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Abstract 

Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance 

can elicit cell death. In this chapter, we briefly reviewed the various modes of 

mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ 

homeostasis in regards to cell physiology and pathophysiology. Further, this chapter 

focuses on the molecular identities, intracellular regulators as well as the pharmacology 

of mitochondrial Ca2+ uniporter complex. 
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Abbreviations 

Inner mitochondrial membrane        IMM 

Intermembrane space        IMS 

Outer mitochondrial membrane       OMM 

Endoplasmic reticulum/Sarcoplasmic reticulum     ER/SR 

Reactive Oxygen Species        ROS 

Adenosine triphosphate         ATP 

Cytosolic Ca2+ concentrations       [Ca2+]c 

Mitochondrial Ca2+ concentrations      [Ca2+]m 

Extramitochondrial free Ca2+ concentrations     [Ca2+]o 

Mitochondrial Ca2+ uniporter       mtCU 

Inositol 1,4,5-trisphosphate receptor      IP3R 

Ryanodine receptor         RyR 

Mitochondrial Ca2+ uptake 1       MICU1 

Mitochondrial Ca2+ uptake 2       MICU2 

Mitochondrial Ca2+ uptake 3       MICU3 
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Essential MCU regulator        EMRE 

Mitochondrial Ca2+ uniporter regulator 1      MCUR1 

Mitochondrial ryanodine receptor 1      mRyR1 

Rapid mode of uptake        RaM 

Coenzyme Q 10         CoQ10 

Transient receptor potential channel 3      TRPC3 

Leucine zipper-EF-hand containing transmembrane protein 1   LETM1 

Voltage dependent anion channel       VDAC 

Ca2+/calmodulin kinase        CaMK 

Ca2+/calmodulin-dependent protein kinase II     CaMKII 

Neuronal PAS Domain Protein 4       Npas4 

Cyclic adenosine monophosphate response element–binding protein CREB 

Electronmicroscopy         EM 

Nuclear magnetic resonance       NMR 

α1-adrenoceptor         α1-AR 

Proline-rich tyrosine kinase 2       Pyk2 

Mitochondrial permeability transition pore     mPTP 

Pyruvate dehydrogenase        PDH 

α-ketoglutarate/oxoglutarate) dehydrogenase     OGDH) 

Isocitrate dehydrogenase        ICDH 

Ruthenium 360         Ru360 

Transient Receptor Potential Vanilloid      TRPV 

TWIK-related Acid-sensitive K+ channel      TASK-3 

Mitogen-activated protein kinase       MAPK 
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1. Introduction 
 

Mitochondria play an important role in Ca2+ homeostasis, which is crucial for balancing 

cell survival and death.1, 2 During the 1950s it was observed that isolated mitochondria 

could accumulate Ca2+.3 Subsequently, an energy-driven accumulation of Ca2+ by 

isolated mitochondria was demonstrated.4, 5 It was initially thought that mitochondrial 

Ca2+ transport consists of an active uptake and passive release process,6 but multiple 

groups (reviewed by Gunter et al 1994)7 showed that Ca2+ uptake across the inner 

mitochondrial membrane (IMM) is energetically favorable, while efflux requires 

electrogenic ion-exchange (antiport). This raised the possibility that mitochondria may 

play a significant role in the regulation or buffering of cytosolic Ca2+ concentrations 

([Ca2+]c).8 Though, mitochondria were one of the first organelle to be associated with 

intracellular Ca2+ handling, the relative low affinity of their Ca2+ transport systems, led to 

the conclusion that they were physiologically irrelevant. It was demonstrated that in 

suspensions of respiring isolated rat liver mitochondria alone, the steady state 

extramitochondrial free Ca2+ concentrations ([Ca2+]o) of incubating solutions was about 

0.5 µM.9 Addition of microsomes, which contain endoplasmic reticulum (ER) that has 

Ca2+ transport systems with a higher affinity for Ca2+ than that of mitochondria, was able 

to reduce [Ca2+]o to 0.2 μM. Similar results were obtained in digitonin-permeablized 

hepatocytes and thus brought forth the idea that the “set point” of [Ca2+]c is established 

by the ER Ca2+ transport mechanism and not the mitochondria (at ~0.2 µM).9 However, 

interest revived in mitochondrial Ca2+ homeostasis in the 1990s when the development 

of Ca2+ sensors that can selectively measure the changes in the mitochondrial matrix 
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Ca2+ concentrations ([Ca2+]m) allowed to demonstrate propagation of physiological Ca2+ 

signals from cytosol into the mitochondrial matrix. High Ca2+ microdomains at the 

ER/sarcoplasmic reticulum (SR) and mitochondria interface addressed the discrepancy 

between the relatively small (approximately 1 M or less) global [Ca2+]c peak levels and 

the much higher in vitro activation range (Kd 50 M) for the mitochondrial Ca2+ 

uniporter (mtCU) in most tissues. The ER/SR, which possesses the Ca2+-release 

channels, inositol 1,4,5-trisphosphate receptor (IP3R), and/or ryanodine receptor (RyR), 

could release Ca2+ at the mitochondria/ER/SR junctions with concentrations sufficient to 

meet the threshold of the mtCU.10, 11 These groundbreaking studies repositioned 

mitochondria as key players in the dynamic regulation of cellular Ca2+ signaling under 

physiological conditions. 

Ca2+ uptake into mitochondria was mostly considered to result from a single 

transport mechanism mediated by a Ca2+-selective channel of the IMM, the mtCU.12 

The electrophysiological characteristic of mtCU as a highly selective Ca2+ activated Ca2+ 

channel (IMiCa) was confirmed by measuring total or single channel ionic current from the 

IMM of mitoplasts.13 The discovery of the molecular identity of the mtCU protein 

complexes was tightly connected to the establishment of MitoCarta, a comprehensive 

mitochondrial protein compendium in 2008.14 Based on the establishment of this 

compendium, the Ca2+ sensing EF-hand regulator mitochondrial Ca2+ uptake 1 (MICU1) 

was identified first in 2010 as a regulator of the channel.15 With one or no predicted 

transmembrane domain, MICU1 has never been considered to form the mtCU pore. To 

that end, in 2011, a ~40 kDa protein with two transmembrane domains was discovered 

as the molecular identity of the mtCU pore termed MCU by the groups of Mootha and 
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Rizzuto.16, 17 Following the identification of the MCU, other regulatory subunits were 

identified in the last five years. These findings open up exciting opportunities for using 

genetic approaches to elucidate molecular mechanisms that regulate mitochondrial 

Ca2+ uptake in a variety of cell types/tissues. Since the mechanisms for regulating 

mitochondrial Ca2+ concentrations ([Ca2+]m) are critical for fundamental cellular 

processes, the importance of understanding Ca2+ uptake mechanisms in physiology.18-20 

and pathophysiology21-24 have become increasingly relevant.  

In this chapter, we review the current model of the mitochondrial Ca2+ influx 

mechanism, with special focus on the molecular identity of the mtCU complex.  

Furthermore, the physiological, pathophysiological and pharmacological 

implications of mitochondrial Ca2+ uptake and future directions of study are discussed.  

 

2. Molecular identities of mitochondrial Ca2+ channels/transporters  

 

2.1. Overview 

Following the discovery of the pore, MCU, further regulatory subunits were identified, 

suggesting that the mtCU exists as a multi-protein complex capable of multiple states of 

MCU activity (i.e., mtCU complex).16 Proteins in the mtCU complex include trans-

membrane subunits [MCU, MCUb and the essential MCU regulator (EMRE)], and 

membrane-associated regulatory subunits in the intermembrane space (IMS) (MICU1-3) 

(Fig.1). Mitochondrial Ca2+ uniporter regulator 1 (MCUR1) another two-transmembrane 

domain coiled coil domain containing protein of the IMM was also proposed to interact 

with the MCU protein and to modulate the channel function;25 however it was not 
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present in the ~480 kDa uniporter holocomplex coined as the “uniplex”.26 In addition to 

mtCU complex, we also briefly describe other mitochondrial Ca2+ channels/transporters 

that have been reported, which includes mitochondrial ryanodine receptor 1 (mRyR1), 

rapid mode of uptake (RaM), mCa1 & 2, Coenzyme Q 10 (CoQ10), the transient 

receptor potential channel 3 (TRPC3), and the Leucine zipper-EF-hand containing 

transmembrane protein 1 (LETM1). 

 

2. 2. mtCU complex  

2.2.1. MCU 

The MCU gene (previously known as CCDC109A) is highly conserved across 

eukaryotes except yeast.16, 17 The MCU is a 40 kD protein contains a proteolytically 

cleaved mitochondrial import sequence, two coiled-coil domains, two transmembrane 

domains, and a short motif of amino acids between the two transmembrane domains 

critical for Ca2+ transport.16, 17 MCU has been suggested to form the pore as a homo-

oligomer and a recent study using nuclear magnetic resonance (NMR) demonstrated a 

pentameric stoichiometry.27 Although there was originally some debate about the MCU 

topology, it is clear now that both the N- and C-termini face the mitochondrial matrix with 

a short motif of amino acids being exposed to the IMS.28 Overexpression of MCU 

increases the rate of mitochondrial Ca2+ influx in both intact and permeabilized cells, 

causing a significant decrease in [Ca2+]c transients in intact cells.16 Further, the mutation 

of two negatively charged residues inside the highly conserved DIME motif 

(QxGxLAxLTWWxYSWDIMEPVTYF), in the IMS (D261Q/E264Q in human MCU) 
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completely abolishes the MCU activity.16, 17 On the other hand, the partial knockdown of 

MCU greatly inhibits the rate and amplitude of mitochondrial Ca2+ entry16, 17 whereas the 

knockout essentially eliminates rapid uptake of Ca2+ pulses26, 29 and the expression of 

the wild-type MCU in MCU knockdown cells fully rescues Ca2+ uptake profile.17 Thus, 

MCU is responsible for Ca2+ transport into the mitochondria. As of now, the essential 

role of MCU for mitochondrial Ca2+ uptake was validated in many cell types/tissues 

including the liver,17 heart,30 cardiomyocytes,31, 32, skeletal muscles,29 pancreatic β 

cells,18 neurons33 and mammary gland epithelial cells.24  

2.2.2. MCUb 

MCUb, originally reported as CCDC109B, is a 33-kDa protein that shares 50% similarity 

to MCU with the key amino acid substitutions (R251W, E256V) in the DIME motif.34 Co-

introduction of MCU and MCUb in a lipid bilayer dramatically decreases the open 

probability compared to only MCU incorporation. In addition, MCUb overexpression in 

intact cells decreases mitochondrial Ca2+ uptake in response to [Ca2+]c increases, 

suggesting that MCUb interacts with MCU and acts as an endogenous dominant-

negative subunit of the mtCU pore.34 Interestingly, the ratio of the amount of MCU and 

MCUb mRNA varies in different tissues.26, 34, 35 This raises the possibility that the ratio of 

MCU and MCUb expression may be one of the mechanisms that differentially regulate 

mitochondrial Ca2+ uptake in different tissues. 

2.2.3. MICU1-3 

MICU1 (previously known as CBARA1/EFHA3) is a 54-kDa protein with two highly 

conserved EF-hand Ca2+-binding domains.15 The submitochondrial localization of 

MICU1 has been a matter of debate15, 21, 36 but recent proteomic mapping studies37, 38 
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as well as interactome analysis of the intermembrane space oxidoreductase MIA4039 

indicate that the MICU1 is a soluble (or membrane associated) protein in the IMS,23, 40, 

41 but not in the matrix. MICU1 is proposed to be pivotal in both the gatekeeping and 

cooperative activation of mtCU; keeping the channel closed at resting conditions, but 

promoting cooperative activation of the channel at high Ca2+ 23, 42. Alternatively, MICU1 

was also proposed to only convay either of these functions (gatekeeper,21, 36 

cooperative activator).40  

Additionally, MICU isoforms, MICU2 (known as EFHA1) and MICU3 (known as 

EFHA2) are also identified.43 Both MICU2 and MICU3 possess the conserved EF-hand 

domains, but share only 25% sequence identity with MICU1.43 Relative expression 

levels of these MICU isoforms vary across the different tissue types. MICU1 and MICU2 

are ubiquitously expressed in mammalian tissues, whereas MICU3 is expressed only in 

the nervous system and skeletal muscle.43 Though the role of MICU1 and MICU2 have 

been extensively studied by several groups, but up to date there is no report attempted 

to characterize the MICU3 function. MICU2 forms a heterodimer with MICU1, thus 

indirectly associating with the MCU.40, 43 Moreover, the stability of MICU2 is dependent 

on the level of MICU1 expression.40, 43 Importantly, MICU2 inhibits the function of the 

MCU at lower [Ca2+]c levels both in planar lipid bilayers and in intact cells.40, 44 These 

data lead to the suggestion that MICU2, would be the gatekeeper of MCU instead of 

MICU1, which would form a regulatory dimer with MICU2 to modulate MCU channel 

activity in opposite manner. On the other hand, a recent study by the Mootha group 

showed that upon disabling the Ca2+ sensing by their EF hands, MICU1 and MICU2 

both would keep the channel closed and MICU1 would do this even if MICU2 was 
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ablated (MICU2 KO).45 This would suggest that MICU1 alone can act as a gatekeeper 

but the gatekeeping activity would be lifted by lower [Ca2+] than that of MICU2.44 At low 

[Ca2+]c, the inhibitory effect of MICU2 is in dominance to safeguard minimal Ca2+ 

accumulation in the presence of a very large electromotive force for cation accumulation. 

At high [Ca2+]c, however, Ca2+-dependent MICU2 inhibition and MICU1 activation 

warrant the mitochondria to respond rapidly for bringing adequate amount of Ca2+ into 

matrix during [Ca2+]c oscillations so that Ca2+-sensitive steps in ATP production can be 

stimulated efficiently. A very recent work by the Rizzuto/Raffaello group describes a 

splice variant of MICU1, termed MICU1.1 containing an insertion of 4 aminoacids 

(EFWQ) at position 181 of MICU1, that is highly expressed in the skeletal muscle with 

increased Ca2+ binding affinity.46 This splice variant seem to convay higher sensitivity 

(lower threshold) for the activation of mtCU further suggesting that MICU1 is 

instrumental in the gatekeeping of mtCU. 

2.2.4 EMRE 

EMRE (known as C22ORF32) is a 10-kDa protein that contains a single 

transmembrane domain and a highly conserved aspartate-rich C-terminal region.26 

While MCU and MICUs are well preserved across phylum, EMRE homologs are not 

present in plants, fungi or protozoa, indicating that EMRE likely arose in the metazoan 

lineage.26 However, within mammals, EMRE is ubiquitously expressed across tissues.26 

Importantly, it has been shown that knockdown or knockout of EMRE completely 

abolishes mitochondrial Ca2+ uptake, indicating that this protein is essential for the 

functional mtCU channel. EMRE interacts with MCU at the IMM and MICU1 at the IMS, 

acting as a retainer of MICU1/2 in the mtCU complex.26, 47-50 A majority of evidence 
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suggest that the N-terminus of EMRE faces the matrix with the C-terminus facing the 

IMS.48, 49, 51 

In addition to the [Ca2+]c sensing via MICU, MCU may also be regulated by Ca2+ 

and Mg2+ from the matrix side. Recent work from the Foskett group has presented 

electrophysiological (mitoplast patch clamp) evidence for a biphasic (bell-shaped) Ca2+ 

regulation of mtCU from the matrix side with a matrix [Ca2+] activation window of ~0,01-

2 M. The acidic tail of EMRE was shown to be critical for this [Ca2+] regulation from the 

matrix side and, contrasting other works, was suggested that  EMRE would rather have 

an Nout-Cin topology and its acidic tail would operate as the luminal Ca2+ sensor. Since 

MICU1/2 were also required for the matrix-side [Ca2+] regulation and considering the 

overwhelming evidence for EMRE’s Nin-Cout topology, one could entertain an alternative 

mechanism for EMRE’s contribution. EMRE may relay a signal from a distinct matrix 

Ca2+ sensor to the gatekeepers MICU1/2 via the interaction of its C-terminal acidic tail 

with a lysine-rich basic stretch of MICU1.48 As to the matrix Ca2+ sensor, very recently a 

comprehensive molecular structure (crystallography) study has identified a Ca2+/Mg2+ 

binding acidic patch on the N-terminal matrix domain of MCU that conveys Mg2+ 

dependent inactivation of the channel.52 Further studies will be needed to clarify 

EMRE’s role if any in this latter regulation. 

2.2.5. MCUR1 

MCUR1 (known as CCDC90A) is a 40-kDa protein that consists of two transmembrane 

domains and one coiled-coil region. The N- and C-termini of MICUR1 is proposed to 

face the IMS, thus the bulk of this protein exposed to the matrix.25 Knockdown of 

MCUR1 not only inhibits agonist-induced mitochondrial Ca2+ uptake, but also decreases 
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basal [Ca2+]m. Overexpression of MCUR1 results in an increase of mitochondrial Ca2+ 

uptake, but only when MCU exists, indicating that MCUR1 is required for Ca2+ uptake 

through the mtCU complex. MCUR1 interacts with MCU, but not with MICU1, 

suggesting that different compositions of the mtCU complex may exist. Shoubridge and 

colleagues raised a question about the direct involvement of MCUR1 in the regulation of 

the MCU complex.53 They demonstrated that MCUR1 knockdown causes a drop of 

mitochondrial membrane potential (ΔΨm), proposed that the effect of MICUR1 on MCU 

activity may be indirect through changing the driving force of Ca2+ entry.53 However, it 

was demonstrated that MCUR1 binds to the MCU-pore and EMRE through their coiled-

coil domains which stabilizes the mtCU complex and loss of MCUR1 reduces the 

bioenergetics and promotes autophagy.51 However, a recent study has shown that 

Drosophila cells lacking the MCUR1 homologue still exhibited typical mtCU Ca2+ 

uptake.54 

 

2.3. Other channels  

2.3.1 Transport across the outer mitochondria membrane 

In order for Ca2+ to interact with the mtCU it must first travel across the outer 

mitochondrial membrane (OMM). Initially the OMM was considered to be freely 

permeable to Ca2+ mostly by way of the highly abundant voltage dependent anion 

channel (VDAC). Later, a pair of studies demonstrated that increasing the permeability 

of the OMM via overexpression of VDAC55  or via treatment with truncated Bid (tcBid)56 

increased the rate of Ca2+ influx into the mitochondrial matrix from IP3R-linked high 

[Ca2+] microdomains. Moreover, it has been shown that physiological [Ca2+] changes 
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can enhance the cation (K+) conductance of VDAC reconstituted in bilayer and also 

enhance the permeability of the OMM to H+ and ATP in permeabilized cells.57 

Nevertheless, the cation permeability of VDAC reconstituted in a lipid bilayer has been 

reported higher in the closed state.58 Thus, VDAC expression levels as well as gating 

state can modulate mitochondrial Ca2+ entry.  

2.3.2. mRyR1 

Localized in the IMM, mRyR1 is an alternative mechanism for mitochondrial Ca2+ uptake 

in cardiac and neuronal cells.59-61 RyRs are the largest known ion channels of about 

>2MDa. Three different subtypes of RyR isoforms (RyR1, RyR2, and RyR3) have been 

described and cloned, with different pharmacological properties and tissue-specific 

expression. RyR1, the primary isoform in the skeletal muscle, is considered to be the 

major Ca2+ release channel in SR;62 RyR2 is most abundant in cardiac muscle cells63 

(and, in a lesser amount, the brain); RyR3 is widely expressed in the ER of different 

vertebrate tissues64 and may be coexpressed with RyR1 and RyR2. In cardiac muscle 

cells RyR2 is abundantly localized in the SR,65 but RyR1 is also detectable both at the 

mRNA and protein levels.66, 67 Using immuno-gold particle and electron microscopy, we 

reported that a low level of RyR1 is expressed at the IMM in cardiomyocytes, and with 

higher Ca2+ conductance and higher Km for Ca2+ binding as compared to mtCU, 

mitochondrial RyR (mRyR) channels serves as a fast and high affinity Ca2+ uptake 

pathway.60, 61 Owing to the remarkable biochemical, pharmacological, and functional 

similarity of RyR in cardiac mitochondria to those of RyR1 in skeletal muscle SR, we 

designated it as mRyR1.61 mRyR1 showed a bell-shaped Ca2+ dependence of 

[3H]ryanodine binding with maximal binding at approximately pCa of 4.4 and complete 
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block at pCa 2 suggestive of RyR1. Moreover, unlike the cardiac SR-RyR2, caffeine 

showed hardly any effect on ryanodine binding in mitochondria and binding was 

inhibited by 50% in the presence of 0.33 mmol L−1 Mg2+.68 In permeabilized 

cardiomyocytes, ruthenium red at a concentration of 1–5 μmol L−1 blocked mitochondrial 

Ca2+ uptake with no significant effect on SR Ca2+ release.69 Single channel 

characterization of the mRyR1 revealed a novel 225-pS cation–selective channel in 

heart mitoplasts, with four distinct channel conductance (100, 225, 700 and 1000 pS in 

symmetrical 150 mmol L−1 CsCl), which was blocked by high concentrations of 

ruthenium red and ryanodine, known inhibitors of ryanodine receptors.70  Ryanodine 

showed a concentration-dependent modulation of this channel, with low concentrations 

(10 μmol L−1) stabilizing a subconductance state while high concentrations (≥100 μmol 

L−1) blocked the channel activity.70  

Although both the mRyR1 and the MCU are inhibited by low concentrations of 

ruthenium red (1–5 µM) and Mg2+, the unique single-channel characteristics of mRyR1 

clearly differentiate it from previously identified mitochondrial ion channels. Further 

clarifications will be needed to distinct the roles of mRyR1 and mtCU in the 

physiological Ca2+ signaling activities of the cardiac muscle mitochondria. Interestingly, 

a recent paper shows that stimulation of IP3R in adult cardiac myocytes with endothelin-

1 causes Ca2+ release from the SR, which is uniquely tunneled to mitochondria 

via mRyR leading to stimulation of mitochondrial ATP production.71 

2.3.3. RaM 

RaM, first studied in isolated liver mitochondria, is a kinetically distinct mode of 

mitochondrial Ca2+ uptake, capable of sequestering significant amounts of Ca2+ 
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hundreds of times faster than the mtCU. RaM is activated only transiently, facilitates 

mitochondria to rapidly sequester Ca2+ at the beginning of each cytosolic Ca2+ pulse 

and rapidly recovers between pulses, which allows mitochondria to respond to repetitive 

Ca2+ transients.72 Similar to mtCU and mRyR1, RaM was inhibited by ruthenium red, but 

required over an order of magnitude more than that required for the inhibition of mtCU 

(0.1 mmol L−1). Likewise, RaM is also activated by polyamines, such as spermine, at a 

concentration of 0.1 mmol L−1 and displayed three times more of an increase in activity 

than mtCU.73 In addition, a rapid mode of Ca2+ uptake was also proposed in isolated 

heart mitochondria but with some different transport features from those of liver.74 The 

reset time was longer (>60 s) and with less sensitivity towards the inhibition by 

ruthenium red. Moreover, ATP and GTP activated RaM in liver but not in heart where 

RaM is activated by ADP and inhibited by AMP. Notably, RaM has always been 

considered to be potentially an “operating mode” of the uniporter instead of a distinct 

channel/transporter entity; however, there have been no studies to reconcile RaM with 

IMiCa or with the thus far identified molecular components of the mtCU complex. 

2.3.4. mCa 1&2 

mCa1 and mCa2  are both voltage gated mitochondrial Ca2+ selective channels similar 

to mtCU with a maximal conductance of 10.9 and 6.56 pS, respectively, at 105 mmol 

L−1 [Ca2+], and half saturating concentration (Km) of 15.1 and 19.6 mmol L−1 [Ca2+], 

respectively. They have unique single-channel characteristics and sensitivity to Ru360. 

mCa1 channels display higher single-channel amplitude, smaller opening time, a lower 

open probability (PO=0.053), and multiple subconductance states. While, mCa2 

channels have a smaller single-channel amplitude with a lower conductance, longer 
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openings, a higher open probability and no subconductance states.  Like MCU and RaM, 

both mCa1 and mCa2 were activated by spermine. However, mCa2 was only partially 

inhibited by μmol L−1 concentrations of Ru360.75 Like RaM, mCa1/2 have not been 

studied further in the molecular era of mtCU to explore if it was indeed a distinct channel 

entity or rather the result of a particular (stoichiometric) permutation and/or post-

translational modification of the mtCU complex constituents. 

2.3.5. CoQ 

 CoQ10 is an essential component of the mitochondrial electron-transport chain (ETC) 

with the primary role as an electron and proton transporter. It was also reported that 

CoQ10 is a regulator of mitochondrial Ca2+ and redox homeostasis. Under physiological 

conditions, hydroxyl CoQs can bind and efficiently transport Ca2+. Hydroxyl CoQs have 

a very high affinity for Ca2+ and therefore, can function at [Ca2+]c lower than 0.5 μM and 

potentially even at resting [Ca2+]c levels.76 This relatively slower Ca2+ transfer might be a 

component of the thus far unidentified source of small tonic Ca2+ accumulation 

observed in MCU knockout cardiac mitochondria.77, 78 

2.3.6. LETM1 & TRPC3 

LETM1, initially identified as a K+/H+ exchanger, was recently reported as a Ca2+/H+ 

antiporter. Using a siRNA genome-wide screening in drosophila, it was reported to be 

localized at the IMM. It transports Ca2+ bidirectionally across the IMM in a pH gradient-

dependent manner and is inhibited by ruthenium red.79 However, a recent study with 

LETM1 protein reconstituted in liposomes demonstrated LETM1 as an electroneutral 

1Ca2+/2H+ antiporter, insensitive to ruthenium red.80 
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Lastly, TRPC3 was demonstrated as an alternative mitochondrial Ca2+ uptake pathway. 

It is permeable to Ca2+, Na+, and K+ and can contribute to mitochondrial Ca2+ uptake 

during conditions with a relatively high extramitochondrial [Ca2+].81 

 

3. Transcriptional/post-transcriptional and post-translational regulation of the 

mtCU complex 

As described above (see Section 2), the mtCU is a multisubunit complex with 

many regulators. However, the expression patterns of each component are variable in a 

tissue-specific manner43, 82 for adapting to the appropriate Ca2+ sensitivity by 

intracellular signals in each tissue. Therefore, it is of interest to elucidate how the mtCU 

complex is differentially regulated at the level of gene expression, which is linked to its 

modulation of mitochondrial Ca2+ uptake. Accordingly, it has been reported that 

transcriptional and post-transcriptional mechanisms can regulate MCU expression and 

activity to specific functional demands.43, 82, 83 For example, in neurons, synaptic activity 

suppresses MCU transcription through a nuclear Ca2+ signals, Ca2+/calmodulin kinase 

(CaMK) and the transcription factor Npas4 dependent mechanism, preventing 

excitotoxic death.33 In addition, the Ca2+-regulated transcription factor cyclic adenosine 

monophosphate response element–binding protein (CREB) directly binds to the MCU 

promoter and stimulates MCU expression, regulating mitochondrial metabolism.84 

MCUb expression was also reported to be increased though independent of CREB 

activation.84 It has been shown that MCU is also a target of microRNA-25 (miR-25), 

which can efficiently decrease MCU gene expression and activity.83 Furthermore, 

analyses of post-translational modifications of the MCU components are ongoing. In 
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2012, Joiner et al for the first time reported two Ca2+/calmodulin-dependent protein 

kinase II (CaMKII) phosphorylation candidate motifs at the N-terminus of MCU. CaMKII 

resides endogenously in the mitochondrial matrix and is highly activated during 

pathophysiological conditions like ischemia reperfusion and myocardial infarction; 

promotes myocardial death via CaMKII-mediated increases in MCU current, by 

phosphorylation of MCU at serine 57 and 92. However, mitochondrial CaMKII inhibition 

reduced MCU current and was protective against ischemia/reperfusion injury, 

myocardial infarction, and neurohumoral injury.30, 85, 86 Recently, Lee et al showed that 

MCU-S92A mutant expression failed to rescue the Ca2+ channel activity  in 

a MCU knockdown cell line. In addition, they also presented the crystal structure of the 

N-terminal region of MCU including, (S92) a potential CaMKII phosphorylation site and 

concluded them to be indispensable for modulation of channel activity.87 Additionally, 

our group demonstrated that α1-adrenoceptor (α1-AR) signaling activates Ca2+ and 

ROS dependent proline-rich tyrosine kinase 2 (Pyk2); translocates Pyk2 into the 

mitochondrial matrix. Activated Pyk2 interacts with MCU and directly phosphorylates 

MCU tyrosine residue(s) and enhances mitochondrial Ca2+ uptake by promoting MCU 

channel oligomerization and formation of tetrameric channels.88 However, persistent α1-

AR stimulation increases ROS production, activates the mitochondrial permeability 

transition pore (mPTP) opening and eventually leads to cell death via Pyk2 activation in 

cardiomyocytes.32 

  

4. Physiological roles of mitochondrial Ca2+ uptake  
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Mitochondrial Ca2+ has been implicated as an important regulator of fundamental 

cellular processes, which range from the regulation of cellular metabolism, buffering 

cytosolic Ca2+, modulating cellular redox environments, to other cell-type specific 

functions. As described above, we have witnessed a rapid advance in our 

understanding of the role of mitochondrial Ca2+ uptake mechanisms in physiology and 

pathophysiology since the recent molecular discovery of the mtCU pore (i.e. MCU) and 

its regulators. Therefore, in the next sections, we summarize the role of mitochondrial 

Ca2+ uptake mechanisms highlighting the functions of the mtCU complex during 

physiological (Section 4) and pathological (Section 5) conditions. 

 

4.1. Mitochondrial Ca2+ and energy metabolism 

Mitochondrial Ca2+ uptake serves as one of the major factors for regulating cellular 

bioenergetics.89, 90 Denton and McCormick in 1980’s demonstrated that mitochondrial 

Ca2+ plays an important role in regulating three Ca2+ dependent dehydrogenases: 

pyruvate dehydrogenase (PDH), α-ketoglutarate (also called oxogluterate) 

dehydrogenase (OGDH) and NAD-isocitrate dehydrogenase (ICDH)91, 92 that are the 

rate-limiting enzymes in substrate supply for ATP synthesis.93 Of the three 

dehydrogenases, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase are 

activated through the binding of Ca2+ 94 whereas, pyruvate dehydrogenase activation 

depends on Ca2+-dependent phosphatase mediated dephosphorylation step.95 Increase 

in mitochondrial Ca2+ uptake can activate oxidative metabolism via activated matrix 

dehydrogenases, resulting in an increased supply of reducing equivalents to drive 
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respiratory chain activity and ATP synthesis.92 Mitochondrial matrix Ca2+ also regulate 

bioenergetics by S100A1 mediated direct Ca2+-dependent activation of Fo-F1ATP 

synthase activity.96, 97  

Surprisingly, mouse embryonic fibroblasts or isolated mitochondria from MCU-knockout 

mice have apparently well-maintained basal mitochondrial metabolic function and 

energetics, albeit with decreased Ca2+ uptake and lower resting Ca2+ levels.15-17, 25 Even 

more surprisingly, this lack of energetic phenotype extends to the beating heart in vivo 

under physiological conditions (approximately 500 beats/min), either in germline or 

inducible cardiac-specific MCU knockout mice.29, 77, 78, 98 Likewise, though global MCU 

knockout displayed no evidence of Ca2+ uptake in mitochondria yet, basal ATP levels 

were not evidently altered, indicating that lack of MCU does not have marked impact on 

basal mitochondrial metabolism.99 However, skeletal muscle showed a minor defect in 

muscle strength after endurance training.29 The mild phenotype of MCU knockout mice 

could be due to some kinds of adaptation in these animals.98 Similarly, in a cardiac 

specific MCU knockout mouse, there is no energetic phenotype in vivo under normal 

physiological conditions. However, these mice displayed a decreased β-adrenergic 

receptor-mediated fight or flight response for increased workload under stress and a 

decreased ischemia-reperfusion injury.77, 78 Similar results have been obtained via 

cardiac specific overexpression of a dominant negative mutant MCU.100 These 

surprising findings have set a stage for seeking other compensatory or unknown 

mechanisms for the MCU-independent regulation of bioenergetics in beating heart.101  

Knockdown of MCUR1 reduces mitochondrial Ca2+ uptake resulting in disruption of 

oxidative phosphorylation which activates AMP kinase-dependent pro-survival 
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autophagy.25 However, in pancreatic β-cells, knockdown of MCU and MICU1 markedly 

reduced the mitochondrial Ca2+ uptake and showed that, MCU- and MICU1- mediated 

Ca2+ uptake is critical for continual ATP synthesis, glucose metabolism and insulin 

secretion.18, 19 MCU silencing down-regulates the expression of respiratory chain 

complexes, mitochondrial metabolic activity, and oxygen consumption.102 In addition to 

MCU, absence of LETM1 decreased basal mitochondrial oxygen consumption, 

discernible inactivation of complex IV activity and a drop in ATP production.103 We 

recently reported that RyR1-overexpressing cardiac cells had higher mitochondrial ATP 

under basal conditions with augmented [Ca2+]c-dependent ATP production,104 

supporting our previous finding of a low respiratory control index in RyR1 knockout mice 

and insensitivity to [Ca2+]c stimulation of O2 consumption in mice.  

 

4.2. Cytosolic Ca2+ buffering 

Apart from mitochondria’s role as the main energy supplier, its implication in cytosolic 

Ca2+ buffering is becoming increasingly apparent. Mitochondria can directly influence 

the [Ca2+]c by importing Ca2+ through the MCU and efflux through the Na+/Ca2+ 

exchanger or H+/Ca2+ exchangers.7, 12, 105-107 Since the resting [Ca2+]c values are ~100 

nM and the ΔΨm is ~-180 mV, the prediction is that at electrochemical equilibrium, 

theoretical [Ca2+]m values could be higher than 0.1 M.108 However, the low affinity of the 

MCU to Ca2+ (Kd around 10–50 µM), the presence of mitochondrial efflux mechanisms 

and the decrease of ΔΨm upon the cation influx would avert the attainment of 

electrochemical equilibrium. Therefore, particularly under resting conditions, 
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mitochondria may not uptake any Ca2+. Based on these considerations, the evident 

discrepancy between the low affinity of MCU, the low concentration of global cytosolic 

Ca2+ signals and the amplitude of [Ca2+]m rises was resolved in 1990’s by the concept of 

a microdomain of high [Ca2+]c between ER/SR and mitochondria contact areas.109, 110 

According to which, mitochondria are strategically located in close proximity to ER/SR 

through tethering proteins,111 and these close contact sites provide mitochondria 

preferential access to a much higher [Ca2+] than that measured in the bulk cytosol 

during Ca2+ release from ER/SR and able to activate the MCU. These local [Ca2+] 

exposures of the mitochondrial surface have been measured to be ~10 M in average 

by means of “hotspot” mapping of OMM-targeted Ca2+ sensor proteins112 or Ca2+ 

sensors directly targeted to the SR/ER-OMM focal contact areas utilizing a drug-

inducible heterodimerization strategy.113 In addition, there are reports that VDAC in the 

OMM, and IP3 receptors in the ER are enriched at the mitochondria–ER interface, 

facilitating a Ca2+ transfer from the ER to the mitochondria.114-116 Several functional and 

morphological studies further suggested that mitochondria can form close contacts not 

only with ER/SR110, 117, 118 but also the Golgi apparatus119 and the plasma membrane.120-

122 However, among these interactions, the ER/SR-mitochondria connections have 

gained much attention, and various proteins have been proposed to link mitochondria to 

the ER/SR such as MIRO, MFN2, and the Mmm1/Mdm10/Mdm12/Mdm34 complex.123, 

124 Therefore, ER/SR-mitochondria communication also serve as a highly localized Ca2+ 

buffering system. This in turn can modify the activity of any nearby Ca2+-dependent 

proteins. Such regulation has been reported for IP3R that display isoform-specific 

biphasic dependence on [Ca2+]c. Depending on the dominating IP3R isform, local Ca2+ 
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clearance by mitochondria can either suppress IP3R activation (and Ca2+ release from 

the ER) via reducing the local [Ca2+] (and so IP3 sensitivity) over IP3R clusters;125, 126  

or do the opposite by decreasing [Ca2+] from high inhibitory to stimulatory range.127 By 

similar principles, local mitochondrial Ca2+ clearance has also been implicated in 

sustaining the activation of ICRAC/Orai channels during store operated Ca2+ entry by 

relieving local feedback inhibiton of the channels by Ca2+.128-130  

 

4.3. Reactive oxygen species (ROS) generation  

Mitochondria are a major source of ROS in the cell. It has been well recognized that 

[Ca2+]m enhance ROS generation by stimulating the TCA cycle and oxidative 

phosphorylation131, 132 and/or triggering opening of mPTP,133, 134 which plays an 

important role in the regulation of cellular function. For example, a recent study 

identified that mtCU-mediated mitochondrial Ca2+ uptake triggers mitochondrial ROS 

production and transient opening of the mPTP, which promotes wound repair and 

organismal survival.20 In addition, it has been shown that mitochondrial Ca2+-mediated 

ROS production modulates neural differentiation through activation of the Wnt/-catenin 

pathway.135 However, excess Ca2+ uptake by the mtCU can be detrimental for a cell, 

triggering excessive ROS generation and initiating cell death pathways such as 

apoptosis.21-24 Therefore, mitochondrial Ca2+ uptake can be either beneficial or 

detrimental depending on the amount of Ca2+ uptake and cellular conditions. We will 

discuss the pathological role of mitochondrial Ca2+ uptake in Section 5.  
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5. Pathological roles of mitochondrial Ca2+ uptake  

As shown in Section 4.2, mitochondrial Ca2+ uptake significantly contributes to buffering 

cytosolic Ca2+ under physiological Ca2+ release from ER/SR. However, intensive long-

lasting pathophysiological release of Ca2+ from ER/SR causes persistent mitochondrial 

Ca2+ accumulation, which consequently triggers excessive ROS generation followed by 

ATP depletion, the opening of the mPTP136, 137 and apoptotic/necrotic cascade.137 

Accordingly, MCU-overexpressing and MICU1-knockdown human cell lines leads to 

increased sensitivity to apoptosis.16, 21 Moreover, human genetic disease associated 

with MICU1 null mutations exhibiting central nervous system (extrapyramidal symptoms, 

learning difficulties) and skeletal muscle (fatigue) phenotypes have been recently 

identified.138, 139 Liver-specific knockout of MICU1 has been recently shown to severly 

impair liver regeneration after partial hepatectomy, which phenotype could be almost 

completely rescued by administration of NIM811, a non-immunosuppressant mPTP 

inhibitor.140 In addition, MCU overexpression in T. brucei  are also sensitized to 

apoptotic stress.22 However, MCU overexpression in a human breast adenocarcinoma 

cell line24 and MCU-knockout mouse embryonic fibroblasts29 show no difference in 

sensitivity to apoptosis.  

As discussed above, although, mitochondrial Ca2+ increase has been associated 

with apoptosis in many pathological conditions141 however, very little is known about the 

roles of mitochondrial Ca2+ signaling in cancer. Marchi et al. 2013, showed that 

microRNA-25 (miR-25) expression can decrease in MCU gene expression and 

activity.83 Specifically, miR-25 is up-regulated in human colon and prostate cancers, 

which leads to decreased MCU levels followed by reduced mitochondrial Ca2+ uptake 
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and resistance to Ca2+-dependent apoptotic challenges.83 Consistent with these results, 

overexpression of MCU or knockdown of MICU1 in HeLa cervical cancer cells results in 

constitutive mitochondrial Ca2+ influx and increases HeLa cell sensitivity to hydrogen 

peroxide and ceramide toxicity.16, 21 In other cancer paradigms like in triple-negative 

breast cancer MCU has been identified as a promoter of progression/invasiveness by 

supporting the mitochondrial Ca2+-ROS-HIF-1α signaling axis.142 Thus, the suppression 

of the MCU expression by miRNA provides initial clues to the relevance of this pathway 

in human cancers. 

Recent studies show that genetic and molecular manipulation of the mtCU 

complex can also affect cell-type specific functions such as neurotransmission, growth 

and development. MCU overexpression increases NMDA receptor-dependent 

excitotoxicity in mouse neurons via enhanced mitochondrial calcium uptake resulting in 

aggravated mitochondrial depolarization and neuronal injury. However, MCU 

knockdown protects neurons against NMDA receptor-mediated excitotoxic cell death.33 

 

6. Pharmacological modulators of the MCU 

Despite the well-known role of the MCU as a key controller of Ca2+ homoeostasis, there 

is little information about its pharmacological regulation. Although, several 

pharmacological inhibitors have been described to modify the activity of the MCU, their 

lack of specificity and cellular permeability has limited their application (Table 1). One of 

the most widely studied and effective inhibitors is the hexavalent polysaccharide stain, 

ruthenium red or its derivate Ru360.13, 143 In 2011, De Stefani et al. demonstrated the 
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MCU role as the channel-forming subunit, permeable to Ca2+ and inhibited by ruthenium 

red, in an isolated mitochondria. They reconstituted MCU in lipid bilayers and recorded 

ruthenium red-sensitive Ca2+ current with 6-7-pS single-channel activity.16 These 

findings was very recently supported by another patch-clamp experiment by Chaudhuri 

et al (2013). They showed parallel changes in the mitochondrial Ca2+ current in a MCU 

knock-down and overexpression system. In addition, by exploiting the inhibitory 

characteristic of ruthenium red they further confirmed MCU as a pore-forming subunit of 

the channel complex. They demonstrated that a single point mutation (S259A) in the 

putative pore domain conferred resistance to ruthenium red17, 144 without changing 

current magnitude indicating that that ruthenium red directly targets the channel. 

However, ruthenium red binds to and inhibits a wide variety of plasma membrane and 

intracellular Ca2+ and K+ channels like Transient Receptor Potential Vanilloid (TRPV),145, 

146 TWIK-related Acid-sensitive K+ channel (TASK-3) 147 and RyR.148 Ru360, a purified 

form of ruthenium red, is more effective than ruthenium red with an IC50 5 nM vs 1 µM, 

respectively.149 Ru360 also demonstrates better specificity for the MCU over other Ca2+ 

channels in cardiac muscles.16, 17, 143 Earlier studies have reported a number of drugs 

exhibiting MCU inhibition such as the cardioactive drugs quinidine, alprenolol, 

propranolol, oxyfedrine, and tetracaine,150 the diuretic, ethacrynic acid, amiloride 

analogs and derivatives,151 and the antibiotic gentamicin.152 Minocycline, a tetracycline-

derived antibiotic that has been used clinically to treat bacterial infections, is also a 

potent inhibitor for MCU.153 Mg2+, an antagonist of mitochondrial Ca2+ uptake also 

inhibits the MCU at physiological concentrations.154 Lanthanides such as La3+, Gd3+ and 

Pr3+ are also well known competitive inhibitors and at low concentrations they may 
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activate the uniporter’s activation site and facilitates the transport of other ions.155 

However, they inhibit a variety of other Ca2+ channels and pumps too. Thiourea derivate 

KBR7943, originally an inhibitor of the plasma membrane Na+/Ca2+ exchanger is also 

reported to have an inhibitory effect on the MCU.156 In addition, MCU activity is also 

inhibited by adenine nucleotides; ATP being the most potent inhibitor (EC50 0.6 mM) 

followed by ADP > AMP. Interestingly, AMPPNP, a non-hydrolysable analog of ATP 

was also found to be as efficient as ATP, suggesting that inhibitory action does not 

require ATP hydrolysis.157 On the other hand, uniporter activity is known to be activated 

by inorganic phosphate (Pi), which can accelerate the Ca2+ uptake rate by precipitating 

with Ca2+ in the mitochondrial matrix, and thereby lowering the [Ca2+]m.158 The Ca2+ 

influx rate and affinity for Ca2+ is modulated by protein kinases. Specifically, the ζ 

isoform of protein kinase C, will activate, whereas the β/δ isoforms inactivate MCU.159 

Knock-down studies of p38 mitogen-activated protein kinase (MAPK) have resulted in 

an increase of mitochondrial Ca2+ uptake suggesting either itself or its downstream 

targets can inhibit MCU.160, 161 Likewise, SB202190, an inhibitor of p38 MAPK, 

significantly activates mitochondrial Ca2+ uptake, both in intact and in permeabilized 

cells.162 Other pharmacological activators include, natural plant flavonoids (e.g. 

genistein, quercetin, kaempferol),163 polyamines such as spermine and spermidine164, 

165 and estrogens receptor agonists (4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol 

(PPT)).166 Lastly, MCU mediated Ca2+ uptake also displays allosteric positive regulation 

by cytosolic Ca2+ in a calmodulin-dependent manner167, 168 which was shown to be 

inhibited by calmodulin inhibitors.169 
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Table: 1 Pharmacological modulators of MCU 

 

7. Conclusions 

Ca2+ uptake into the mitochondrial matrix plays a vital role in the regulation of multiple 

physiological and pathological processes, ranging from cytoplasmic Ca2+ signaling to 

bioenergetics and cell death. Mitochondria can uptake Ca2+ via multiple channels and 

pathways, however, the mtCU complex is the most prominent and well-characterized 

pathway. In this chapter, we have focused on the recent identification of the 

components of the mtCU complex as well as the other mitochondrial ion channels. Our 

understanding about the molecular complexity of mtCU gradually evolved from  the 

concept of a single protein to macromolecular signaling complexes, which includes a 

Ca2+ pore forming component and regulatory components controlling channel activity. 

We discussed the means by which multiple cell types and tissues regulate and use 

Compound Effect(s) References 

Ruthenium compound: ruthenium red, 

Ru360 

Inhibitor 13, 143 

Lanthanides: La3+, Gd3+ and Pr3+ Inhibitor 170 

Cardioactive drugs: quinidine, alprenolol, 

propranolol, oxyfedrine, and tetracaine 

Inhibitor 150 

Amiloride analogs and derivatives Inhibitor 151 

Mg2+ Inhibitor 154 

KBR7943 Inhibitor 156 

Minocycline Inhibitor 153, 171 

Polyamines: spermine and spermidine Activator 165 

Estrogen receptor agonists: 4,4′,4″-(4-propyl-

[1H]-pyrazole-1,3,5-triyl)trisphenol (PPT) 

Activator 166 

The p38 MAP kinase inhibitor: SB202190 Activator 162 

Flavonoids Activator 163 
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these channels to best-function for their physiological role in an organism, as well as 

how the dysfunction of this system can lead to pathophysiological conditions.  

The recent characterization of the mtCU complex has opened up the possibility for 

precise crystal and cryo-electronmicroscopic (EM) structural information of the individual 

proteins as well as the complete complex. Finally, future insight into the transcriptional, 

post-transcriptional, and post-translational modifications of the multi-protein mtCU 

complex will contribute to the development of more specific pharmacological tools and 

potentially therapeutic drugs. 
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Figure Legend: 

Figure 1. The Molecular Structure of the mtCU complex. Composed of MCU and MCUb 

(the channel forming subunits) together with essential mtCU regulators, EMRE, MCUR1 

and intermembrane space proteins, MICU1 and MICU2. 
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