending posteriorly from the OFT are lumenized prior 

to the formation of patent 3rd, 4th and 6th PAAs (Fig. 1H1, H2 and transverse sections in Fig. 

3). By 33s, the ventral aorta on each side of the midline is connected with the PAAs (Fig. 

Wang et al. Page 8

Dev Biol. Author manuscript; available in PMC 2018 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3B1 – B3) and gives rise to the aortic sac connecting all the posterior PAAs with the OFT by 

35s (Fig. 3C – C′).

Several lines of evidence indicate that PAAs do not arise from the ventral aortae or the aortic 

sac: 1) The aortic sac and ventral aortae are extensively labeled with GFP in Cdh5(PAC)-

CreERT2;ROSAmTmG transgenic embryos upon the injection of tamoxifen at E7.5 (short 

straight arrows in Fig. 1I, H1 – H2), while endothelial cells in the future pharyngeal arches 3 

– 6 are not labeled (Fig. 1A– G, H1 – H2 ); This indicates that the endothelium of the 

pharyngeal arch arteries arises later than that of the aortic sac/ventral aortae; 2) The ventral 

aortae are connected with the OFT and are lumenized before they form connections with the 

endothelial plexus of the future PAAs 3 – 6 (Fig. 1I, H1 – H2 and transverse level ii in Fig. 

3). Finally, the paired ventral aortae form medially, while the PAA endothelium forms 

laterally relative to the midline (Fig. 1H1 – 2, Fig. 3A′, A″ and transverse sections in Fig. 

3). In summary, these data show that SHF-derived progenitors giving rise to the endothelium 

of the ventral aortae and the aortic sac are spatially and temporally distinct from the SHF 

progenitors that give rise to the PAA endothelium in the pharyngeal arches 3 – 6. Together 

with the studies demonstrating early separation of the myocardial and endothelial lineages in 

the heart, our work suggests that the SHF consists of several populations of progenitor cells, 

that are temporally and/or spatially distinct (Devine et al., 2014; Jain et al., 2015; Milgrom-

Hoffman et al., 2011). Some of these progenitors give rise to the myocardium, while others 

give rise to the endothelial cells of the OFT, ventral aortae, aortic sac and the PAAs.

3.4 Connections of the PAAs with the dorsal aorta

At E9.0, when the connections between the pharyngeal plexus endothelium and the dorsal 

aortae are minimal, we find that there is only a small number of GFP+ cells in the dorsal 

aorta of Mef2C-AHF-Cre; RosamTmG embryos (Fig. 4A, A″, arrowheads). These GFP+ cells 

are located at sites, where the dorsal aorta fuses with the pharyngeal endothelial plexus (Fig. 

4B – B″, arrow). At E10.5, when the connections between the PAAs with the dorsal aortae 

are well-formed, we observe extensive GFP labeling of the the dorsal aortae adjacent to the 

PAAs (Fig. 4C – C″, arrows) and increased numbers of GFP− endothelial cells in the 

portions of the PAAs proximal to the junctions of the PAAs with the dorsal aortae (Fig. 4D – 

D″, arrowhead). We hypothesize that GFP− cells at the PAA – dorsal aorta junctions migrate 

from the dorsal aorta to join with the PAA endothelium, and vice versa, that GFP+ cells at 

the ventral surface of the dorsal aorta arise from the PAA endothelium. This hypothesis is 

consistent with the observation that endothelial cells are highly motile, and that they can 

move within and between blood vessels (Culver and Dickinson, 2010; Lucitti et al., 2007; 

Sato et al., 2010).

3.5 PAAs form by the coalescence of the pharyngeal arch endothelium

Our studies demonstrated that pharyngeal plexus endothelium is derived from the SHF, as is 

the PAA endothelium (Figs. 2, 4). This indicates that the PAAs arise by remodeling the 

pharyngeal endothelial plexus, as was proposed by earlier studies (Bremer, 1912; Congdon, 

1922; DeRuiter et al., 1993a; DeRuiter et al., 1993b; DeRuiter et al., 1992; Li et al., 2012; 

Waldo et al., 1996). To further understand the cellular mechanisms regulating PAA 

formation, we focused on the 4th pair of PAAs, and used whole-mount confocal 
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immunofluorescence microscopy to image these PAAs in carefully staged embryos (for the 

details about surface rendering and quantification methods see Sup. Figs. 1 – 2). At 30s –

31s, in the morning of E10.5, the endothelium in the pharyngeal region corresponding with 

the arches 4 and 6 is assembled into a uniform, non-hierarchical plexus of blood vessels 

(Fig. 5A – B). This plexus starts to rearrange between 30s and 34s, such that a nascent, thin 

PAA is seen by the 33rd somite stage in the 4th pharyngeal arch (Fig. 5C – D). The 4th PAA 

grows with time (Fig. 5E – F) and is visibly in larger diameter than the surrounding 

endothelial plexus (Fig. 5D – F). By the evening of E10.5, when embryos reach 36s – 39s, a 

prominent, large PAA is seen in the 4th pharyngeal arch (Fig. 5G – H).

We found that the number of endothelial cells in the 4th pharyngeal arch increases more than 

2-fold between 30s and 39s (Fig. 5I). As the 4th PAA grows in diameter and length, the 

proportion of endothelial cells in the PAA increases, while the proportion of endothelial cells 

in the plexus decreases (Fig. 5J): at 30s – 31s, all endothelial cells in the 4th arch are in the 

plexus of interconnected small vessels; at 33s – 34s, endothelial cells are distributed equally 

between the PAA and the plexus; and at 36s–39s, 57% of endothelial cells are in the PAA 

and 43% in the plexus, p=2×10−4. Apoptosis is minimal in the pharyngeal endothelium of 

the 4th arch at this time (Fig. 6). Despite the decrease in the fraction of plexus endothelium 

in the pharyngeal arch (Fig. 5J, pink line), the proliferation index of plexus endothelial cells 

is ~2-fold higher than that of PAA endothelial cells, p<10−4 (compare pink and green bars in 

Fig. 5K). These analyses suggest that the 4th pair of PAAs grows both by proliferation and 

by the acquisition of endothelial cells from the plexus. Indeed, sagittal sections show that the 

plexus endothelium is connected with the growing PAA (arrowheads in Fig. 5D, F, H).

Understanding genes and mechanisms regulating the formation of the 4th PAA is of 

particular clinical relevance, since aberrant formation of the left 4th PAA gives rise to the 

interruption of the aortic arch type B, a lethal congenital defect. While a number of genes 

are already known to regulate the formation of the 4th pair of PAAs, how they do so is not 

clear. Identification of the progenitors of PAA endothelium in the 4th pharyngeal arches, 

their embryonic origin, and cellular dynamics regulating PAA formation are significant 

advances in the understanding of developmental processes regulating PAA formation. Our 

works shows that PAA formation could be regulated at a number of distinct steps, which 

include differentiation, proliferation, and survival of VEGFR2+ PAA progenitors in the SHF; 

exit and migration of these progenitors from the SHF into the pharyngeal mesenchyme; 

formation of endothelial plexus, and the coalescence of the pharyngeal plexus endothelium 

into the large PAA in each pharyngeal arch. Thus, our studies establish a platform for 

elucidating physiological mechanisms regulating PAA formation and for analyzing mutants 

that interfere with this process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Endothelium in pharyngeal arches 3 – 6 arises from the second heart 

field

• Pharyngeal arch arteries (PAAs) form by vasculogenesis

• PAAs form by reorganization of pharyngeal arch endothelial cells
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Figure 1. Endothelial cells of the PAAs 3 – 6 do not arise from the endocardium, the aortic sac, or 
dorsal and ventral aortae
Cdh5(PAC)-CreERT2; ROSAmTmG embryos were treated with tamoxifen in utero and 

stained to detect GFP (green), VEGFR2 (red) and nuclei (DRAQ5). The native GFP and 

tdTomato fluorescence was extinguished by the treatment with methanol and BABB (see 

Methods). A – C. Low magnification views; 1, 2 – pharyngeal arch #1 and #2; three inclined 

arrows at the bottom of panels A, B and C point to intersomitic vessels. The region outlined 

by the dashed box in A is enlarged in D – F. D – F. Dashed perimeter circumscribes the 

pharyngeal region, where PAAs 3 – 6 will form. Pharyngeal plexus endothelial cells inside 

the dashed perimeter are VEGFR2+ but GFP−. The lone GFP+ cell (arrowhead) seen inside 

the marked pharyngeal region is derived from the sprout branching from the common 

cardinal vein, ccv (F and Sup. Fig. 3 with Movie 2). G. Surface rendering of plexus 

endothelial cells (red – VEGFR2 channel, green – GFP channel) and the dorsal aorta (green 

– GFP channel). H1 – H2. Transverse optical section through the pharyngeal region at the 

level of the dashed line in I (see inset in I for the level relative to the embryo and the 

pharyngeal plexus). Plexus endothelial cells (brackets in H1 – H2) are VEGFR2+GFP−; da – 

dorsal aorta; straight arrows in H1, H2 and I point to the cross section of the same vessel 

(the ventral aorta, va) at the level of the dashed line in I. Open arrowhead in H1, H2 and in 

the inset of I point to the venous sprout. H1 shows the overlay of VEGFR2 (red) and GFP 

(green); H2 shows the GFP and DRAQ5 (blue) channels. I. Sagittal section through the heart 

shows that nearly all endothelial cells in the endocardium, the aortic sac, and the ventral 

aorta are labeled with GFP (see Movie 1 for all sagittal sections showing merged and single 

channels). Dashed line shows the level of the transverse section shown in H. J – J2. Sagittal 

optical sections showing that nearly all endothelial cells in the dorsal aorta express GFP. All 

scale bars are 100 μm, except in G – H, where they are 50 μm; acv – anterior cardinal vein; 

ccv – common cardinal vein; da – dorsal aorta; h – heart; as – aortic sac; a – atrium; v – 

ventricle; va – ventral aorta.
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Figure 2. PAA endothelial cells are derived from the second heart field
Sections and 3D views in all panels are from Mef2C-AHF-Cre; ROSAmTmG embryos 

dissected at E9.5, 24 somites (A – A″), at E10.5, 36–39 somites (B – B″, C – C″, C1 – C
″), at E16.5 (D – E), or at E15.5 (F – F″). The native GFP and tdTomato fluorescence was 

extinguished by the treatment with methanol. PAAs are numbered. A – A″. Sagittal optical 

sections. The 3rd PAA is formed by 24s. The boxed region containing the SHF is expanded 

in A′ – A″. Open arrows in A mark GFP+VEGFR2+ endothelial cells in the 3rd PAA. A′ – 
A″. Arrow in mark the SHF and arrowheads in mark GFP+VEGFR2+ endothelial 

progenitors that appear emigrating from the SHF. The VEGFR2+ cell marked by three open 

arrowheads in A′ and A″ is seen extending a long process toward the endoderm. B – B‴. 

Nearly all endothelial cells in the PAAs 3 – 6 (ERG+) are derived from Mef2C-AHF-Cre+ 

progenitors (GFP+). The box in B is expanded in B′ – B″. Note the expression of Cre in the 
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lateral plate mesoderm (open arrowheads in B, B″) and the lack of Cre expression in the 

majority of endothelial cells of the 4th PAA, B″. Asterisks in B mark non-specific staining 

(red channel). B‴. Quantification of GFP+ cells in sagittal optical sections from 2 Mef2C-

AHF-Cre; ROSAmTmG and 2 Isl1Cre; ROSAmTmG embryos, representing 4 pharyngeal arch 

arteries of each kind. Each data point corresponds with one optical sagittal section; all data 

points are plotted. Vertical lines span minimum to maximum, “+” marks the mean of each 

distribution, box includes the middle 50% of data. The difference in the % of GFP+ 

endothelial cells between the left and right PAAs is significant, p=0.03, 2-way ANOVA. C – 
C″. 3D maximum intensity projections (MIP) of confocal stacks through the entire 1st and 

2nd pharyngeal arches. Sagittal views are shown. The majority of endothelium in the 1st and 

2nd arches at E10.5 is GFP−, while the mesodermal cores (arrowheads) are GFP+. C1 – C1″. 

Sagittal optical sections through the images shown in C – C″. D. The endothelium of the 

right and left carotid arteries is composed of GFP+ cells, magnified in the adjacent panels. E. 

The endothelium of ductus arteriosus is GFP+. The border of the pulmonary trunk and the 

ductus arteriosus is marked by the dashed double-headed arrow. F – F″. The endothelium of 

the aorta and pulmonary trunk is GFP+. Ao – aorta; dA – dorsal aorta; dAo – descending 

aorta, lCA and rCA – left and right carotid arteries; eso – esophagus, MIP – maximum 

intensity projection, PT – pulmonary trunk, SHF – second heart field; tra – trachea; Scale 

bars are 30 μm in A – A″, 100 μm in B, 30 μm in B′ – B″, 200 μm in C – C1″, D, E and F 
– F″; Scale bars in panels marked rCA and lCA are 50 μm.
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Figure 3. The relationship between the aortic sac, ventral aortae and PAAs
Panels show Mef2C-AHF-Cre; ROSAmTmG embryos isolated at 25, 33 and 35 somites. A – 
A′. 25s. Surface rendering of blood vessels (VEGFR2+) was done following whole mount 

confocal imaging; The endoderm (gut) was surfaced using the morphology of DRAQ5-

stained nuclei. The OFT, aortic sac, dorsal aorta, 2nd and 3rd PAAs are surfaced in red; The 

ventral aortae are blue; Endothelial plexus of the 4th and 6th PAAs is purple. Dashed lines i 
and ii mark the planes of transverse sections shown on the right. A″. Sagittal section through 

the embryo in A – A′. The endothelium of the ventral aorta is GFP+. Dotted lines show the 

planes of optical transverse sections (as in A). Transverse sections at the levels i and ii 
demonstrate that ventral aorta is lumenized prior to the formation of the 4th and 6th PAAs. 

Double-headed arrows point to the cross section of the same vessel, at the level indicated. 

Bracket in the transverse section ii marks pharyngeal endothelial plexus. Note that 

pharyngeal endothelial plexus at this level is not yet connected with the ventral aorta. B1 – 
B3. 33s. Connections between ventral aorta and the 3rd, 4th and 6th PAAs; C – C′. 35s. The 

endothelium of the OFT, aortic sac, ventral aorta and the PAAs (numbered) are connected. 

Note that the endothelium (open arrowheads) is GFP+; as – aortic sac; da – dorsal aorta; MIP 

– maximum intensity projection; OFT – outflow tract; va – ventral aorta. Numbers mark 

positions of the PAAs or pharyngeal arches. All scale bars are 100 μm.
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Figure 4. Junctions between the PAAs and the dorsal aorta contain GFP+ and GFP− endothelial 
cells
All panels show optical sections through Mef2C-AHF-Cre; ROSAmTmG embryos dissected 

at E9.0 (A – B″) or E10.5 (C – D″). A – B″. Sagittal optical section through E9.0, 20s 

embryo. PAAs are numbered. The endothelium in the 2nd PAA is mostly GFP−. Pharyngeal 

plexus in the 3rd arch and in the region of the future 4th and 6th arches (bracket) is GFP+; 

Open arrowheads point to GFP+ cells in the dorsal aorta (dA). Dashed line in A″ marks the 

plane of transverse optical sections in B – B″. B – B″. Transverse optical sections through a 

GFP+ cell in the dorsal aorta show the connection between the dorsal aorta and the 

pharyngeal plexus, long arrows in B – B″. C – D″. Two optical sections through E10.5, 35s 

embryo. PAAs are numbered. C – C″. Ventral surface of the dorsal aorta adjacent to the 

PAAs contains GFP+ cells, arrows. D – D″. GFP− cells are seen at the junction of the 6th 

PAA with the dorsal aorta (open arrowhead). Magnification is the same in A – A″ and C – 
D″ scale bars are 100 μm. Scale bars in B – B″ are 50 μm.
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Figure 5. The 4th pair of PAA forms by the coalescence of plexus endothelial cells
Embryos at different somite stages were stained to detect Pecam1 and imaged by confocal 

immunofluorescence microscopy. A, C, E, G. 3D reconstructions (maximum intensity 

projections) of pharyngeal vasculature; one side of each embryo is shown in each panel. 

Pharyngeal arches are numbered, da – dorsal aorta. Endothelium in the 4th pharyngeal arch 

shown in A, C, E, and G was surface rendered in A′, C′, E′, and G′ (see Methods and Sup. 

Fig. 1). Sagittal optical sections through the embryos in A, C, E, and G are shown in B, D, 
F, and H. A, A′, B. Only uniform endothelial plexus is present in the 4th arch at 30s–31s; it 

is surface rendered in pink in A′ and underlined by a bracket in B. C – F. A slightly younger 

(C – D) and a slightly older (E – F) embryo with 33–34s are shown. A thin 4th PAA is 

visible at 33 – 34s. The PAA is surface rendered in green and the plexus is surface rendered 

in pink in C′ and E′. Optical sagittal sections in D and F show the plexus endothelium 

(open arrowheads) connecting with the PAA. G – H. In the evening of E10.5, the 4th PAA is 

nearly completely formed (G), surface rendered green in G′. It has a large lumen (H) and 

fewer endothelial cells in the plexus than at 33–34s, rendered in pink in G′; arrowhead in H. 

Arrows point to the dorsal aorta. I. Growth of endothelial population in the 4th pharyngeal 
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arch. J. As the 4th PAA grows in size, the proportion of endothelial cells in the PAA 

increases (green line), while the proportion of endothelial cells in the plexus decreases (pink 

line). K. Proliferation index of plexus endothelial cells is nearly 2-fold higher than in the 

PAA. Box plots with all data points are shown, error bars span the minimum to maximum 

values. The box contains 50% of the data points and the horizontal bar inside the box marks 

the median. Unpaired, 2-tailed Student’s t test was used to calculate p values. All scale bars 

are 100 μm.
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Figure 6. Survival of endothelial cells in the pharyngeal arches
A. 3D reconstruction of the entire pharyngeal region on one side of the embryo. Staining for 

cleaved caspase 3 (A – A′) shows minimal apoptosis in the pharyngeal arch endothelium; 

The dashed line marks the plane of optical section shown in A′. B. TUNEL assay using 

frozen sections through pharyngeal arches confirmed minimal apoptosis in the endothelium 

within the arches in E10.5 embryos. Scale bars are 100 μm.
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