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Breast Cancer Antiestrogen Resistance 3 (BCAR3)
Promotes Cell Motility by Regulating Actin Cytoskeletal
and Adhesion Remodeling in Invasive Breast Cancer Cells
Ashley L. Wilson1., Randy S. Schrecengost2., Michael S. Guerrero1, Keena S. Thomas1, Amy H. Bouton1*

1 Department of Microbiology, Immunology & Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America, 2 Department of Cancer Biology,

Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America

Abstract

Metastatic breast cancer is incurable. In order to improve patient survival, it is critical to develop a better understanding of
the molecular mechanisms that regulate metastasis and the underlying process of cell motility. Here, we focus on the role of
the adaptor molecule Breast Cancer Antiestrogen Resistance 3 (BCAR3) in cellular processes that contribute to cell motility,
including protrusion, adhesion remodeling, and contractility. Previous work from our group showed that elevated BCAR3
protein levels enhance cell migration, while depletion of BCAR3 reduces the migratory and invasive capacities of breast
cancer cells. In the current study, we show that BCAR3 is necessary for membrane protrusiveness, Rac1 activity, and
adhesion disassembly in invasive breast cancer cells. We further demonstrate that, in the absence of BCAR3, RhoA-
dependent signaling pathways appear to predominate, as evidenced by an increase in RhoA activity, ROCK-mediated
phosphorylation of myosin light chain II, and large ROCK/mDia1-dependent focal adhesions. Taken together, these data
establish that BCAR3 functions as a positive regulator of cytoskeletal remodeling and adhesion turnover in invasive breast
cancer cells through its ability to influence the balance between Rac1 and RhoA signaling. Considering that BCAR3 protein
levels are elevated in advanced breast cancer cell lines and enhance breast cancer cell motility, we propose that BCAR3
functions in the transition to advanced disease by triggering intracellular signaling events that are essential to the
metastatic process.
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Introduction

Metastatic breast cancer is currently incurable and associated

with a 5-year survival rate of only 23% (American Cancer Society).

Thus, understanding the molecular mechanisms underlying

metastasis is critical for improving patient survival. Cell motility

is inherent to metastasis, and involves a complex, yet tightly

regulated, series of events that promote remodeling of cellular

adhesions and the actin cytoskeleton. Cells move directionally by

first establishing protrusions toward a given stimulus. The actin-

rich protrusions at the leading edge are then stabilized by nascent

adhesions that are reinforced by tension generated from the actin

cross-linking activity of myosin II. This rise in intracellular tension

promotes adhesion disassembly in the rear and provides the force

required to move cells along substrates within their microenviron-

ment [1,2,3].

The Rho-family of GTPases, including Rac1 and RhoA,

regulate actin cytoskeletal and adhesion dynamics as well as

contractility. During cell migration, Rac1 promotes actin poly-

merization, membrane protrusions, and the formation of nascent

adhesions, while RhoA creates intracellular tension by promoting

actin bundling (stress fibers) and adhesion maturation [4]. RhoA

has two major downstream effectors: the serine/threonine RhoA-

associated kinase ROCK phosphorylates the regulatory light chain

of myosin II (MLC II) to promote intracellular tension and acto-

myosin contractility, while mammalian Diaphanous 1 (or mDia1)

assembles and stabilizes actin to support adhesion maturation

[4,5,6]. Although Rac1 and RhoA often appear to have opposing

functions [7], their coordinate signaling is essential for cell motility

[8].

The guanine nucleotide exchange factors (GEFs) and GTPase

activating proteins (GAPs) that regulate Rho GTPases are often

recruited to adhesions by specific adaptor/scaffolding molecules

and kinases [3,9]. In this work, we focus on the adaptor molecule

Breast Cancer Antiestrogen Resistance 3 (BCAR3), which has

emerged as an important regulator of breast cancer cell migration

and invasion [10]. BCAR3, a member of the novel SH2 domain-

containing protein (NSP) family, is overexpressed in breast cancer

PLOS ONE | www.plosone.org 1 June 2013 | Volume 8 | Issue 6 | e65678

6



cell lines representative of more advanced, invasive breast cancers

[10,11]. BCAR3 is a binding partner of the adaptor molecule

p130Cas (Cas), which is a potent activator of Rac1 through its

ability to couple with the adaptor molecule CrkII (Crk) and its

associated GEF, DOCK180/ELMO [12,13,14]. BCAR3 has also

been shown to promote interactions between Cas and the protein

tyrosine kinase c-Src, leading to increased c-Src kinase activity and

Cas phosphorylation. This, in turn, has significant implications in

cell survival, proliferation and motility [15,16,17,18].

In this study, we set out to determine the mechanism through

which BCAR3 promotes breast cancer cell motility by examining

its function in the regulation of membrane protrusions, adhesion

turnover, and contractility. We show that BCAR3 is a positive

regulator of Rac1 activity, membrane protrusiveness, and adhe-

sion turnover in invasive breast cancer cells. When BCAR3 is

selectively depleted, RhoA activity is increased and cells exhibit a

highly contractile phenotype marked by prominent stress fibers, an

increase in ROCK-mediated MLC II phosphorylation, and large

ROCK/mDia1-dependent focal adhesions. Based on these data,

we suggest that BCAR3 controls the balance between Rac1 and

RhoA signaling in invasive breast cancer cells and, through this

activity, functions as a positive regulator of actin cytoskeletal/

adhesion remodeling and cell motility. Considering that BCAR3 is

elevated in advanced breast cancer cell lines and enhances cell

motility, we propose that BCAR3 upregulation may be a critical

regulator of metastatic progression.

Results

BCAR3 promotes membrane protrusiveness
Given that the establishment of membrane protrusions is a

critical facet of cell migration [1] and the loss of BCAR3 has been

shown to decrease breast cancer cell motility [10], we sought to

determine the contribution of BCAR3 to membrane protrusive-

ness. BT549 cells, which are invasive breast cancer cells that

express high levels of BCAR3, were transfected with control (siCtl)

or BCAR3-specific (siB3-1) siRNA oligonucleotides and imaged by

time-lapse video microscopy (Videos S1 and S2). BCAR3

protein levels were consistently reduced by greater than 90% in

cells transfected with siB3-1 (Fig. 1A). To visualize the protrusive

area of each cell, the first and last frames of the videos were

pseudo-colored gray and black, respectively (Fig. 1B). Control

cells developed one or more broad protrusions during the time

span of the video, while BCAR3-depleted cells exhibited spiky,

short-lived extensions. Both the average protrusive area per cell

(Fig. 1C) and the time to maximal membrane extension (Fig. 1D)

were significantly reduced in BCAR3-depleted cells.

Based on these results, we hypothesized that the converse should

also be true, in that ectopic expression of BCAR3 in cells that

normally express low levels of the protein would increase

membrane protrusiveness and migration. To test this hypothesis,

MCF-7 cells expressing BCAR3 under the control of a tetracy-

cline-regulated promoter were imaged by time-lapse video

microscopy (Videos S3 and S4; Fig. 1E, top panels; Fig. 1F).

BCAR3 overexpression resulted in a significant increase in the

average protrusive area per cell, a faster migration rate, and an

increased distance traveled (Figs. 1G and 1H; Fig. S1).

Membrane protrusions are generated by dynamic actin

remodeling through multiple pathways, including the Cas/Crk/

Rac1 signaling axis [12,14]. Previous studies by our group have

shown that Cas tyrosine phosphorylation, which is required for

Cas/Crk association, is increased upon BCAR3 overexpression

[17]. Consistent with this finding, the amount of Cas present in

association with Crk was found to be significantly elevated when

BCAR3 was overexpressed (Fig. 1E, bottom panels). Thus, in

addition to increasing membrane protrusiveness and migration,

BCAR3 overexpression induces elevated Cas/Crk coupling.

BCAR3 promotes membrane protrusiveness through
activation of Rac1

Because Rac1 activity is required for membrane protrusions

[19], we next investigated whether BCAR3 promotes membrane

protrusiveness through its ability to modulate Rac1 activity [20].

To test this hypothesis, active GTP-bound Rac1 was measured in

BT549 cells transfected with siCtl or siB3-1 oligonucleotides.

While total Rac1 expression was equivalent in control and

BCAR3-depleted cells, Rac1-GTP levels were significantly

decreased in the absence of BCAR3 (Fig. 2A). To determine

whether this decrease in Rac1 activity was responsible for the loss

of protrusiveness seen in the absence of BCAR3, constitutively

active Rac1 (Myc-RacL61) was transiently expressed in control

and BCAR3-depleted cells and actin-rich membrane protrusions

were visualized by immunofluorescence microscopy. As expected,

BCAR3 depletion reduced the percentage of cells exhibiting

protrusions in the absence of RacL61 (Fig. 2C). However, while

expression of RacL61 in control cells did not have a significant

effect on membrane protrusions (Fig. 2B, left panel, compare cell

marked with arrow to adjacent cell), RacL61 expression in

BCAR3-depleted cells significantly increased the percentage of

cells containing membrane protrusions (Fig. 2B, right panel,

compare cell marked with arrow to adjacent cells marked with

arrowheads; Fig. 2C). Interestingly, BCAR3-depleted cells that

did not express RacL61 (Fig. 2B, right panel, arrowheads)

exhibited prominent actin-rich stress fibers that were not evident

in control cells or BCAR3-depleted cells expressing constitutively

active Rac1. Our group has reported this stabilization of stress

fibers in the absence of BCAR3 previously [10]. Collectively, these

data show that BCAR3 promotes membrane protrusions through

a Rac1-dependent mechanism.

BCAR3 alters actin cytoskeletal and adhesion remodeling
The presence of prominent stress fibers in BCAR3-depleted

cells [10] suggests that BCAR3 may influence actin cytoskeletal

remodeling. This was tested by transfecting BT549 cells with siCtl,

siB3-1, or a BCAR3-specific siRNA smartpool (siB3-2) of

oligonucleotides (Fig. 3C). The cells were allowed to spread on

fibronectin for 3 hours and then actin and adhesion structures

were visualized by immunofluorescence microscopy. In control

cells, actin was present in peripheral ruffles and diffusely

throughout the cytoplasm (Fig. 3A, panel a). Vinculin was

localized adjacent to actin-rich foci in what appeared to be nascent

focal complexes (panels b and c) [21]. When BCAR3 was depleted

from these cells, prominent actin-rich stress fibers were present

throughout the cytoplasm (panels d and g). The majority of these

structures appeared to be dorsal stress fibers that originate from

single vinculin-containing focal adhesions (panels e and f, h and i).

As is the case for ventral stress fibers that have adhesions at both

ends, dorsal stress fibers are highly contractile and contribute to

intracellular tension [3]. Interestingly, the length of the adhesions

in BCAR3-depleted cells was significantly increased compared to

control cells (Fig. 3B), suggesting a defect in adhesion turnover.

This was further investigated by total internal reflective fluores-

cence (TIRF)-based video microscopy using GFP-vinculin as a

marker of adhesions (Videos S5 and S6; Figs. 4A and 4B).

Images representing the first, middle, and last frames of the time-

lapse TIRF videos were pseudo-colored red, green, and blue,

respectively, and merged into a single color image to more readily

visualize the dynamics of adhesion assembly and disassembly

BCAR3 Regulates Actin and Adhesion Remodeling
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Figure 1. BCAR3 promotes membrane protrusiveness in breast cancer cells. (A) BT549 cells were transfected with control (siCtl; lane 1) or
BCAR3-specific (siB3-1; lane 2) siRNA oligonucleotides and incubated for 72 hours prior to lysis. Representative immunoblots of total cell lysates are
shown. (B) BT549 cells transfected as in (A) were plated on 10 mg/ml fibronectin for 4 hours and imaged by time-lapse phase microscopy for
12.5 minutes. Cell outlines of the first and last frames (pseudo-colored gray and black, respectively) of representative cells from Videos S1 and S2 are
shown. (C) The average protrusive area was determined by measuring the area shown in black. Data represent the mean 6 SEM of at least 12 cells
over at least 4 videos (*, p,0.005). (D) The average time to maximal membrane extension was determined by kymography. Data represent the mean
6 SEM of at least 12 kymographs over 3 separate videos (*, p,0.005). (E) MCF-7 cells expressing BCAR3 under the control of a tetracycline-inducible
(Tet-off) promoter were treated in the presence (lane 1) or absence (lane 2) of 1 mg/ml doxycycline (Dox) for 72 hours. Total cell protein and Crk
immune complexes were immunoblotted with the designated antibodies. (F) MCF-7 cells were treated with or without Dox as described in (E), then
plated on 10 mg/ml fibronectin overnight and subjected to time-lapse DIC microscopy for 1 hour. Tracings generated as in (B) for representative cells
in Videos S3 and S4 are shown. (G) The average protrusive area per cell was determined as in (C). Data represent the mean 6 SEM of 31 cells per

BCAR3 Regulates Actin and Adhesion Remodeling
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(Fig. 4C). In control cells, adhesion assembly (Fig. 4B, top row,

arrowheads; Fig. 4C, green or blue adhesions) was most often

observed at the periphery of the cell, while adhesion disassembly

(Fig. 4B, top row, arrows; Fig. 4C, yellow or red adhesions) was

observed in more centrally located regions of the cell. Adhesions in

BCAR3-depleted cells were predominantly localized to the

periphery of the cell and showed accumulation but little loss of

GFP-vinculin over time (Fig. 4B, bottom row, arrowheads;

Fig. 4C, white adhesions). To quantify adhesion assembly and

disassembly rates, the pixel intensity of vinculin-containing

structures was determined as a function of time. While the

percentage of adhesions undergoing assembly was not statistically

different between control and BCAR3-depleted cells, cells lacking

BCAR3 contained a significantly reduced number of adhesions

undergoing disassembly (Fig. 4D). This resulted in a greater

number of adhesions remaining ‘‘static’’ or stable. Moreover, the

few adhesions that were seen to undergo disassembly in cells

lacking BCAR3 had a significantly slower turnover rate (Fig. 4E).

Taken together, these data indicate that adhesion dynamics,

particularly disassembly, are regulated by BCAR3 in invasive

breast cancer cells.

Growth factor-induced cytoskeletal remodeling is
regulated by BCAR3

Thus far, we have shown that BCAR3 controls cytoskeletal

changes that arise in response to cell adhesion to fibronectin. We

previously reported that BT549 cells depleted for BCAR3 also

failed to undergo characteristic cytoskeletal remodeling following

growth factor stimulation (i.e. severing of actin-rich stress fibers

and acquisition of membrane protrusions) [10]. Given these

findings, we sought to define the extent to which BCAR3 regulated

cytoskeletal dynamics in response to epidermal growth factor

(EGF) stimulation. By using a second invasive breast cancer cell

line (MDA-MB-231), we also sought to determine whether the

impact of BCAR3 signaling on the actin cytoskeleton was

consistent across multiple cell lines. MDA-MB-231 cells treated

with control siRNA oligonucleotides exhibited robust actin

cytoskeletal and adhesion remodeling in response to EGF, marked

by a loss of stress fibers (Fig. 5A, compare panels a and d; Fig. 5B,

black bars) and the redistribution of adhesions to sites of broad,

actin-rich lamellipodia (Fig. 5A, compare panels b and c with

panels e and f). In contrast, cells treated with siB3-1 siRNAs

exhibited an attenuated response characterized by stabilization of

stress fibers (Fig. 5A, panels g and j; Fig. 5B, gray bars) and large

adhesions (Fig. 5A, panels h, i, k and l). Knockdown of BCAR3 in

MDA-MB-231 cells using siB3-2 resulted in a similar, albeit

somewhat less pronounced, defect in the cytoskeletal response to

EGF (Fig. 5A, panels m–r; Fig. 5B, white bars). We attribute this

difference to the fact that siB3-2 was less efficient at reducing

BCAR3 expression in MDA-MB-231 cells than was siB3-1

(Fig. 5C). These data indicate that BCAR3 regulates actin

cytoskeletal remodeling and adhesion dynamics in response to

EGF as well as fibronectin.

RhoA-mediated contractility predominates upon loss of
BCAR3

RhoA-dependent stress fibers and focal adhesions create

intracellular tension, which is a hallmark of highly contractile

condition over 3 separate videos (*, p,0.02). (H) Cell motility was measured by tracing the movement of the nucleus over time (see Fig. S1). The
average rate of migration was calculated by dividing the total distance traveled by time for each cell. Data represent the mean 6 SEM of at least 72
cells per condition over 3 separate movies (*, p,0.0001).
doi:10.1371/journal.pone.0065678.g001

Figure 2. BCAR3 promotes Rac1 activity. (A) BT549 cells
transfected with siCtl (lane 1) or siB3-1 (lane 2) siRNA oligonucleotides
were incubated for 72 hours, held in suspension for 90 minutes, then
plated on 10 mg/ml fibronectin for 1 hour. GTP-bound Rac1 was
isolated from whole cell lysates by incubation with PAK-1-binding
domain agarose. Bound proteins (top panel) and total Rac1 (middle
panel) were detected by immunoblotting with a Rac1 antibody, and
BCAR3 knockdown was confirmed with a BCAR3-specific antibody
(bottom panel). Quantification of the relative GTP-Rac1 level is shown.
Data represent the mean 6 SEM of 3 independent experiments (*,
p,0.05). (B) BT549 cells were transfected with siCtl or siB3-1
oligonucleotides, incubated for 24 hours, followed by transfection with
plasmids encoding Myc-RacL61 for an additional 48 hours. Cells were
plated onto 10 mg/ml fibronectin-coated coverslips for 1–3 hours and
processed for immunofluorescence as described in the methods. Actin
is stained with Texas red-conjugated phalloidin (red) and Myc (RacL61)
with fluorescein isothiocyanate (FITC) (green). Arrows indicate Myc-
RacL61 expressing cells. Arrowheads indicate actin-rich stress fibers. The
images shown are representative of 6 separate experiments. Scale
bar = 15 mm. (C) The percentage of cells exhibiting actin-rich ruffles was
determined for non-transfected and RacL61-expressing cells. Data
represent the mean 6 SEM of at least 36 cells per condition over to
2 separate experiments (*, p,0.05).
doi:10.1371/journal.pone.0065678.g002

BCAR3 Regulates Actin and Adhesion Remodeling
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cells [22]. Thus, our findings that BCAR3-depleted cells exhibit

prominent stress fibers and mature adhesions in response to

adhesion and growth factor signaling supports a hypothesis

whereby RhoA activity is increased in the absence of BCAR3.

To test this hypothesis, active GTP-bound RhoA levels were

measured in control and BCAR3-depleted BT549 cells transiently

expressing GFP-tagged RhoA. GTP-bound GFP-RhoA levels

were increased by approximately 2.6-fold in the absence of

BCAR3 (Fig. 6A). Downstream of RhoA, ROCK becomes

activated and phosphorylates MLC II. Consistent with elevated

RhoA/ROCK activity, phospho-MLC II (pMLC) levels were

increased 2.7-fold over control cells when BCAR3 was depleted

(Fig. 6B, compare lanes 1 and 3; see graph). As expected, MLC II

phosphorylation was dependent on ROCK activity, since pMLC

Figure 3. BCAR3 alters actin organization and adhesion size and distribution in invasive breast cancer cells. (A) BT549 cells were
transfected with siCtl, siB3-1, or a smartpool consisting of 4 BCAR3-specific siRNA (siB3-2) oligonucleotides, incubated 72 hours, re-plated onto 10 mg/
ml fibronectin-coated glass coverslips for 3 hours, and then processed for immunofluorescence as described in the methods. Actin and vinculin-
containing adhesions were visualized with phalloidin (red) and vinculin (green) antibodies, respectively. Merged images are shown in the right panels,
with insets showing higher magnifications of cell peripheries. Scale bar = 15 mm. A similar adhesion phenotype was observed with paxillin
(unpublished data). (B) Vinculin-containing adhesions in siCtl (black bar), siB3-1 (gray bar), and siB3-2 (white bar) treated cells were measured in
ImageJ. Data represent the mean 6 SEM of at least 136 adhesions from at least 6 cells for each condition (*, p,0.0001). Asterisks indicate values that
are significantly different from the control condition. (C) BT549 cells were transfected as described in (A). Representative immunoblot is shown
confirming knockdown of BCAR3 using 2 distinct siRNA oligonucleotides.
doi:10.1371/journal.pone.0065678.g003

BCAR3 Regulates Actin and Adhesion Remodeling
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levels were nearly undetectable in the presence of the ROCK

inhibitor Y-27632, irrespective of BCAR3 expression (lanes 2 and

4).

ROCK signaling downstream of RhoA is also important for

adhesion maturation. To investigate whether ROCK contributes

functionally to the increased adhesion length present in cells

depleted for BCAR3, vinculin-containing adhesions were exam-

ined under conditions in which ROCK activity was inhibited with

Y-27632. As was shown in Fig. 3, adhesion length was

significantly greater in cells depleted for BCAR3 (Fig. 7A,

compare panels a and c; Fig. 7B compare bars 1 and 3).

Inhibition of ROCK resulted in a reversal of this phenotype in

BCAR3-depleted cells (Fig. 7A, panel d; Fig. 7B, compare bars 3

and 4), demonstrating that ROCK is required for the increase in

adhesion length seen upon loss of BCAR3.

A second RhoA effector that has been implicated in adhesion

maturation is mDia [6]. To determine whether mDia1 contributes

to the adhesion response seen in BCAR3-depleted cells, BT549

cells were transfected with siCtl or siB3-1 along with mDia1-

specific siRNAs (siDia1). In the presence of endogenous BCAR3,

loss of mDia1 had no effect on adhesion size (Fig. 7B, compare

bars 1 and 5), although the adhesions appeared more centrally

located (Fig. 7A, compare panels a and e). In contrast, depletion

of mDia1 in cells lacking BCAR3 diminished the elongated

adhesion response seen in BCAR3-depleted cells, resulting in

shorter adhesions (Fig. 7A, compare panels c and g; Fig. 7B,

compare bars 3 and 7). This shows that, like ROCK, mDia1

contributes to the increased adhesion size observed under

conditions of BCAR3 depletion. Interestingly, simultaneous

inhibition/loss of ROCK and mDia1 resulted in adhesions that

were markedly smaller than those present in control cells (Fig. 7A,

compare panel a and f; Fig. 7B, compare bars 1 and 6).

Moreover, this phenotype was maintained under conditions of

BCAR3 loss (compare bars 6 and 8), demonstrating that dual

blockade of the ROCK and mDia arms of RhoA signaling

completely abrogates the effect of BCAR3 depletion on focal

adhesion dynamics. Together, these data show that RhoA-

dependent pathways predominate in invasive breast cancer cells

in the absence of BCAR3.

Discussion

A balance between Rac1 and RhoA signaling is critical for cell

motility. In cancer cells, the aberrant expression and/or activity of

molecules that are responsible for regulating the activity of these

GTPases can disrupt this balance and promote metastasis [23]. In

this work, we show that BCAR3, an adaptor molecule that

regulates cell motility and invasion, tips the balance in favor of

Rac1 in invasive breast cancer cells, thus promoting Rac1-

dependent events such as membrane protrusions and adhesion

turnover (Fig. 8). The critical role played by BCAR3 in regulating

this balance is underscored by the increase in RhoA activity and

RhoA-dominant phenotypes (stable stress fibers, elevated pMLC,

and large ROCK/mDia1-dependent focal adhesions) seen in these

cells upon BCAR3 depletion.

Figure 4. BCAR3 regulates adhesion disassembly. (A) BT549 cells
were transfected with siCtl or siB3-1 siRNA oligonucleotides, incubated
for 24 hours, and then transfected with plasmids encoding GFP-vinculin
for an additional 48 hours. Cells were plated on 2 mg/ml fibronectin for
4 hours and then visualized by TIRF-based video microscopy to analyze
adhesion dynamics. Representative images from Videos S5 and S6 are
shown. (B) Time-lapse images from TIRF microscopy show assembly
(arrowheads) and disassembly (arrows) of vinculin-containing adhesions
over the specified time course for control (top row) and BCAR3-
depleted (bottom row) cells. (C) Analysis of vinculin-containing
adhesion turnover. The first, middle, and final frames from TIRF-based
Videos S5 and S6 were pseudo-colored red, green, and blue,
respectively, and then merged into a single image to visualize adhesion
dynamics. At least 3 cells per condition were pseudo-colored. Insets
show higher magnifications of peripheral adhesions. (D) Quantitative

analysis of the adhesions that assembled, disassembled, or remained
static over the time course shown in (B) for control (black bars) and
BCAR3-depleted (gray bars) cells (*, p,0.05). (E) Quantitative analysis of
the turnover rate of vinculin-containing adhesions. At least 18
adhesions from 3 separate control (black bars) and BCAR3-depleted
(gray bars) cells were measured as described in the methods (*,
p,0.005). Asterisks indicate values that are significantly different from
control conditions.
doi:10.1371/journal.pone.0065678.g004

BCAR3 Regulates Actin and Adhesion Remodeling
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Figure 5. BCAR3 regulates actin cytoskeletal and adhesion remodeling in response to growth factor. (A) MDA-MB-231 cells were
transfected with siCtl, siB3-1, or siB3-2 oligonucleotides and incubated for 24 hours prior to plating onto 10 mg/ml fibronectin-coated glass coverslips.
Cells were serum-starved for 16–18 hours, stimulated with 100 ng/ml EGF for 0 or 30 minutes, and then fixed and processed for immunofluorescence
as described in the methods. Actin and vinculin-containing adhesions were visualized with phalloidin (red) and vinculin (green) antibodies,
respectively. Merged images are shown in the right panels; insets show higher magnifications of actin and adhesion structures. Scale bars = 15 mm.
(B) The percentage of siCtl (black bars), siB3-1 (gray bars), and siB3-2 (white bars) treated cells containing actin-rich stress fibers was determined. Data
represent the mean 6 SEM of at least 730 cells per condition from 3 separate experiments (*, p,0.04). (C) MDA-MB-231 cells were transfected as
described in (A). Representative immunoblots are shown confirming knockdown of BCAR3 using 2 separate siRNA oligonucleotides.
doi:10.1371/journal.pone.0065678.g005
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Regulation of Rac1 by BCAR3
BCAR3 shares structural and sequence homology with the

Cdc25 family of Rac GEFs [24]. However, a recent report has

shown that the C-terminal GEF-like domain adopts a ‘‘closed’’

conformation that is prohibitive for catalytic activity [25]. While it

is therefore unlikely that BCAR3 functions as a GEF, it is possible

that the Rac1 GEF DOCK180/ELMO becomes activated

through BCAR3-dependent augmentation of Cas/Crk coupling

[12,13,14,26,27] (Fig. 8). Our group has shown that elevated

BCAR3 protein expression in breast cancer cells promotes c-Src/

Cas interactions, c-Src kinase activity, c-Src-dependent Cas

tyrosine phosphorylation, Cas/CrkII association, and Rac1

activity ([10,17] and data herein). Additional data from Adam

Lerner’s group show that BCAR3/Cas interactions are required

for c-Src to bind to, and phosphorylate, Cas as well as to promote

optimal cell motility [18,28]. Whether Cas is directly required for

BCAR3-mediated Rac1 activation has been difficult to determine

because we are unable to retain BCAR3 expression in the absence

of Cas (data not shown). Our group is currently working to

understand the mechanism underlying this regulation. However, it

has been reported that direct binding between BCAR3 and Cas

Figure 6. Loss of BCAR3 elevates RhoA activity and ROCK-
mediated phosphorylation of MLC II. (A) BT549 cells were
transfected with siCtl (lane 1) or siB3-1 (lane 2) siRNA oligonucleotides,
incubated for 48 hours, followed by transfection with plasmids
encoding GFP-tagged RhoA. Twenty-four hours later, cells were
trypsinized, held in suspension for 90 minutes, and then plated on
10 mg/ml fibronectin for 1 hour. GTP-bound GFP-RhoA was isolated
from whole cell lysates by incubation with Rhotekin binding domain
(RBD) agarose. Bound proteins (top panel) and total GFP-RhoA (middle
panel) were detected by immunoblotting with a Rho antibody, and
BCAR3 knockdown was confirmed with a BCAR3-specific antibody
(bottom panel). Quantification of the relative RhoA-GTP level is shown.
RhoA activity was increased by an average of 2.6-fold60.6 (n = 2). Error
bars represent standard deviation. (B) BT549 cells transfected with siCtl
or siB3-1 siRNA oligonucleotides were held in suspension for
90 minutes and then plated onto 10 mg/ml fibronectin in the absence
or presence of 20 mM Y-27632. Cells were lysed in 26 boiling hot
sample buffer, sheared with a 27-gauge needle, resolved by 12.5% SDS-
PAGE, and immunoblotted with antibodies recognizing phospho-
specific MLC (pThr18/pSer19) or total MLC (top panels). Total cell
lysates were resolved by 8% SDS-PAGE and immunoblotted with
antibodies recognizing BCAR3 and actin (bottom panels). Quantification
of the relative pMLC level is shown. pMLC was increased by an average
of 2.7-fold60.6 (n = 5; *, p,0.05) in cells lacking BCAR3. Error bars
represent SEM.
doi:10.1371/journal.pone.0065678.g006

Figure 7. RhoA effector signaling mediates adhesion length in
BCAR3-depleted invasive breast cancer cells. (A) BT549 cells
transfected with siCtl or siB3-1 6 mDia1-targeted (siDia1) siRNA
oligonucleotides were held in suspension for 90 minutes, plated onto
10 mg/ml fibronectin in the absence or presence of 20 mM Y-27632, and
then processed for immunofluorescence as described in the methods.
Adhesions were visualized using a vinculin antibody; insets show higher
magnifications of peripheral adhesions. Scale bars = 15 mm. Similar
results were obtained with paxillin staining (unpublished data). (B)
Quantification of adhesion length in siCtl (black bars), siB3-1 (gray bars),
siCtl+siDia1 (white bars), and siB3-1+siDia1 (hashed bars) treated cells in
the absence or presence of Y-27632. Data represent the mean 6 SEM of
at least 343 adhesions from at least 13 cells from 2 separate
experiments. ANOVA analysis confirmed all conditions were significant-
ly different from one another (p,0.0001) except the following
comparisons: siCtl-Y vs. siCtl+siDia1-Y (bars 1 vs. 5), siCtl+Y vs. siB3-
1+Y (bars 2 vs. 4), and siCtl+siDia1+Y vs. siB3-1+siDia1+Y (bars 6 vs. 8).
doi:10.1371/journal.pone.0065678.g007
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may be dispensable for Rac1 activation, as ectopic overexpression

of a BCAR3 mutant that cannot bind to Cas is still able to

promote elevated Rac1 activity in MCF-7 cells [28].

Recently, the receptor protein tyrosine phosphatase a (PTPa)

has been shown to function as a molecular bridge that can serve as

a link between adhesion signals and the BCAR3/Cas/c-Src

signaling axis [29]. It is therefore interesting to note that PTPa-

null cells share phenotypic and biochemical characteristics with

BCAR3-depleted cells, including decreased adhesion-dependent

Rac1 activity, c-Src/Cas interactions, c-Src kinase activity, Cas

phosphorylation, Cas/Crk association, cell spreading, and migra-

tion/invasion [10,17,29]. Sun et al. suggest that PTPa/BCAR3

interactions are important for recruiting Cas to membrane-

proximal regions of the cell [29], which could in turn augment

Cas/c-Src interactions, c-Src activity, and ultimately Rac1

activation [17,30]. This model emphasizes the importance of c-

Src in mediating cytoskeletal responses to adhesion and growth

factor signals, and helps to explain how BCAR3 may be an

important regulator in these processes. It is interesting to speculate

that the nature of the initiating adhesion signal (e.g. engagement of

specific integrins and/or level of activation) may influence the

temporal and spatial activation of this pathway.

Although not mutually exclusive, a second possibility that may

account for the BCAR3-dependent Rac1 activity observed in

invasive breast cancer cells is that BCAR3 may actively suppress

RhoA signaling, leading indirectly to Rac1 activation (see Fig. 8).

Indeed, there are numerous examples showing reciprocal regula-

tion of Rac1 and RhoA signaling, such that when one GTPase is

active, the other is suppressed [7]. This active suppression of RhoA

by BCAR3 could arise from its ability to either positively regulate

a Rho GAP and/or negatively regulate a Rho GEF. There are a

number of candidate targets for this regulation. For example, the

activity of p190RhoGAP is positively regulated by c-Src [31],

making it a potentially attractive downstream target of BCAR3

signaling. There are additional candidate Rho GAPs (e.g.

p250RhoGAP, DLC-1) and GEFs (e.g. p115RhoGEF, p190Rho-

GEF, LARG) downstream of integrins that are modulated by c-

Src and other Src-family kinases [32,33]. Future studies will

determine whether any of these molecules contribute to the

suppression of RhoA by BCAR3 and, in so doing, help to elucidate

the mechanism by which BCAR3 affects the balance between

Rac1 and RhoA signaling in invasive breast cancer cells. Finally, it

is important to note that Rac1-RhoA reciprocity could not only

account for Rac1 activation through suppression of RhoA, but the

converse could also be true in that the high RhoA activity seen in

BCAR3-depleted cells could result from diminished Rac1 activity

(see Fig. 8).

BCAR3 and breast cancer progression
BCAR3 protein expression is elevated in cell lines representative

of triple-negative breast cancers compared to estrogen receptor-

positive cells [10,11]. As discussed above, BCAR3 function is

intimately linked to two proteins, Cas and c-Src. Like BCAR3,

these molecules are established regulators of cell motility,

antiestrogen resistance, and other aggressive breast cancer

behaviors [34,35,36,37,38,39]. Interestingly, c-Src kinase activity

is also elevated in triple negative breast cancers [40,41]. Since

BCAR3 has been shown to function through Cas to activate c-Src

[15,17], we suggest that its upregulation in triple negative breast

cancer cells may contribute to the elevated c-Src activity seen in

these tumors.

In addition to c-Src, EGFR is frequently overexpressed in

aggressive breast tumors and triple negative breast cancer cell

lines, as are a number of downstream components of EGF

signaling pathways [42,43,44]. The data presented above showing

that BCAR3 regulates the cytoskeletal response of invasive breast

cancer cells to EGF thus provide a second point of convergence

between BCAR3 and intracellular signaling pathways that control

tumor cell motility and invasion. As is the case for the BCAR3/c-

Src/Cas/Crk signaling axis, EGFR/BCAR3 signaling may

contribute to actin remodeling through Rac1. However, a second

potential mechanism involves the actin severing protein cofilin,

which becomes activated in response to EGF and causes stress

fiber dissolution to produce a pool of free actin monomers

available for polymerization [42]. Thus, it will be important to

explore the possibility that BCAR3 may also contribute to actin

remodeling through this EGFR-cofilin pathway. There is consid-

erable evidence for a role of EGF in promoting breast cancer cell

invasion, and we have shown that BCAR3 can regulate the

migration/invasion of breast tumor cells toward EGF [10,45].

Whether this is achieved through the actin remodeling activities of

BCAR3 is yet to be determined.

Despite evidence for BCAR3 as a regulator of invasive breast

cancer cell motility and invasion, the role of BCAR3 in other cell

types is not widely known. While BCAR3 mRNA is present in

multiple cell types and tissues, its expression appears to be largely

dispensable for development since BCAR3 knockout mice are

born at the expected Mendelian frequency and have normal

lifespans [46,47]. In fact, the only spontaneous defect reported for

Figure 8. BCAR3 regulates the balance between Rac1 and RhoA
signaling in invasive breast cancer cells. When BCAR3 is expressed
at high levels, as is the case in invasive breast cancer cells, it promotes
Rac1 activity, membrane protrusiveness, adhesion turnover, and rapid
cell motility. When BCAR3 is depleted from these cells, RhoA activity is
elevated and RhoA-dependent phenotypes predominate, resulting in
the presence of prominent stress fibers, elevated pMLC levels, and large
ROCK/mDia1-dependent focal adhesions. We suggest that BCAR3 may
enhance Rac1 activity through c-Src/Cas/Crk coupling. It is also possible
that BCAR3 may actively suppress RhoA activity/signaling, and in doing
so, indirectly elevate Rac1 activity.
doi:10.1371/journal.pone.0065678.g008
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these mice is in the lens of the eye [47]. Thus it is interesting that

this molecule plays such an essential role in regulating cytoskeletal

remodeling, adhesion turnover, and cell motility in invasive breast

cancer cells. We hypothesize that BCAR3 expression may become

upregulated in breast cancer cells in response to selective pressures

present in the tumor microenvironment such as hypoxia or

nutrient deprivation. The BCAR3 signaling pathway would then

be in place to promote rapid and efficient invasion/migration of

these tumor cells to distal sites in response to these environmental

stresses. Importantly, our finding that these cells fail to respond

properly to chemical (e.g. EGF) and physical (e.g. adhesion signals)

stimuli in the absence of BCAR3 could have significant

implications for treatment of breast cancers that express this

protein, as it may be possible to target BCAR3 (or other molecules

within the BCAR3/Cas/c-Src signaling network) in the tumors

with limited collateral damage to other tissues. Future work is

needed to determine the potential benefits of this type of an

approach.

Materials and Methods

Antibodies, reagents and plasmids
The following monoclonal antibodies were used: b-Actin and

vinculin (Sigma-Aldrich, St. Louis, MO); Rac1, mDia1 and Crk

(BD Biosciences, San Jose, CA); Rho (Millipore, Billerica, MA);

Myc (9E10) (Lymphocyte Culture Center, UVA). The following

polyclonal antibodies were used: BCAR3 (Bethyl Laboratories,

Inc., Montgomery, TX); pThr18/pSer19 MLC II and total MLC

II (Cell Signaling Technology, Danvers, MA); FITC-conjugated

goat anti-mouse and Texas red-conjugated goat anti-rabbit

(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA);

CasB [48]. Texas red-conjugated phalloidin (Molecular Probes,

Eugene, OR), EGF (Sigma), and ROCK inhibitor, Y-27632

(Calbiochem, Billerica, MA) were also used. Dr. A. R. Horwitz

provided plasmids encoding Myc-RacL61, GFP-vinculin and

GFP-RhoA (UVA).

Cell Culture
BT549 and MDA-MB-231 cells (American Type Tissue

Culture, Manassas, VA) and tetracycline-regulated MCF-7 cells

stably expressing Myc-BCAR3 were cultured as previously

described [10,17].

Small-interfering RNA and plasmid transfection
Cells were transfected with 20 mM of the following small-

interfering RNA (siRNA) oligonucleotides using Lipofectamine

RNAiMAX reagent (Invitrogen, Grand Island, NY) following the

manufacturer’s protocol: non-targeting control (siCtl; Ambion,

Grand Island, NY), BCAR3 SH2-domain-targeting (siB3-1),

BCAR3-targeting ON-TARGETplus SMARTpool (siB3-2), and

mDia1-targeting ON-TARGETplus SMARTpool (siDia1) (Dhar-

macon. Lafayette, CO). The siB3-1 and siB3-2 oligonucleotides

were described previously [10,17]. Plasmid transfection of Myc-

RacL61 or GFP-vinculin was performed using Fugene HD

Transfection Reagent (Roche, Indianapolis, IN) following manu-

facturer’s specifications. Plasmid transfection of GFP-tagged

wildtype RhoA was performed using Lipofectamine 2000 (Invitro-

gen) following manufacturer’s specifications.

Immunoprecipitation, immunoblotting, and
immunofluorescence

Cells were lysed in ice-cold radioimmune precipitation assay

(RIPA) buffer and protein concentrations determined as previously

described [10]. Immunoprecipitations and immunoblotting were

performed as previously described [10]. Cells plated on fibronec-

tin-coated glass coverslips were processed, visualized through a

Nikon Eclipse TE2000-E microscope, and photographed as

previously described [10].

Live cell imaging
Cells were plated onto fibronectin-coated glass bottom dishes

(BT549) or 35 mm Delta T dishes (Bioptechs, Inc., Butler, PA)

(MCF-7) and cultured at 37uC, pH 7.4 in CCM1 media

(Hyclone). For BT549 cells, phase images were captured every

5 seconds for 12.5 minutes on a light microscope (Diaphot, Nikon)

with a video camera (KY-F55B, Victor Company of Japan).

Images were then processed using MetaMorph Software (Molec-

ular Devices, Sunnyvale, CA). For MCF-7 cells, phase images

were captured every 30 seconds for 1 hour using an inverted

microscope with a 206 differential interference contrast (DIC)

objective, heated stage (Bioptechs, Inc.), and an ORCA camera.

Images were then processed using Openlab software.

Protrusion dynamics
To quantify protrusive behavior, total cell area at the first and

final frame of a time-lapse movie was traced and pseudo-colored

gray (first frame) or black (last frame). The average protrusive area

was determined by measuring the area shown in black using

ImageJ software (National Institutes of Health, Bethesda, MD).

The average time (in minutes) to maximal membrane extension

was determined by creating kymographs of cells from the time-

lapse videos using ImageJ. The average distance traveled was

determined in ImageJ by tracing nucleus movement of each cell

over the course of the time-lapse sequence. The average rate of

migration was calculated by dividing the total distance traveled by

each cell by time.

Adhesion dynamics
BT549 cells transfected with control or BCAR3-specific siRNAs

and plasmids encoding GFP-vinculin were plated on fibronectin-

coated glass bottom dishes and allowed to spread. Images were

captured using an inverted TIRF microscope (1X70; Olympus)

with a 606 objective and a cool charged-couple device camera

(Retiga Exi; Qimaging). The fluorescence intensity of individual

adhesions from cells expressing GFP-vinculin was measured over

time as follows. Images were captured every 5 seconds using

MetaMorph software. Adhesions located at the cell periphery

and/or protruding edge were selected for analysis. ImageJ

software was applied to the entire image stack to subtract the

background fluorescence intensity and to correct for photobleach-

ing. The assembly and disassembly of vinculin-containing adhe-

sions were determined by measuring pixel intensity over time.

Both the increase (assembly) and decrease (disassembly) in

fluorescence intensity were linear as a function of time on

semilogarithmic plots. The rate constants for the assembly and

disassembly of vinculin-containing adhesions were determined

from the slopes of these graphs. For each rate constant

determination, measurements were obtained for 3–5 individual

adhesions on 8–10 cells.

GTP-bound GTPase pull-down assays
To measure GTP-Rac1, BT549 cells were transfected with siCtl

or siB3-1 siRNA oligonucleotides, incubated for 72 hours,

trypsinized, held in suspension for 90 minutes, and then plated

on 10 mg/ml fibronectin for 1 hour. Cells were rinsed twice with

ice-cold PBS and lysed in ice-cold RIPA buffer. GTP-bound Rac1

was isolated from whole cell lysates by incubation with PAK-1-
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binding domain agarose (Millipore) following manufacturer’s

instructions. To measure GTP-RhoA, BT549 cells were transfect-

ed with siCtl or siB3-1 siRNA oligonucleotides, incubated for

48 hours, and then transfected with plasmids encoding GFP-

tagged RhoA. Twenty-four hours post-transfection, cells were

trypsinized, held in suspension for 90 minutes, and then plated on

10 mg/ml fibronectin for 1 hour. Cells were then rinsed twice with

ice-cold PBS and lysed in ice-cold magnesium lysis buffer and

incubated with Rhotekin binding domain (RBD) agarose (Milli-

pore) following manufacturer’s instructions.

Statistical Analysis
Two-tailed Student’s t tests were used for the pair-wise

comparison of two experimental groups. A Kruskal-Wallis

(ANOVA) and Dunn’s Multiple Comparison post-test were used

to compare multiple experimental groups.

Supporting Information

Figure S1 BCAR3 overexpression increases migration distance.

(A) MCF-7 cells expressing endogenous (+Dox) or overexpressed

levels (2Dox) of BCAR3 were imaged by time-lapse microscopy.

Migration distance was determined by tracing the movement of

the cell nuclei using ImageJ. Representative tracings from Videos

S3 and S4 are shown. (B) Quantification of migration distance (*,

p,0.05).

(TIF)

Video S1 BCAR3 regulates membrane protrusiveness. BT549

cells were transfected with a control siRNA oligonucleotide, plated

on fibronectin for 4 hours, and then imaged by time-lapse phase

microscopy using a light microscope (Diaphot, Nikon) with a video

camera (KY-F55B). Frames were taken every 5 seconds for

12.5 minutes.

(MOV)

Video S2 BCAR3 regulates membrane protrusiveness. BT549

cells were transfected with a BCAR3-specific siRNA oligonucle-

otide, plated on fibronectin for 4 hours, and then imaged by time-

lapse phase microscopy using a light microscope (Diaphot, Nikon)

with a video camera (KY-F55B). Frames were taken every 5

seconds for 12.5 minutes.

(MOV)

Video S3 BCAR3 regulates protrusiveness and cell motility.

MCF-7 cells expressing endogenous BCAR3 were plated on

fibronectin overnight, followed by time-lapse microscopy using an

inverted microscope (Nikon TE200) with a 206DIC objective and

heated stage (Bioptechs) with attached video camera. Frames were

taken every 30 seconds for 1 hour.

(MOV)

Video S4 BCAR3 regulates protrusiveness and cell motility.

MCF-7 cells overexpressing BCAR3 were plated on fibronectin

overnight, followed by time-lapse microscopy using an inverted

microscope (Nikon TE200) with a 206DIC objective and heated

stage (Bioptechs) with attached video camera. Frames were taken

every 30 seconds for 1 hour.

(MOV)

Video S5 BCAR3 regulates adhesion dynamics. BT549 cells

were transfected with a control siRNA oligonucleotide and

plasmids encoding GFP-vinculin, plated on fibronectin for

4 hours, and then imaged by TIRF-based video microscopy to

analyze adhesion turnover. Representative movie of GFP-vinculin

containing adhesions visualized for 3 minutes.

(MOV)

Video S6 BCAR3 regulates adhesion dynamics. BT549 cells

were transfected with a BCAR3-specific siRNA oligonucleotide

and plasmids encoding GFP-vinculin, plated on fibronectin for

4 hours, and then imaged by TIRF-based video microscopy to

analyze adhesion turnover. Representative movie of GFP-vinculin

containing adhesions visualized for 3 minutes.

(MOV)
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